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Abstract  

Time series analysis plays a pivotal role in the strategic planning and risk management of reinsurance companies. 

It is an indispensable tool for gaining insights into the future utilization of reinsurance revenues. To effectively 

safeguard against substantial financial losses stemming from anticipated claims, reinsurance businesses must have 

a thorough understanding of the expected values of these claims. The ability to estimate the potential value of future 

claims is paramount, as it empowers reinsurance companies to proactively prepare and allocate resources, ensuring 

that they are well-equipped to cover likely future claims. Our research incorporates an innovative approach to 

estimate reinsurance revenues, leveraging the power of time series analysis. By applying the proposed paradigm to 

an original time series dataset, we aim to showcase its practical value and effectiveness in predicting future revenue 

trends. To assess the accuracy of these predictions, we employ the Box-Ljung statistical test, a statistical test 

commonly used in time series analysis. The corresponding p-value generated from this test provides a quantitative 

measure of the ability to analyze, capture and explain the underlying patterns in the data, thereby aiding reinsurance 

companies in providing an informed decisions and managing their financial risks effectively. In summary, the 

integration of time series analysis, single exponential smoothing (SEXS), and advanced forecasting techniques 

forms a critical foundation for enhancing the predictive capabilities of reinsurance businesses and ensuring their 

financial stability in the face of uncertain future claims. 
 

Key Words: Cullen-Frey graph; Holt-Winters' Additive Algorithm; Box-Ljung Test; Reinsurance Revenues; 

Residuals Analysis; Forecasting; Single Exponential Smoothing. 
 

 

 

1. Introduction 

Reinsurance is often known as the “insurance of stop-loss” or the “insurance for insurers”, is a protective measure that 

organizations adopt to mitigate their exposure to substantial claim occurrences. It involves an arrangement where 

insurers change and transfer a certain part of the risk portfolios to others, reducing the likelihood of shouldering 

substantial liabilities arising from insurance claims. The entity that diversifies its insurance portfolio and offloads 

some of the risk is referred to as the ceding party. Conversely, the reinsurer is the entity that agrees to assume a share 

of the potential liability from the primary insurer in exchange for a portion of the insurance premium. In essence, the 

reinsurer provides insurance to the primary insurer, helping them manage their risk exposure and ensuring they have 

the financial capacity to cover large or unexpected losses. This arrangement allows the primary insurer to underwrite 

more policies than they otherwise could on their own, thus spreading risk across multiple parties within the insurance 

industry (see Mohamed et al. (2022 and 2024)).  

 

Through reinsurance, insurers can maintain profitability by recovering a portion or the entirety of funds paid to 

claimants. This strategic approach not only diminishes the net liability associated with individual risks but also 

provides a safeguard against catastrophic losses stemming from significant or widespread events. Additionally, it 

enables companies seeking reinsurance, known as ceding companies, to enhance their capacity for undertaking risks 
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across various levels. In light of these crucial aspects and current global trends, we present a model for projecting the 

revenues of reinsurance companies. This model employs straightforward methodologies and stands out for its high 

predictive accuracy, setting it apart from many expensive models with challenging requirements. Moreover, 

reinsurance may serve secondary purposes beyond its primary role in risk management, including reducing the capital 

requirements of the ceding firm, mitigating tax burdens, or fulfilling various other strategic objectives. 

 

The topic of forecasting the revenues of reinsurance companies is one of the important topics in the field of actuarial 

statistics. In statistical literature, there are many methods, techniques, and models for statistical prediction. It is 

difficult to say that a certain technique, method, or model is the best ever. This issue of preference among techniques, 

methods, and models is determined by many factors and reasons, including required accuracy, cost, and speed. In this 

paper, we will take great care to balance all these factors in order to provide reliable and accurate forecasts to an 

acceptable and sufficient extent. 

