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Abstract 

 

When a process is statistically under control, one may be interested in assessing the process performance based on 

the specification limits provided by the customer. This evaluation is referred to as process capability analysis. 

Manufacturing operations are often involved with multistage processes, in which the output of a stage is the input 

of its subsequent stage. This property is known as the cascade property. Existing methods in capability analysis 

studies are not applicable when a process or product is represented by profiles. This study presents a method to 

conduct process capability analysis in a multistage process when quality of a product or process is characterized by 

a simple linear profile. The performance of the proposed method for a two-stage process is evaluated by numerical 

simulation using an example from the literature. The results indicate that the proposed method eliminates the effect 

of the cascade property for different shift sizes and autocorrelations. 
 

Key Words: Process capability index, Multistage process, Cascade property, Simple linear profile, Statistical 

process control. 
 

 

1 - Introduction 

In many applications of statistical process control (SPC), one may use a single or several quality characteristics to 

monitor the quality of a process or product. However, in manufacturing processes, sometimes the quality of a product 

is characterized by a functional relationship between a response variable and one or more explanatory variables. This 

functional relationship or profile can be linear or nonlinear in nature. There are two phases in the application of control 

charts to monitor a process (Woodall et al., 2004). In Phase I, the aim is to assess the stability of the process and to 

estimate the in-control values of the process parameters. The objective of Phase II is to monitor the process using 

online data to detect any change in the process parameters as soon as possible. (Noorossana et al., 2011) addressed 

the fundamental concepts, methods, and issues related to statistical analysis of profile monitoring. 

To evaluate process performance, many quality measures have been proposed. Process capability indices (PCIs) are 

among popular and widely used measures to assess process performance in recent years. PCIs are used to determine 

whether a process is capable of producing conforming items within engineering specification limits (SLs). Univariate 

PCIs involve single quality characteristics while multivariate PCIs deal with the case of simultaneous monitoring of 

multiple quality characteristics. In profile monitoring, the SLs for PCIs calculations follow the same functional 

relationship. This functional relationship or profile can be linear or nonlinear in nature. 

The first PCI introduced by (Kane, 1986), 𝐶𝑝, measures the capability of a process with no attention to the process 

mean. It is defined as 
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𝐶𝑝 =
𝑈𝑆𝐿 − 𝐿𝑆𝐿

6𝜎
, (1) 

where 𝜎 is the process standard deviation and USL and LSL are the upper and lower SLs which reflect the customer’s 

quality requirements. 

Many studies are carried out on process capability estimations. (Kotz and Johnson, 2002) outlined 170 studies on PCIs 

during the years 1992–2000. (Wu et al., 2009) discussed the developments on PCIs between the years 2002 and 2006. 

(Yum and Kim, 2011) provided a bibliography of the literature on PCIs for the period 2000–2009. A comprehensive 

study is also performed by (de-Felipe and Benedito, 2017) for univariate and multivariate PCIs. Lately, some authors 

studied applications of process capability indices. For example, (Bendersky et al., 2020) performed a dual response 

surface methodology to simultaneously optimize the mean and the variance of a quality characteristic in the field of 

quality engineering. They suggested using a process capability index - 𝐶𝑝𝑘 - as the objective function. Also, 

(Matsuura, 2021) developed a Bayes estimator of 𝐶𝑝𝑘 is such that the prior mean is set to be equal to a specified value 

while the prior distribution is weakly informative. 

Assessment of process capability in linear profiles was one of the key issues discussed by (Woodall, 2007). Although 

this research gap has been addressed in recent years, further studies are still needed to investigate this issue for different 

cases. (Hosseinifard and Abbasi, 2012a) developed a PCI for linear profiles using the proportion of nonconforming 

items. In another study, (Hosseinifard and Abbasi, 2012b) investigated and compared five methods to estimate non-

normal PCIs for linear profiles. (Keshteli et al., 2014) explained a functional approach for measuring PCI for simple 

linear profiles (SLPs). 

(Pakzad et al., 2021) proposed a functional approach for a simple linear profile based on fuzzy set theory for the 

situations in which the specification limits and target values of the response variable are not precisely specified. 

(Pakzad and Basiri, 2022) introduced a new functional incapability index for dealing with asymmetric tolerances for 

simple linear profile. In the study of (Mehri et al., 2021)(Mehri et al., 2021), two robust PCIs for multiple linear 

profiles are proposed. In their study, the process capability is estimated using the M-estimator and the Fast-τ-estimator. 

(Ahmad and Cheng, 2022) proposed a new approach to solve the fuzzy �̅� − 𝑅 control charts with fuzzy process 

capability indices using fuzzy decision parameters using triangular fuzzy numbers. In another study, (Ahmad et al., 

2023) introduced a method to deal with obtaining a fuzzy �̅� − 𝑆 control charts using trapezoidal fuzzy number. They 

conducted a fuzzy process capability analysis to measure the process performance. For more discussion on this issue 

see references (Ebadi and Shahriari, 2013), (Wang, 2014a), (Wang, 2014b), (Wang and Tamirat, 2015), (Ahmad et 

al., 2023). 

In the area of PCI for multivariate profiles, (Ebadi and Amiri, 2012) proposed three new methods to measure process 

capability when process output could be modeled by multivariate simple linear profiles (MVSLP). (Wang, 2016) 

presented a new process yield index to evaluate the process yield for multivariate linear profiles in manufacturing 

processes. Also, (Wang and Tamirat, 2016) presented two indices to measure the process capability for multivariate 

linear profiles with one-sided SLs under mutually independent normality. Additionally, they proposed two indices to 

measure the process capability for multivariate linear profiles with one-sided SLs under multivariate normality 

assumption. (Guevara G and Alejandra López, 2022) proposed a two-phase methodology based on the concept of 

depth to measure the capability of processes characterized by the functional relationship of multivariate nonlinear 

profile data, treated as multivariate functional observations. 

In the existing studies, PCIs are generally computed based on response values. However, using predicted values of 

profile parameters to measure the capability of profiles has received very little attention. (Karimi Ghartemani et al., 

2016), (Wu, 2016) and, (Chiang et al., 2017) introduced multivariate PCIs to assess the process capability in SLP 

based on profile intercept and slope. Despite these few studies, a major gap exists in the proposed PCIs based on 

profile intercept and slope. One of the main challenges in capability analysis for a SLP is to determine the SLs for the 

profile parameters. Existing methods in the literature determine the SLs for the intercept and slope of SLP using the 

SLs for the response variable, i.e., by employing profiles within the SLs of the response variable. However, the mere 

fact that the profiles fall within the design specifications does not guarantee that they are in control. Since capability 

analysis is performed when the process is under statistical control, one drawback of previous approaches is that the 
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reported methods to determine SLs for the intercept and slope could involve out-of-control profiles as well. 

Considering profile SLs and the in-control profiles, we can calculate accurate SLs for the coefficients which enables 

us to perform capability analysis based on profile parameters. 

On the other hand, in practice, manufacturing operations are often involved with multistage processes, in which the 

output of a stage is the input of its subsequent stage. As stated earlier, this property is known as cascade property. 

Using common indices to assess the capability may lead to incorrect results as the cascade effect is ignored. To address 

cascading issue of a process, one can consider approaches such as cause selecting chart (CSC), regression adjusted 

charts, and state-space modeling of the process.  

To the best of our knowledge, the process capability of linear profiles in a multistage process has not been addressed 

in the literature. Therefore, we propose an approach to assess the process capability for SLP in a multistage process. 

Besides, a method to compute PCIs for profile parameters is developed. Note that this method can be used as a 

diagnostic aid so that we can specify the state of responses, their parameters, and the corresponding stages when the 

process is not capable. In summary, the contributions of this study are as follows. 

• Process capability evaluation of a SLP in a multistage process 

• Handling autocorrelation between response variables 

• Developing a method to compute PCI for profile parameters 

The structure of the paper is as follows. A brief overview of the SLP and univariate PCIs are presented in Sections 2 

and 3, respectively. Multistage modeling and process capability studies in multistage processes are presented in 

Section 4. The proposed method for evaluating process capability is introduced in Section 5. The PCIs for profile 

parameters are introduced in Section 6. A simulation study to evaluate the performance of the proposed method is 

presented in Section 7. Our concluding remarks are provided in the final section. 

2 - Simple Linear Profiles 

As mentioned earlier, a simple linear profile is defined by a linear relationship between a response variable and an 

explanatory variable. It is assumed that m random samples of size n are taken from the process. For the jth random 

sample, there are n fixed values for the explanatory variable. When the process is in statistical control, a SLP can be 

defined as Equation (2). 

𝑌𝑖𝑗 = 𝐴0 + 𝐴1𝑋𝑖 + 𝜀𝑖𝑗 ,      𝑖 = 1, 2, … , 𝑛,      𝑗 = 1, 2, 3, … ,𝑚, (2) 

where 𝐴0𝑗, 𝐴1𝑗 are the slope and intercept, respectively, and the error terms 𝜀𝑖𝑗 are assumed to be normally and 

independently distributed with mean zero and variance 𝜎𝑗
2. It is considered that in Phase I, the parameters in-control 

values are unknown and if the process is stable then 𝐴0𝑗 = 𝐴0, 𝐴1𝑗 = 𝐴1 and 𝜎𝜀,𝑗
2 = 𝜎𝜀

2, 𝑗 = 1,2, … ,𝑚. It is assumed 

that 𝑋𝑖 has a fixed value for all the samples. The least-squares estimates of 𝐴0, 𝐴1 and 𝜎𝜀
2 for profile sample j, 𝑎0𝑗, 𝑎1𝑗 

and mean square error 𝑀𝑆𝐸𝑗 are calculated using Equation (3). 

𝑎0𝑗 = �̅�𝑗 − 𝑎1𝑗�̅�, 𝑎1𝑗 =
𝑆𝑋𝑌(𝑗)

𝑆𝑋𝑋
, 𝑀𝑆𝐸𝑗 =

∑ 𝑒𝑖𝑗
2𝑛

𝑖=1

(𝑛 − 2)
.   (3) 

where, �̅�𝑗 = 
∑ 𝑌𝑖𝑗
𝑛
𝑖=1

𝑛
, �̅� =  

∑ 𝑋𝑖
𝑛
𝑖=1

𝑛
,  𝑆𝑋𝑌(𝑗) = ∑ (𝑋𝑖 − �̅�)𝑌𝑖𝑗

𝑛
𝑖=1 ,  𝑆𝑋𝑋 = ∑ (𝑋𝑖 − �̅�)

2𝑛
𝑖=1  and 𝑆𝑆𝐸𝑗 = (𝑌𝑖𝑗 − 𝑎0𝑗 −

𝑎1𝑗𝑋𝑖)
2. 𝑀𝑆𝐸𝑗 is the unbiased estimator of 𝜎2 for sample j and 𝑒𝑖𝑗 denotes residuals and is defined as 𝑒𝑖𝑗 = 𝑌𝑖𝑗 − �̂�𝑖𝑗 . 

3 - Univariate Process Capability Indices  
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Process capability analysis is a statistical method that has been used for decades with the purpose of reducing the 

variability in industrial processes and products. PCI provides a numerical measure on whether a process conforms to 

the predefined SLs. The four popular univariate PCIs (UPCI) are 𝐶𝑝, 𝐶𝑝𝑘 introduced by (Kane, 1986), 𝐶𝑝𝑚 introducd 

by (Chan et al., 1988), and 𝐶𝑝𝑚𝑘 introduced by (Pearn et al., 1992), are commonly used to estimate the capability of 

a process. In this study, we consider 𝐶𝑝𝑚𝑘 as the most elaborate index among these four basic UPCIs. This index, 

defined by Equation (4), considers both process variability and proximity to the target when one is dealing with an in-

control normal process. 

𝐶𝑝𝑚𝑘 = 𝑚𝑖𝑛 {
𝑈𝑆𝐿 − 𝜇

3√𝜎2 + (𝜇 − 𝑇)2
,

𝜇 − 𝐿𝑆𝐿

3√𝜎2 + (𝜇 − 𝑇)2
}, (4) 

where LSL and USL are the lower and upper SLs, respectively, T is the target value, 𝜇 is process mean, and 𝜎2 is 

process variance. 

4 - Multistage Processes 

In many manufacturing systems, one is faced with multistage processes where correlated observations are generated. 

This implies that the output of a stage is the input of its subsequent stage and a change in a response variable may 

affect some or all output variables in successive stages. As discussed earlier, this property is referred to as cascade 

property and is the main feature of multistage processes. Many authors study applications of multistage processes. For 

example, (Moslemi et al., 2018) proposed a novel methodology for a robust multi-response surface optimization 

in multistage processes. In recent years, some researchers have focused on presenting control charts in multistage 

processes. However, capability analysis in the multistage processes has been seldom studied.  