 

The renowned Box and Jenkins, often referred to as Bx-Jn, introduced the autoregressive-integrated-moving-average 

(ARIMA) models with the primary objective of harnessing time series data to make accurate predictions. Box and 

Jenkins' groundbreaking work, as cited in created by Box and Jenkins (1970), laid the foundation for advanced time 

series forecasting methodologies. The essence of the Bx-Jn technique lies in its ability to forecast data by drawing 

upon the historical information encapsulated within a specific time series. Over time, as data points accumulate in a 

structured manner, this method becomes adept at making predictions by analyzing the evolving trends and patterns 

inherent in the time series data. Central to this methodology is the assessment of variations and differences among the 

various data points collected over time. By employing a combination of moving average models, seasonal variations, 

and autoregressive models, the Box-Jenkins approach diligently seeks out meaningful patterns within the time series 

data. These patterns, once identified, serve as valuable insights into the future, enabling more accurate and informed 

predictions.  

 

The Box-Jenkins method primarily finds its application in conjunction with ARIMA models, as these models provide 

a robust framework for capturing and modeling the complex interplay of autoregressive and moving average 

components present in time series data. For further details on time series analysis with forecasting and control, readers 

are encouraged to explore the comprehensive work by Box et al. (2015). This source offers a deeper understanding of 

the principles and methodologies behind time series analysis, ultimately enhancing the ability to predict future trends 

and control outcomes in a variety of domains. Contrarily, studies utilizing ARIMA models have been widely published 

in the actuarial literature; for more information on forecasting vehicle insurance claims using econometrics and 

ARIMA models, see Cummins and Griepentrog (1985). See Jang et al. (1991) for an analysis of certain medical 

insurance plans for employees based on these models. See Venezian and Leng (2016) for a few spectral and ARIMA 

analysis applications. To explore the fluctuations in unemployment reinsurance revenues utilizing the ARIMA model, 

refer to Mohammadi and Rich's study (2023). Additionally, Hafiz et al. (2021) and Kumar et al. (2020) employed the 

ARIMA model to predict insurance penetration rates in Nigeria and motor insurance claim amounts, respectively. 

Numerous authors have allocated their research on moving average (MA), autoregressive (AR), and ARIMA models 

in various contexts. Jakaša et al. (2011) explored electricity price forecasting, Sahu et al. (2015) for production 

forecasting, Iqbal et al. (2016) worked on predicting wheat output, Darekar and Reddy (2017) conducted forecasts for 

oilseed prices in India, Nath et al. (2019) predicted India's wheat production, and Palakuru et al. (2019) expanded 

upon Shrahili's (2021) research. Mohamed et al. (2022) introduced a novel synthetic autoregressive model for 

analyzing left-skewed reinsurance revenue datasets, building upon Shrahili's work. This approach involves a 

comprehensive assessment of reinsurance revenue data using various realistic ARIMA models to identify the most 

suitable one. The selection of the appropriate model is crucial for efficient insurance claims processing. Statistical 

evaluation is utilized to determine the significance of the model's parameters, with a preference for models with fewer 

critical parameters. The initial step in constructing a customized Box-Jenkins model for analyzing time series data 

related to reinsurance revenues entails assessing the stationarity of the time series and identifying any noteworthy 

seasonal patterns that should be replicated. Once the Box-Jenkins model is established, the autoregressive component 

is selected. Subsequently, reinsurance revenues are simulated using the synthetic autoregressive model, and its 

effectiveness is assessed through a series of simulated tests. 

 

Therefore, different models can be suggested for forecasting, such as the SEXS model which was first presented by 

Brown (1959), Holt (1957), and Winters (1960). The SEXS is a straightforward and easy-to-understand forecasting 

technique. It requires minimal mathematical calculations and can be implemented quickly, making it accessible to a 
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wide range of users, including those without extensive statistical knowledge. The SEXS method allows for adaptability 

to various time series patterns. It can handle data with trends, seasonality, or random fluctuations, making it versatile 

for different forecasting scenarios. The SEXS places more weight on recent observations, which means that it can 

quickly respond to sudden changes or shifts in the data. This makes it particularly useful for short-term forecasting or 

when there are rapid fluctuations in the time series. It is computationally efficient, even for large datasets. It does not 

require the storage or processing of a large number of historical observations, making it suitable for applications with 

limited computational resources. For further elaboration on this topic, additional insights can be found by referring to 

the works of Holt and Winters. Delving into these seminal texts can provide a deeper understanding of the subject 

matter, offering nuanced perspectives and comprehensive analyses. Brown's seminal contribution in 1959, Holt's 

seminal work in 1957, and Winters' seminal piece in 1960 serve as foundational pillars in literature, each offering 

unique perspectives and valuable insights. Therefore, consulting these references is highly recommended for those 

seeking a thorough exploration of the topic at hand. 