(Zhang, 1990) introduced two kinds of PCIs for multistage processes: 1) Total PCI that computes the process 

capability when the quality variable in the present stage is affected by the quality variables of previous stages. 2) 

Specific PCI which indicates the capability of a stage when the effects of precedent stages are excluded. (Linn et al., 

2002) addressed how to prioritize the process variation reduction to enhance the overall process capability in 

multistage processes. Based on Taguchi loss function, (Chen et al., 2012) presented a method to calculate PCI for a 

complex product machining process as a multistage process. (Nikzad et al., 2017) estimated the process capability of 

the second stage of a two-stage process while the effect of cascade property is removed by using residuals analysis. 

While most of the studies in the area of multistage processes deal with univariate or multivariate quality characteristics, 

in some situations, profiles are streamed through the stages of a multistage process. (Ghahyazi et al., 2014) were the 

first researchers who considered the quality characteristic in a multistage process as a profile and proposed an approach 

to monitor SLP in Phase II. 

5 - The Proposed Model 

To define profile modeling in a multistage process, we assume that m samples of size n are collected at each of the k 

stages of a multistage process from historical data. At each stage of the process, for sample j, the observations 

(𝑥𝑖,𝑗,𝑠, 𝑦𝑖,𝑗,𝑠), 𝑖 = 1, 2, … , 𝑛, 𝑗 = 1, 2, … ,𝑚 and 𝑠 = 1. 2. … , 𝑘 are available. (Ghahyazi et al., 2014) introduced the 

profile model in a multistage process considering the cascade property as 

𝑌𝑖,𝑗,1 = 𝐴0,1 + 𝐴1,1𝑋𝑖,𝑗,1 + 𝜀𝑖,𝑗,1, 

𝑌𝑖,𝑗,𝑠 = 𝜑𝑌𝑖,𝑗,𝑠−1 + 𝐴0,𝑠 + 𝐴1,𝑠𝑋𝑖,𝑗,𝑠 + 𝜀𝑖,𝑗,𝑠, 
(5) 

where 𝐴0,𝑠 and 𝐴1,𝑠 are the intercept and slope parameters at stage s, 𝜀𝑖,𝑗,𝑠’s are assumed to be i.i.d. 𝑁(0, 𝜎𝜀,𝑠
2 ) random 

variables, and 𝜑 is the autocorrelation coefficient of the process between stages. It is also assumed that the explanatory 

variable is fixed from sample to sample for all stages; consequently 𝑋𝑖,𝑗,𝑠 = 𝑋𝑖 for all values of j and s. Figure 1 presents 

a graphical display of the proposed multistage model. 
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Figure 1. A graphical display of a multistage process 

After specifying the profile model in a multistage process, we must define the SLs. Generally, SLs can be considered 

as fixed values or a function of explanatory variables. We assume that the associated SLs of the response variables 

(𝑌𝑖,𝑠) in each stage are linear functions of the explanatory variable defined as  

𝑈𝑆𝐿𝑖,𝑠 = 𝑎0
ˊ + 𝑎1

ˊ 𝑋𝑖 , 

𝐿𝑆𝐿𝑖,𝑠 = 𝑎0
˶ + 𝑎1

˶𝑋𝑖 , 
(6) 

where  𝑖 = 1,2, … , 𝑛 and 𝑠 = 1,2, … , 𝑘.  

Due to the cascade effect, using common PCIs to assess the capability of intermediate stages (𝑠 > 1) may lead to 

misleading results. To deal with this issue, the PCI for the residuals is considered. Residual analysis is the concept of 

the cause-selecting chart (CSC) proposed by (Zhang, 1984) which is one of the most popular approaches in multistage 

studies. The idea of CSC is taken from the regression control chart of (Mandel, 1969) in which a variable is dependent 

on an independent variable. Residuals are not affected by previous processes. Thus, the PCIs for the residuals indicate 

the specific capability of the process in the preferred stage. For all values of i, the residuals are obtained by 

𝑒𝑗,𝑠 = 𝑌𝑗,𝑠 − �̂�𝑗,𝑠−1, (7) 

where �̂�𝑗,𝑠 is the predicted value for the response variable 𝑌𝑗,𝑠 and can be obtained as follows. 

�̂�𝑗,𝑠 = �̂�𝑠 + �̂�𝑠𝑌𝑗,𝑠−1, (8) 

Based on (Kutner et al., 2005), �̂�𝑠 and �̂�𝑠 are the estimated parameters that are calculated using Equations (9) and 

(10). 

�̂�𝑠 = �̅�𝑠 − �̂�𝑠�̅�𝑠−1, (9) 

�̂�𝑠 =
∑ 𝑌𝑗,𝑠(𝑌𝑗,𝑠−1 − �̅�𝑠−1)
𝑚
𝑗=1

∑ (𝑌𝑗,𝑠−1 − �̅�𝑠−1)
2𝑚

𝑗=1

, (10) 

The variance of the residuals is calculated using 

𝜎𝜀,𝑠
2 =

∑ (𝑌𝑗,𝑠 − �̂�𝑗,𝑠)
2𝑚

𝑗=1

𝑚 − 2
=
∑ 𝑒𝑗,𝑠

2𝑚
𝑗=1

𝑚 − 2
, (11) 

To assess the PCI for residuals, SLs of residuals have to be obtained. (Nikzad et al., 2017) proposed a method to 

calculate SLs for residuals using process yield. According to (Wang, 2014a), process yield has been recognized as a 



Pak.j.stat.oper.res.  Vol.20  No. 1 2024 pp 139-155  DOI: http://dx.doi.org/10.18187/pjsor.v20i1.4410 

 

 
Process Capability Analysis for Simple Linear Profiles in Multistage Processes  144 

 

common criterion used in the manufacturing industry for measuring process performance. It measures the performance 

of the process by computing the percentage of the conforming items based on the process SLs. Under the assumptions 

that the mean of residuals is equal to zero, as the target value, and the process yield of residuals is 0.9973, the SLs for 

the residuals are obtained as follows. 

Process Yield = 𝑃{𝑈𝑆𝐿𝑒 ≤ 𝜀 ≤ 𝐿𝑆𝐿𝑒} = 0.9973, (12) 

→ 𝑃 {
𝐿𝑆𝐿𝑒 − 𝜇𝑒

𝜎𝑒
≤ 𝑍 ≤

𝑈𝑆𝐿𝑒 − 𝜇𝑒
𝜎𝑒

} = 0.9973,      𝜇𝑒 = 0, (13) 

→ 𝑈𝑆𝐿𝑒 = 𝜎𝑒𝜙
−1(0.99865), (14) 

→ 𝐿𝑆𝐿𝑒 = 𝜎𝑒𝜙
−1(0.00135), (15) 

where 𝜙−1(. ) is the inverse cumulative distribution function of the standard normal distribution. By determining the 

SLs associated with the residuals and the response variable in all stages using 𝐶𝑝𝑚𝑘, we can assess the PCI for each 

stage. 

6 - PCIs for Parameters 

Alongside the PCIs calculated for each stage based on the response variable, the performance of the stages can be 

assessed through the PCIs for the parameters. This aids in identifying the source of poor performance among the 

parameters. To evaluate the PCIs for profile parameters, it is necessary to determine the SLs for the intercept and 

slope. (Pakzad, 2023) provided a method to measure PCI for a SLP based on its parameters. They considered profile 

SLs as well as the in-control profile to obtain accurate SLs for the parameters. To assess the in-control profile, control 

chart limits for monitoring each parameter was considered. Their method is based on (Kim et al., 2003) study which 

uses coded 𝑋-values to make the intercept and the slope of each profile independently. 

(Kim et al., 2003) introduced an interpretable method for Phase I profile monitoring by monitoring intercept and slope 

using separate control charts. In this method, coded 𝑋-values are used which make the intercept and slope of each 

profile independent. Equation (16) presents the coded form of the model given in Equation (2). 

𝑌𝑖𝑗 = 𝐵0𝑗 + 𝐵1𝑗𝑋𝑖
′ + 𝜀𝑖𝑗 ,           𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2, … ,𝑚, (16) 

where 𝐵0𝑗 = 𝐴0𝑗 + 𝐴1𝑗�̅�, 𝐵1𝑗 = 𝐴1𝑗 and 𝑋𝑖
′ = 𝑋𝑖 − �̅�. For this model, the least-square estimators of coefficients are 

obtained using 𝑏0𝑗 = �̅�𝑗 and 𝑏1𝑗 = 𝑎1𝑗 =
𝑆𝑋𝑌(𝑗)

𝑆𝑋𝑋
. It is well known that when the process is in-control, both 𝑏0𝑗 and 𝑏1𝑗 

are mutually independent and follow a normal distribution as 𝑏0𝑗~𝑁(𝐵0,
𝜎𝜀
2

𝑛
) and 𝑏1𝑗~𝑁(𝐵1,

𝜎𝜀
2

𝑆𝑋𝑋
).  Equations (17) 

through (20) can be used to construct separate Shewhart control charts for monitoring intercept and slope. 

𝐿𝐶𝐿𝑏0 = �̅�0 − 𝑡𝑚(𝑛−2),𝛼2
2

√
(𝑚 − 1)𝑀𝑆𝐸

𝑚𝑛
, (17) 

𝑈𝐶𝐿𝑏0 = �̅�0 + 𝑡𝑚(𝑛−2),𝛼2
2

√
(𝑚 − 1)𝑀𝑆𝐸

𝑚𝑛
, (18) 
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𝐿𝐶𝐿𝑏1 = �̅�1 − 𝑡𝑚(𝑛−2),𝛼2
2
√
(𝑚 − 1)𝑀𝑆𝐸

𝑚𝑆𝑋𝑋
, 

(19) 

𝑈𝐶𝐿𝑏1 = �̅�1 + 𝑡𝑚(𝑛−2),𝛼2
2
√
(𝑚 − 1)𝑀𝑆𝐸

𝑚𝑆𝑋𝑋
, 

(20) 

where �̅�0 =
∑ 𝑏0𝑗
𝑚
𝑗=1

𝑚
, �̅�1 =

∑ 𝑏1𝑗
𝑚
𝑗=1

𝑚
, 𝑀𝑆𝐸 =

∑ 𝑀𝑆𝐸𝑗
𝑚
𝑗=1

𝑚
 and 𝑡𝑚(𝑛−2),𝛼2

2
 is a 100(1 −

𝛼2

2
) percentile of t distribution with 

𝑚(𝑛 − 2) degrees of freedom. Note that 𝛼2 = √(1 − 𝛼1)
𝑚

 is the marginal probability of signal for each control chart 

and 𝛼1 = √(1 − 𝛼)
3

 specifies the overall probability of false alarm by each chart. 

Assuming the response variable SLs for each level of the explanatory variable (𝑖 = 1, 2, … , 𝑛) are linear functions of 

the explanatory variable, two regression lines can be fitted as was stated in Equation (6).  According to separate control 

chart method, the transformed model of the SLs can be written as Equation (21). 

𝑈𝑆𝐿𝑖 = 𝑏0
ˊ + 𝑏1

ˊ𝑋𝑖
′, 

𝐿𝑆𝐿𝑖 = 𝑏0
˶ + 𝑏1

˶𝑋𝑖
′, (21) 

where 𝑏0
ˊ , 𝑏1

ˊ , 𝑏0
˶, and 𝑏1

˶ are the intercepts and slopes for 𝑈𝑆𝐿𝑖  and 𝐿𝑆𝐿𝑖 , respectively. Note that the SLs are not 

necessarily parallel to each other or the profile line. However, in this study, we assume that SLs are parallel, so 𝑏1
˶ =

𝑏1
ˊ = 𝑏. A process is called “capable” if the response variable falls within the profile SLs. Hence, 

𝑏0
˶ + 𝑏𝑋𝑖

′   ≤ 𝑏0 + 𝑏1𝑋𝑖
′ ≤ 𝑏0

ˊ + 𝑏𝑋𝑖
′, 

(22) 

According to (Pakzad, 2023), SLs for the intercept and slope can be calculated using Equations (23) and (24). 