 

The weights employed in SEXS based predictions diminish exponentially as time progresses, resulting in weighted 

averages that give more prominence to earlier observations. Put differently, more recent observations carry a higher 

weight in this method. This characteristic allows for the rapid and accurate generation of forecasts across a range of 

time series data, making it particularly advantageous for industrial applications. The Holt-Winters (H-WNS) method 

is a comprehensive forecasting technique that offers two distinct variations, each tailored to accommodate various 

seasonal dynamics. One of these variations adopts a multiplicative approach, which proves effective when seasonal 

patterns fluctuate in proportion to the overall magnitude of the dataset. In contrast, the additive approach is preferred 

when seasonal variations maintain a relatively constant magnitude throughout the dataset's duration, representing the 

seasonal component in absolute terms relative to the series' scale. In the additive model, the level equation plays a 

pivotal role by adjusting the dataset to account for seasonality, effectively removing its influence. Consequently, this 

adjustment results in seasonal components averaging out to approximately zero within each year, contributing to a 

more accurate depiction of underlying trends and patterns. Exploring these two methodologies within the Holt-Winters 

framework provides a robust foundation for understanding and implementing forecasting techniques in diverse 

scenarios. 

 

In our research, we adopt the additive Holt-Winters (H-WNS) algorithm for modeling and forecasting historical 

insurance data, and we specifically consider the Single Exponential Smoothing (SEXS) model as part of our analysis. 

For the aim of assessing the forecasting performance of the SEXS model, we employ the mean of squared errors 

(MSEs) as a standard evaluation metric. However, the reliability of any forecasting model hinges significantly on the 

integrity of its residuals, and we conduct a comprehensive numerical and visual assessment of these residuals for both 

the SEXS and H-WNS models. 

It's important to note that "exponential smoothing" is a comprehensive approach used to enhance the analysis of time 

series data. In contrast to exponential functions that involve weights diminishing exponentially over time, explicit 

moving averages utilize weights that increase linearly as time progresses. This approach allows for straightforward 

decision-making, particularly when considering factors like seasonality, making it applicable across various scenarios. 

Exponential smoothing stands as a prevalent method for the analysis of time-series data, widely embraced across 

various disciplines. It's noteworthy to highlight the parallels between exponential smoothing techniques, such as SEXS 

and moving averages, with established filtering methodologies. Specifically, the comparison can be drawn between 

SEXS and first-order infinite-impulse response (IIR) filters, as both utilize equal weighting factors, emphasizing their 

shared approach in assigning significance to past observations. Similarly, the moving average method aligns with 

finite impulse response (FIR) filters, given its reliance on a finite window of past data points with uniform weights. 

This comparative analysis not only underscores the versatility and applicability of exponential smoothing techniques 

but also provides insights into their underlying principles, aiding in a deeper understanding of their functionality in 

time-series analysis. 

 

Holt's contribution in 1957 expanded the capabilities of simple exponential smoothing by introducing a method for 

forecasting datasets with a trend component. This method incorporates a forecasting equation alongside two 

smoothing equations: one for the level and one for the trend. A significant aspect of Holt's linear approach is its ability 

to generate predictions showcasing a consistent trend—either growth or decline—that extends indefinitely into the 
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future. However, empirical findings indicate that these methods often exhibit a tendency to overpredict, particularly 

when dealing with longer forecast horizons, as discussed in Holt (1957) and Hyndman et al. (2018). This underscores 

the importance of considering potential overprediction when employing such forecasting techniques. 