𝑏0
˶ + (𝑏 − 𝑏1)𝑋𝑖

′   ≤ 𝑏0 ≤ 𝑏0
ˊ + (𝑏 − 𝑏1)𝑋𝑖

′, (23) 

{
 
 

 
 𝑏 +

(𝑏0
˶ − 𝑏0)

𝑋𝑖
′  

≤ 𝑏1 ≤ 𝑏 +
(𝑏0

ˊ − 𝑏0)

𝑋𝑖
′  

, 𝑋𝑖
′ > 0,

𝑏 +
(𝑏0

ˊ − 𝑏0)

𝑋𝑖
′  

≤ 𝑏1 ≤ 𝑏 +
(𝑏0

˶ − 𝑏0)

𝑋𝑖
′  

, 𝑋𝑖
′ < 0,

 (24) 

It is worth mentioning that although all profiles in Equation (22) are within the SLs of the response variable, they are 

not necessarily in-control. Thus, all the intercepts and slopes in Equations (23) and (24) are not necessarily in-control 

either. To define accurate SLs for profile parameters, (Pakzad, 2023) considered both conforming and statistically in-

control profiles in Equation (22). As a result, the SLs for the intercept and the slope parameters are given by Equations 

(25) and (26). 

𝑏0
˶ + (𝑏 − 𝐿𝐶𝐿𝑏1)𝑋𝐿

′ ≤ 𝑏0 ≤ 𝑏0
ˊ + (𝑏 − 𝑈𝐶𝐿𝑏1)𝑋𝐿

′ , (25) 

𝑀𝑖𝑛 {𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝑎𝑛𝑑 𝑖𝑛 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑙𝑜𝑝𝑒𝑠} ≤ 𝑏1 ≤ 

𝑀𝑎𝑥 {𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝑎𝑛𝑑 𝑖𝑛 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑙𝑜𝑝𝑒𝑠 }, (26) 
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where 𝑋𝐿
′  is the minimum value of  𝑋′, 𝑋𝑈

′  is the maximum value of  𝑋′, and 𝑏 +
(𝑏0
˶−𝐿𝐶𝐿𝑏0)

𝑋𝑈
′ , 𝑏 +

(𝑏0
ˊ −𝑈𝐶𝐿𝑏0)

𝑋𝑈
′ , 𝑏 +

(𝑏0
ˊ −𝑈𝐶𝐿𝑏0)

𝑋𝐿
′  and 𝑏 +

(𝑏0
˶−𝐿𝐶𝐿𝑏0)

𝑋𝐿
′  are all conforming and in-control slopes. 

Hence, using the SLs associated with the response variable and considering the in-control values of intercept and 

slope, Equations (25) and (26) are the SLs for intercept and slope parameters, respectively and 𝐶𝑝𝑚𝑘 for 𝑏0 and 𝑏1 can 

be obtained. It is worth mentioning that both indices 𝐶𝑝𝑚𝑘𝑏0  and 𝐶𝑝𝑚𝑘𝑏1  are used simultaneously and process is 

deemed “incapable” if at least one of the indices is indicative of a low process performance. 

7 - Simulation Study 

In this section, we considered the example discussed by (Khedmati and Niaki, 2016) and used MATLAB (ver. 

R2018a) to conduct simulation analyses to evaluate the performance of our proposed method. We utilized the example 

provided by. They considered a SLP in a two-stage process where the profiles for the first and second stages are given 

as 

𝑌𝑖,𝑗,1 = 3 + 2𝑋𝑖 + 𝜀𝑖,𝑗,1,        

       𝑌𝑖,𝑗,2 = 𝜑𝑌𝑖,𝑗,1 + 2 + 𝑋𝑖 + 𝜀𝑖,𝑗,2, 
(27) 

where 𝜀𝑖,𝑗,1~𝑁(0, 𝜎1
2), 𝜀𝑖,𝑗,2~𝑁(0, 𝜎2

2) and 𝜎1
2 = 𝜎2

2 = 1. The explanatory variable with four fixed 𝑋𝑖-values of 2, 4, 

6, and 8 are used in the simulation study. In our proposed method, by coding 𝑋𝑖-values, we obtain the transformed 

model as 𝑌𝑖,𝑗,1 = 13 + 2𝑋𝑖
′ + 𝜀𝑖𝑗1 and 𝑌𝑖,𝑗,2 = 𝜑𝑌𝑖,𝑗,1 + 7 + 𝑋𝑖

′ + 𝜀𝑖𝑗2 with 𝑋𝑖
′-values as -3, -1, 0, 1 and 3. We 

considered the SLs regression lines in each stage for both the original and transformed models in Table 1. 

Table 1. Response variable SLs in each stage 

Stage Original model SLs 
 

Transformed model SLs 

Stage 1 

𝐿𝑆𝐿1 = 0.0012 + 2𝑋𝑖  
→ 

𝐿𝑆𝐿1 = 10.0012 + 2𝑋𝑖
′ 

𝑈𝑆𝐿1 = 6.02 + 2𝑋𝑖 𝑈𝑆𝐿1 = 16.02 + 2𝑋𝑖
′ 

Stage 2 

𝐿𝑆𝐿2 = 0.683 + 2.8𝑋𝑖 
→ 

𝐿𝑆𝐿2 = 14.683 + 2.8𝑋𝑖
′ 

𝑈𝑆𝐿2 = 8.73 + 2.8𝑋𝑖  𝑈𝑆𝐿2 = 22.73 + 2.8𝑋𝑖
′ 

The values of 𝐶𝑝𝑚𝑘 for all response and parameters are obtained based on 10,000 simulation replications where 𝜎1
2 =

𝜎2
2 = 1 and 𝑚 = 25. 

In the following tables, we investigate the PCIs for both response variables and parameters. It must be noted again 

that the specified PCI  of stage 2 is calculated based on residuals. The performance of stage 1 is related to the parameters 

of the profile in the first stage, while total performance is associated with the parameters of the profile in all stages. 

The effect of different values of sample size on 𝐶𝑝𝑚𝑘 of each stage and parameter for both weak and strong 

autocorrelation coefficients (𝜑 = 0.1, 0.9) is presented in Table 2. In the following tables, 𝑏0−1 and 𝑏1−1 refer to 

intercept and slope of the profile in stage 1 and 𝑏0−2 and 𝑏1−2 refer to intercept and slope of the profile in stage 2, 

respectively. 