 

The rest of Sections of this work is presented as follows: The SEXS model and its corresponding additive H-WNS' 

method are presented in Section sec2. In Section sec3, forecasting reinsurance revenue under the additive H-WNS' 

method is covered. Finally, Section sec4 offers some remarks. 

 

2. The additive H-WNS' method 

Exponential smoothing stands as a valuable technique in the realm of time series analysis, specifically tailored for 

generating concise short-term forecasts based on historical data. Its applicability shines when dealing with time series 

data that aligns with an additive model characterized by a consistent level and an absence of apparent seasonality. In 

such cases, simple exponential smoothing emerges as a straightforward and effective method for crafting short-term 

predictions. This approach particularly excels in forecasting data that lacks a clear seasonal pattern or discernible 

trend. 

 

At the heart of this technique is the fundamental SEXS (Simple Exponential Smoothing) model, which serves as a 

means to estimate the current level within the dataset. The key parameter of this model plays a pivotal role in 

determining its accuracy when forecasting the current level at a specific time point. Notably, this parameter can assume 

values within the range of 0 to 1. A value closer to 0 signifies that recent data points carry relatively less weight in 

shaping future predictions, while a value nearer to 1 suggests that recent data points are accorded greater significance. 

This strategy of assigning varying degrees of importance to recent observations in contrast to older ones serves as a 

foundational concept underlying the principles of exponential smoothing. 

In essence, exponential smoothing offers a valuable tool for short-term forecasting, particularly beneficial when 

dealing with data characterized by stability, lack of conspicuous seasonality, or apparent trends. The ability to adapt 

the parameter to prioritize recent data underscores its versatility and utility in generating accurate predictions, making 

it a valuable asset in the arsenal of forecasting techniques for time series data analysis. 

 

The additive H-WNS algorithm, also known as the triple exponential smoothing method, is an extension of the SEXS 

technique. It is specifically designed to handle time series data sets that exhibit trends and seasonality. The algorithm 

takes into account three components: level, trend, and seasonality, and applies smoothing techniques to forecast future 

values. Overall, the additive H-WNS algorithm is a powerful tool for forecasting time series data sets that exhibit trend 

and seasonality. It enables accurate predictions by considering the level, trend, and seasonal components, making it 

valuable in various industries and domains where such patterns are present. Generally, the usage of the Additive H-

WNS algorithm in forecasting can be summarized as follows: 

1) The additive H-WNS algorithm is effective in capturing and forecasting trends in time series data. It considers 

historical trends and projects it into the future, providing valuable insights for predicting future values. This is 

particularly useful in scenarios where the data exhibits a consistent upward or downward trend over time. 

2) The algorithm can handle time series data with seasonal patterns by capturing and forecasting the seasonal 

component. It analyzes historical seasonal fluctuations and applies smoothing techniques to project future 

seasonal patterns. This is beneficial when dealing with data that exhibits regular seasonal variations, such as sales 

data with monthly or quarterly patterns. 

3) In addition to trend and seasonality, the additive H-WNS algorithm considers the level component of a time series. 

It estimates the average level of the data and incorporates it into the forecasting process. This is useful when there 

is a need to forecast the overall level of the data, independent of trend or seasonality. 

4) The algorithm can handle time series data sets that exhibit multiple seasonal periods, such as daily, weekly, and 

yearly patterns. It can capture and forecast the interactions between these different seasonal components, 

providing accurate forecasts for each period. This is advantageous in industries where multiple seasonal patterns 

are present, such as retail or tourism. 

5) The additive H-WNS algorithm can be used for out-of-sample forecasting, where historical data is available up 

to a certain point, and future values need to be projected. By incorporating the trend, seasonality, and level 
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components, the algorithm can generate forecasts beyond the available historical data, allowing for effective 

planning and decision-making. 

6) The algorithm is widely used in demand forecasting, particularly in industries with seasonality and trend, such as 

retail, manufacturing, and supply chain management. It helps businesses predict future demand patterns, adjust 

inventory levels, optimize production, and plan for seasonal variations. 

7) The additive H-WNS algorithm aids in capacity planning by providing insights into future resource requirements 

based on historical trend and seasonality. This allows organizations to allocate resources efficiently, anticipate 

demand fluctuations, and avoid underutilization or overutilization of resources. 

The SEXS model guarantees that all anticipated values are equal to the series' most recent value, where  

�̂�(𝜩 + 𝓱)|𝜩 = 𝒵𝜩|𝓱 = 1,2,3…, 
where all future predictions are determines using a simple average of the observed data, namely  

�̂�(𝜩 + 𝓱)|𝜩 = 𝜩−1∑𝒵𝜩|𝓱 = 1,2,3…

𝜩

𝜩=0

 

The underlying principle behind averaging methods in time series analysis hinges on the assumption that each 

observation in the dataset should be treated with equal importance and, consequently, assigned similar weights during 

the forecasting process. While this approach ensures fairness in considering all data points, it may not always align 

with the practical realities of many real-life scenarios. 

In practice, we often strive to strike a balance between these two extremes. Instead of treating all observations 

uniformly, it is frequently more reasonable to give higher weight to recent findings compared to earlier ones. This 

nuanced approach recognizes that recent data points are often more indicative of the current state of affairs and are 

likely to have a more significant impact on future outcomes. 

This concept dovetails seamlessly with the fundamental principle of exponential smoothing. Exponential smoothing 

acknowledges the importance of adapting the weight assigned to each observation based on its recency. Rather than 

rigidly applying equal weights to all data points, exponential smoothing embraces the idea that recent observations 

should carry more influence in shaping forecasts. This adaptability allows for a more dynamic and responsive 

forecasting technique that aligns better with the evolving nature of time series data, making it a versatile and effective 

tool for short-term predictions in various domains. 

 

Due to the model of SEXS, the forecasting at a certain time 𝜩 + 1 can be considered to be equal to a weighted-average 

(WAV) between the most-recent observation  𝒵𝜩  and the previous forecast  �̂�(𝜩)|𝜩 − 1 , i.e.  

�̂�(𝜩)|𝜩 − 1 = 𝜋𝒵(𝜩) + (1 + 𝜋)�̂�(𝜩)|𝜩 − 1, 𝜩 = 1,2, …, 

 

where  0 ≤ 𝜋 ≤ 1  refers to the parameter of smoothing. Therefore, the new fitted values can then be re-expressed by  

�̂�(𝜩 + 1)|𝜩 = 𝜋𝒵(𝜩) + (1 + 𝜋)�̂�(𝜩)|𝜩 + 1, 𝜩 = 1,2, …, 

 

We can use  𝐼0  to represent the first fitting value (which must be guessed) at time one because the process must start 

someplace. Then,  

 

 

 

�̂�(2)|1 = 𝜋𝒵(1) + (1 + 𝜋)𝐼0, 
�̂�(3)|2 = 𝜋𝒵(2) + (1 + 𝜋)�̂�(2)|1, 

�̂�(𝜩)|𝜩 − 1 = 𝜋𝒵(𝜩 − 1) + (1 + 𝜋)�̂�(𝜩 − 1)|𝜩 − 2, 

�̂�(𝜩 + 1)|𝜩 = 𝛼𝒵(𝜩) + (1 + 𝜋)�̂�(𝜩)|𝜩 − 1, 
 

Any exponential smoothing strategy requires the choice of the parameter of smoothing and the initial value  𝐼0 . In 

particular, we need to choose the values of and  𝐼0  for simple exponential smoothing. If we are aware of these figures, 

we can use the data to produce all forecasts. For the techniques that follow, a variety of smoothing settings and 

beginning elements are commonly available. As a result, we determine the parameter values that are unknown and the 

beginning positions that minimize the of squared errors (SSEs). In contrast to the realm of regression analysis, where 

we have well-defined mathematical formulas that provide us with precise values for the regression coefficients, 
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ultimately minimizing the SSEs, a measure of the model's fit to the data), the scenario we encounter here entails a 

more complex challenge. This challenge revolves around a non-linear minimization problem, necessitating the 

utilization of dedicated optimization tools to arrive at a solution. In regression, the relationships between variables can 