Table 2. 𝑪𝒑𝒎𝒌 for each stage under different values of 𝝋 and m  

 
m 

25 50 100 200 
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𝝋 = 𝟎. 𝟏 𝐶𝑝𝑚𝑘−Stage1 0.9569 0.9657 0.9776 0.9843 

𝐶𝑝𝑚𝑘−Stage2 0.9654 0.9673 0.9703 0.9722 

𝐶𝑝𝑚𝑘−Total 0.1729 0.1731 0.1731 0.1732 

𝐶𝑝𝑚𝑘−𝑏0−1 3.5852 3.6404 3.7029 3.7690 

𝐶𝑝𝑚𝑘−𝑏1−1  0.6191 0.5884 0.5538 0.5170 

𝐶𝑝𝑚𝑘−𝑏0−2 0.0479 0.0526 0.0584 0.0643 

𝐶𝑝𝑚𝑘−𝑏1−2 0.5406 0.5359 0.5306 0.5254 

𝝋 = 𝟎. 𝟗 𝐶𝑝𝑚𝑘−Stage1 0.9546 0.9648 0.9788 0.9844 

𝐶𝑝𝑚𝑘−Stage2 0.9633 0.9669 0.9705 0.9723 

𝐶𝑝𝑚𝑘−Total 0.9479 0.9598 0.9709 0.9792 

𝐶𝑝𝑚𝑘−𝑏0−1 3.5852 3.6404 3.7029 3.7690 

𝐶𝑝𝑚𝑘−𝑏1−1  0.6191 0.5884 0.5537 0.5170 

𝐶𝑝𝑚𝑘−𝑏0−2 3.5772 3.6324 3.6949 3.7610 

𝐶𝑝𝑚𝑘−𝑏1−2 0.6069 0.5762 0.5415 0.5048 

From Table 2 we infer that different values of the autocorrelation coefficient do not affect the process performance in 

stage 1 and stage 2 (when the cascade property is removed). However, the total index is strongly correlated to this 

coefficient. Higher values of autocorrelation coefficients result in higher values of the total 𝐶𝑝𝑚𝑘. The performance of 

the parameters in stage 1 is not correlated to the autocorrelation coefficient either. As we see in Table 2, the values of 

𝐶𝑝𝑚𝑘 for 𝑏0−1 and 𝑏1−1are not affected by different values of 𝜑; while the capability of parameters in stage 2 (𝑏0−2 

and 𝑏1−2) are highly correlated to 𝜑. On the other hand, it is clear from Table 2 that as sample size increases, the 

values of 𝐶𝑝𝑚𝑘 for all stages and parameters increase except for the slope parameters. Also, capability values for both 

𝑏1−1 and 𝑏1−2 decrease slightly when sample size increases. 

The effect of different variances of error terms (𝜎1
2 and 𝜎2

2) on 𝐶𝑝𝑚𝑘 in each stage and related parameters, while 𝜑 = 

0.9 and the sample size equals 25 is presented in Table 3. 

Table 3. 𝑪𝒑𝒎𝒌 for each stage and parameters under different values of 𝝈𝟏
𝟐 and 𝝈𝟐

𝟐 

 𝝈𝟐
𝟐 = 𝟏 

𝝈𝟏
𝟐 0.7 0.8 0.9 1 1.1 1.2 

𝐶𝑝𝑚𝑘−Stage1 1.3838 1.2104 1.0622 0.9546 0.8590 0.7868 

𝐶𝑝𝑚𝑘−Stage2 0.9989 0.9876 0.9758 0.9633 0.9438 0.9320 

𝐶𝑝𝑚𝑘−Total 1.0827 1.0393 0.9894 0.9479 0.9016 0.8650 

𝐶𝑝𝑚𝑘−𝑏0−1  3.9751 3.8208 3.6933 3.5852 3.4923 3.4112 

𝐶𝑝𝑚𝑘−𝑏1−1 0.9120 0.7962 0.7002 0.6191 0.5492 0.4883 

𝐶𝑝𝑚𝑘−𝑏0−2  3.7260 3.6727 3.6233 3.5772 3.5341 3.4937 

𝐶𝑝𝑚𝑘−𝑏1−2  0.7181 0.6783 0.6414 0.6069 0.5747 0.5444 

 𝝈𝟏
𝟐 = 𝟏 

𝝈𝟐
𝟐 0.7 0.8 0.9 1 1.1 1.2 
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𝐶𝑝𝑚𝑘−Stage1 0.9546 0.9546 0.9546 0.9546 0.9546 0.9546 

𝐶𝑝𝑚𝑘−Stage2 1.0620 0.9970 0.9825 0.9633 0.9456 0.9221 

𝐶𝑝𝑚𝑘−Total 1.1295 1.0671 1.0052 0.9479 0.8941 0.8414 

𝐶𝑝𝑚𝑘−𝑏0−1  3.5852 3.5852 3.5852 3.5852 3.5852 3.5852 

𝐶𝑝𝑚𝑘−𝑏1−1 0.6191 0.6191 0.6191 0.6191 0.6191 0.6191 

𝐶𝑝𝑚𝑘−𝑏0−2  3.7660 3.6972 3.6346 3.5772 3.5244 3.4756 

𝐶𝑝𝑚𝑘−𝑏1−2  0.7481 0.6966 0.6498 0.6069 0.5674 0.5309 

 

 

Figure 2. 𝑪𝒑𝒎𝒌 values under different values of 𝝈𝟏
𝟐 where 𝝈𝟐

𝟐 = 𝟏 

 

Figure 3. 𝑪𝒑𝒎𝒌 values under different values of 𝝈𝟐
𝟐 where 𝝈𝟏

𝟐 = 𝟏 
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From Table 3 we found that different values of 𝜎1
2 affect the performance of all stages but changes in 𝜎2

2 have no 

particular effect on the first stage performance. One can see that as 𝜎1
2 decreases, 𝐶𝑝𝑚𝑘 of stage 1, stage 2, and total 

capability and also 𝐶𝑝𝑚𝑘 for all parameters increase. For example, when 𝜎1
2 = 0.7 and 𝜎2

2 = 1, PCIs for stage1 

(1.3838) and its related parameters (3.9751 and 0.9120) show better capability in comparison to the cases in which 𝜎1
2 

takes higher values. As mentioned, the variation of 𝜎2
2 does not affect the performance of the first stage. As 𝜎2

2 

decreases, total 𝐶𝑝𝑚𝑘 and also 𝐶𝑝𝑚𝑘 for profile parameters of stage 2 increase. For example, when 𝜎1
2 = 1 and 𝜎2

2 =

0.7, total PCI (1.1295) and the PCI for stage2 (1.0620) and its related parameters (3.7660 and 0.7481) show better 

capability in comparison to the cases in which 𝜎2
2 takes higher values. Figures 2 and 3 show how different values of 

𝜎1
2 and 𝜎2

2 affect the performance of stage 1, stage 2, and total performance. 

Similarly, for different values of 𝜎1
2 and 𝜎2

2, the capability of all stages and parameters is interpretable. Also, 

simultaneous changes of 𝜎1
2 and 𝜎2

2 can be explained. For example, when both 𝜎1
2 and 𝜎2

2 are equal to 0.6, the 𝐶𝑝𝑚𝑘 

for stage1, stage2, total, 𝑏0−1, 𝑏1−1, 𝑏0−2, and 𝑏1−2 is obtained as 1.6232, 1.3680, 1.6085, 4.1662, 1.0558, 4.1563, and 

1.0400, respectively which shows acceptable performance. Obviously, the lower values of 𝜎1
2 and 𝜎2

2 result in better 

performance of the process. 

In Tables 4 and 5, we studied the effect of shifts in intercept and slope of the profile in stage 1 on the process 

performance when 𝜑 = 0.9 and the sample size equals 25. 

TABLE 4. PCIs values under stage 1 intercept shifts from  𝒃𝟎−𝟏 to 𝒃𝟎−𝟏 + 𝝀𝝈  

    𝜆    

PCI -0.3 -0.2 -0.1 0 0.1 0.2 0.3 

𝐶𝑝𝑚𝑘−Stage1 0.8590 0.9075 0.9371 0.9546 0.9455 0.9177 0.8717 

𝐶𝑝𝑚𝑘−Stage2 0.9670 0.9645 0.9665 0.9633 0.9655 0.9643 0.9665 

𝐶𝑝𝑚𝑘−Total 0.7988 0.8746 0.9214 0.9479 0.9324 0.8783 0.8075 

𝐶𝑝𝑚𝑘−𝑏0−1 2.8763 3.1820 3.4363 3.5852 3.4783 3.2420 2.9428 

𝐶𝑝𝑚𝑘−𝑏1−1 0.6191 0.6191 0.6191 0.6191 0.6191 0.6191 0.6191 

𝐶𝑝𝑚𝑘−𝑏0−2 3.1850 3.3614 3.4970 3.5772 3.5123 3.3839 3.2124 

𝐶𝑝𝑚𝑘−𝑏1−2 0.6069 0.6069 0.6069 0.6069 0.6069 0.6069 0.6069 

 

TABLE 5. PCIs values under stage 1 slope shifts from  𝒃𝟏−𝟏 to 𝒃𝟏−𝟏 + 𝜷𝝈  

    𝛽    

PCI -0.15 -0.1 -0.05 0 0.05 0.1 0.15 

𝐶𝑝𝑚𝑘−Stage1 0.8535 0.9002 0.9431 0.9546 0.9423 0.9037 0.8496 

𝐶𝑝𝑚𝑘−Stage2 0.9642 0.9646 0.9651 0.9633 0.9640 0.9640 0.9653 

𝐶𝑝𝑚𝑘−Total 0.7766 0.8545 0.9196 0.9479 0.9242 0.8553 0.7721 

𝐶𝑝𝑚𝑘−𝑏0−1 3.5852 3.5852 3.5852 3.5852 3.5852 3.5852 3.5852 

𝐶𝑝𝑚𝑘−𝑏1−1 0.3124 0.4090 0.5121 0.6191 0.5314 0.4290 0.3284 

𝐶𝑝𝑚𝑘−𝑏0−2 3.5772 3.5772 3.5772 3.5772 3.5772 3.5772 3.5772 

𝐶𝑝𝑚𝑘−𝑏1−2 0.3352 0.4269 0.5014 0.6069 0.5509 0.4859 0.4172 

Table 4 is related to PCIs values under small intercept shifts in stage 1. It is assumed that the values for the slope and 

variance are known with no shift. From Table 4, we conclude that as intercept shift increases, the performance of 

parameters deteriorates. Table 5 shows the effect of different shifts in the slope in stage 1 on the performance of 

parameters. It is clear that as the shift size in slope increases, the process performance deteriorates.  

According to Tables 4 and 5, stage 1 parameters shifts are considered to investigate how PCIs values are affected. In 

the Figures 4 and 5, the performance of stage 1, stage 2, and total performance is demonstrated.  
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Figure 4. 𝑪𝒑𝒎𝒌 values under stage 1 intercept shifts from  𝒃𝟎−𝟏 to 𝒃𝟎−𝟏 + 𝝀𝝈 

 

Figure 5. 𝑪𝒑𝒎𝒌 values under stage 1 slope shifts from  𝒃𝟏−𝟏 to 𝒃𝟏−𝟏 + 𝜷𝝈 

As expected, shifts in the parameters in stage 1 affect the performance of its own stage and the total performance. 

Besides, larger shifts cause poorer performance. On the other hand, these shifts have insignificant effect on stage 2 

performance. 

TABLE 6. PCIs values under stage 2 intercept shifts from  𝒃𝟎−𝟐 to 𝒃𝟎−𝟐 + 𝜆
′𝝈  

    𝜆′    

PCI -0.3 -0.2 -0.1 0 0.1 0.2 0.3 

𝐶𝑝𝑚𝑘−Stage1 0.9500 0.9512 0.9537 0.9546 0.9531 0.9511 0.9547 

𝐶𝑝𝑚𝑘−Stage2 0.8943 0.9152 0.9440 0.9633 0.9437 0.9216 0.9040 

𝐶𝑝𝑚𝑘−Total 0.8908 0.9195 0.9393 0.9479 0.9453 0.9244 0.8970 
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𝐶𝑝𝑚𝑘−𝑏0−1 3.5852 3.5852 3.5852 3.5852 3.5852 3.5852 3.5852 

𝐶𝑝𝑚𝑘−𝑏1−1 0.6191 0.6191 0.6191 0.6191 0.6191 0.6191 0.6191 

𝐶𝑝𝑚𝑘−𝑏0−2 3.1201 3.3251 3.4844 3.5772 3.5006 3.3489 3.1485 

𝐶𝑝𝑚𝑘−𝑏1−2 0.6069 0.6069 0.6069 0.6069 0.6069 0.6069 0.6069 

 