often be expressed in linear equations, leading to straightforward analytical solutions for the coefficients that minimize 

errors. However, when dealing with non-linear problems, such as those encountered in certain optimization tasks, the 

relationships between variables take on more intricate, non-linear forms. Consequently, there is no direct formulaic 

solution to determine the optimal parameter values. Instead, we must turn to specialized optimization techniques, 

algorithms, or computational methods to navigate the multidimensional parameter space and find the values that 

minimize the objective function, which could be a cost function or another performance metric. This transition from 

linear regression to non-linear optimization underscores the complexity of the problem at hand and highlights the need 

for computational tools that can efficiently explore and identify the best solutions within this non-linear landscape. 

 

The H-WNS approach encompasses several distinct iterations, each tailored to handle specific types of seasonal 

components within time series data. One of these iterations employs the additive method, which is most suitable when 

seasonal fluctuations remain relatively constant over the entire duration of the series. In contrast, the multiplicative 

approach is chosen when seasonal variations alter proportionately with changes in the overall level of the series. 

 

To adapt the data for the additive technique, the level equation plays a pivotal role in removing the seasonal 

component. This component is expressed in absolute terms, relative to the scale of the observed series. Consequently, 

by applying the additive method, the seasonal component is effectively "adjusted out" of the data, resulting in a series 

where the seasonal fluctuations tend to average out to approximately zero within each year. 

 

The additive H-WNS damped method incorporates a damped trend and is intended to function in unison with the 

multiplicative and additive H-WNS approaches. It works particularly well for producing accurate predictions for time 

series data that show seasonality patterns. Although the decomposition approach is used in this study to remove the 

seasonal pattern from the reinsurance income data, it is important to keep in mind that, depending on the particulars 

of the data, the additive H-WNS damped method may be the better option in a different project or environment. 

 

 

In the realm of actuarial sciences and insurance, the Single Exponential Smoothing (SEXS) model finds its place in a 

toolkit used for risk modeling. It plays a crucial role in predicting future risk factors, such as shifts in mortality rates, 

morbidity rates, or accident frequencies. These forecasts are of paramount importance for assessing the financial 

implications of various risks, estimating reserves, and determining appropriate insurance rates. In essence, SEXS 

serves as a valuable tool for insurers and actuaries in making informed decisions and managing financial stability in 

the ever-evolving landscape of insurance and risk management. Here are the steps involved in implementing the 

additive H-WNS algorithm: 

• Establish the starting points for the seasonal, trend, and level components. This entails calculating the starting 

seasonal indices (S), initial trend (T), and initial level (L). While the initial seasonal indices can be produced by 

averaging the numbers for each season, the initial level and trend can be approximated by straightforward 

techniques such as regression or averaging. 

• Smooth the time series data by adjusting the L, T, and S components. This process entails employing exponential 

smoothing methods to refine the estimates for each component. 

• Use the updated L, T, and the S components to forecast future values. 

• Update the estimates for the level, trend, and S components for the next iteration. Use the updated estimates 

obtained from the smoothing step to calculate the updated level, trend, and seasonal indices for the next time 

period. 

• Repeat steps 2 to 4 for the desired number of iterations or until convergence is achieved. Convergence is typically 

determined by a predefined criterion, such as a small change in the estimated values. 

 

 

The Box-Ljung test detects whether a time series contains an autocorrelation. H0 (The data do not exhibit 

autocorrelation.) proposes an independent distribution for the residuals. The alternative hypothesis holds that the 
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residuals are not independently distributed, but serially associated. The prediction accuracy is evaluated using the 

Box-Ljung test and the corresponding p-value. (see Ljung and Box (1978)). 

 

3. Forecasting 

Actuarial professionals use SEXS to forecast future claims volumes or claim amounts. By analyzing historical data 

on claims, the model can help estimate the expected number and severity of claims, allowing insurance companies to 

anticipate their financial obligations and set appropriate reserves. SEXS can be employed to analyze and forecast the 

development of losses over time. Actuaries can track the progression of reported losses, estimate ultimate claim 

amounts, and predict future loss development patterns. This information is crucial for determining adequate premium 

rates and assessing the financial stability of insurance portfolios. 