TABLE 7. PCIs values under stage 1 slope shifts from  𝒃𝟏−𝟐 to 𝒃𝟏−𝟐 + 𝛽
′𝝈  

    𝛽′    

PCI -0.15 -0.1 -0.05 0 0.05 0.1 0.15 

𝐶𝑝𝑚𝑘−Stage1 0.9525 0.9508 0.9547 0.9546 0.9490 0.9564 0.9529 

𝐶𝑝𝑚𝑘−Stage2 0.8892 0.9202 0.9458 0.9633 0.9347 0.9151 0.8961 

𝐶𝑝𝑚𝑘−Total 0.8855 0.9170 0.9377 0.9479 0.9355 0.9174 0.8832 

𝐶𝑝𝑚𝑘−𝑏0−1 3.5852 3.5852 3.5852 3.5852 3.5852 3.5852 3.5852 

𝐶𝑝𝑚𝑘−𝑏1−1 0.6191 0.6191 0.6191 0.6191 0.6191 0.6191 0.6191 

𝐶𝑝𝑚𝑘−𝑏0−2 3.5772 3.5772 3.5772 3.5772 3.5772 3.5772 3.5772 

𝐶𝑝𝑚𝑘−𝑏1−2 0.3827 0.4654 0.5241 0.6069 0.5440 0.4708 0.3944 

The effect of shifts in parameters in stage 2 on the process performance are evaluated in Tables 6 and 7. The results 

indicate that as parameters shift increases, the performance of stage 2, its parameters, and total performance 

deteriorate. According to Table 6, we notice that as intercept shift increases, the performance of intercept, stage 2, and 

total performance deteriorate. Table 7 shows the effect of different shifts in the slope parameter in stage 2 on the 

performance. It is clear that as the shift size in slope increases, the process performance deteriorates. 

According to Tables 6 and 7, PCIs values under shifts in the parameters in stage 2 are discussed. In Figures 6 and 7, 

the performance of stage 1, stage 2, and total performance is illustrated.  

 

Figure 6. 𝑪𝒑𝒎𝒌 values under stage 2 intercept shifts from  𝒃𝟎−𝟐 to 𝒃𝟎−𝟐 + 𝜆
′𝝈 
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Figure 7. 𝑪𝒑𝒎𝒌 values under stage 2 slope shifts from  𝒃𝟏−𝟐 to 𝒃𝟏−𝟐 + 𝛽
′𝝈 

As shown in Figures 6 and 7, shifts in the parameters in stage 2 affect the performance of its own stage and the total 

performance. As one could expect, larger shifts result in poorer performance. On the other hand, these shifts do not 

have considerable effect on stage 1 performance. 

According to above-mentioned tables and figures, the results show that the proposed method removes the cascade 

property effect for different shift sizes and autocorrelations. As shown in Figures 4 and 5, different shifts in the 

parameters of the first-stage profile do not affect the performance of the second stage, where its PCI remains almost 

unchanged. The results in Figures 6 and 7 show that as we expected, different shift sizes affect the performance of 

second stage and total performance. 

8 - Case study 

In this section a piston manufacturing process, initially considered by (Fong and Lawless, 1998), is used to conduct a 

process capability analysis using the proposed method. In this case study, a piston is produced in a four-stage 

machining process, where in each stage the diameters of a piston are inspected in microns at heights 4 mm, 10 mm, 

36.7 mm, and 58.7 mm from the bottom of the part. The functional relationship between the diameter and the height 

of each piston can be stated as a profile for each stage of the process. In this study, 25 profiles for each of the four 

heights were considered. Without loss of generality and for the sake of simplicity, we used the first two stages of this 

process for the analyses. 

In stage1 and stage2, the underlying in-control process with a SLP is regarded as 𝑌𝑖,𝑗,1 = 89.11867 − 0.01322 𝑋𝑖 +

𝜀𝑖,𝑗,1 and 𝑌𝑖,𝑗,2 = 89.12032 − 0.01328 𝑋𝑖 + 𝜀𝑖,𝑗,2, where 𝜀𝑖,𝑗,1~𝑁(0, 𝜎1
2), 𝜀𝑖,𝑗,2~𝑁(0, 𝜎2

2). Models were fitted with 

𝜎1
2 = 𝜎2

2 = 0.04167 microns2 and 𝜎1
2 = 𝜎2

2 = 0.1 microns2. The SLs of each stage are presented in Table 8. 

Table 8. Estimated SLs for the two-stage piston manufacturing process  

 Stage 1 Stage 2 

SLs 

𝑈𝑆𝐿1 = 95.23 − 0.011𝑋𝑖 𝑈𝑆𝐿2 = 96.32 − 0.012𝑋𝑖 

𝐿𝑆𝐿1 = 81.73 − 0.011𝑋𝑖 𝐿𝑆𝐿2 = 82.37 − 0.012𝑋𝑖 
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When   𝜎1
2 = 𝜎2

2 = 0.04167, the intercept and slope for each stage, 𝑏0−1, 𝑏1−1, 𝑏0−2, and 𝑏1−2, are calculated as 

2.1672, 1.2568, 2.1653, and 1.3040, and the 𝐶𝑝𝑚𝑘 for stage1, stage2, and total are obtained as 1.7542, 1.2512, and 

1.8021, respectively which shows acceptable performance. On the other hand, when   𝜎1
2 = 𝜎2

2 = 0.1, the intercept 

and slope for each stage, 𝑏0−1, 𝑏1−1, 𝑏0−2, and 𝑏1−2, are calculated as 2.1626, 0.7018, 2.0168, and 0.7121 and 𝐶𝑝𝑚𝑘 

for stage1, stage2, and total are obtained as 1.5232, 1.1680, 1.6085, respectively. Thus, since 𝐶𝑝𝑚𝑘𝑏1
 index is less than 

one, it is concluded that the process is incapable. 

9 - Conclusions  

In this study, we introduced an approach to assess process capability in a multistage process when quality 

characteristics are represented by a SLP. Moreover, a method was applied to specify the performance of a profile 

based on its parameters. The capability of an in-control process was evaluated in terms of two new independent 

univariate PCIs for profile parameters. The SLs for profile parameters were obtained based on SLs of the response 

variable, as well as considering the in-control profile. Also, the effect of parameters shifts in stage 1 and 2 on process 

performance was investigated. Generally, as one expects, shift in the parameters results in a less efficient performance 

of the process. In addition, the results show that the proposed method removes the effect of the cascade property for 

different shift sizes and autocorrelations. This study focused on PCI evaluation of a SLP based on its parameters. The 

proposed approach can be extended to other types of profile models such as polynomial, nonlinear, and multivariate 

responses. In addition, future studies may include calculation of PCIs in the presence of contamination, where robust 

estimation methods can be applied to handle the challenge. 
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