 

To effectively apply the concept of seasonality in time series analysis, two distinct methodologies have been 

developed, each meticulously designed to address the unique characteristics of seasonal patterns inherent in the data. 

These methodologies offer tailored approaches to accommodate the varying nature of seasonality, ensuring that the 

chosen method aligns precisely with the specific seasonal fluctuations present in the data. 

 

The selection between these methodologies’ hinges on a critical consideration: the nature of the seasonal fluctuations 

within the dataset. The first methodology, known as the multiplicative technique, becomes the preferred choice when 

seasonal variations exhibit a proportional relationship with the overall level of the series. This proportionality signifies 

that the magnitude of seasonal changes varies in direct proportion to the underlying trend. In the multiplicative 

approach, the seasonal component is expressed as a factor relative to the series' scale. To mitigate the influence of 

seasonality, the level equation is employed to adjust the series. This adjustment involves subtracting the seasonal 

factor from the series. Consequently, within each year, this seasonal component tends to average out to approximately 

zero, permitting a clearer view of the underlying trend and patterns. 

 

Conversely, when opting for the additive algorithm, the seasonal component is represented in absolute terms, making 

it more interpretable within the context of the observed series. In this scenario, the level equation is again utilized to 

account for seasonality, but instead of scaling it down proportionally, it subtracts the absolute seasonal component. In 

this approach, the seasonal component maintains its absolute values, which can be positive or negative, rather than 

being expressed as a proportion of the series' scale. While the aim remains consistent with the multiplicative method—

to neutralize the impact of seasonal fluctuations within the data—this approach preserves the absolute magnitude of 

these fluctuations, allowing for more explicit interpretation. 

 

As time series data can exhibit a wide array of patterns, it is often necessary to dissect a time series into various 

components, each revealing a distinct underlying pattern. This decomposition typically involves merging the trend 

and cycle components into a single entity referred to as the trend-cycle component, which simplifies the analysis. 

Consequently, a time series is partitioned into three primary segments: the trend-cycle component, a seasonal 

component, and a remainder component, which encapsulates the residual data within the time series. Conventional 

decomposition methods generally assume a yearly recurrence for the seasonal component, a valid assumption for 

many shorter time series but not necessarily applicable to longer ones. A case in point is the shifting patterns in 

electricity consumption, notably influenced by the widespread adoption of air conditioning. While current 

consumption patterns peak during the summer, a few decades ago, in numerous regions, high demand occurred both 

in the winter (for heating) and summer (for air cooling). Traditional decomposition techniques struggle to capture 

these dynamic seasonal variations over time. 

 

This article delves into an in-depth analysis of reinsurance revenue within the American insurance industry, focusing 

on the financial performance of a reinsurance company. We have at our disposal a valuable monthly time series dataset 

that spans from February 2015 to April 2020, providing a comprehensive window into the dynamics of reinsurance 

revenue over this period (see Hamed et al. (2022), Hamedani et al. (2023), Hashempour et al. (2023), Salem et al. 

(2023), Mohamed et al. (2024), Tashkandy et al. (2023) and Yousof et al. (2023a,b,c) for more details). To initiate our 

analysis, our first step involves a meticulous examination of the reinsurance revenue dataset. We employ a 

combination of numerical and visual techniques to gain insights from the real-life data. One of the crucial aspects of 

this exploration is the utilization of various graphical methods to assess how well theoretical distributions, such as the 

beta, logistic, uniform, normal, exponential, lognormal, and Weibull distributions, align with the empirical data. 

Among these graphical tools, the skewness-kurtosis graph, also known as the Cullen-Frey graph (CFG), serves as an 

excellent representation of distribution characteristics. However, it primarily focuses on comparing distributions in 
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terms of squared skewness and kurtosis (see Abdullah  et al. (2023a, b), Alkhayyat et al. (2023), Elbatal et al. (2024), 

Minkah et al. (2023) for more other relevant datasets). 

In addition to CFG, we employ the total time on test (TTS) graph to scrutinize the initial shape of the empirical hazard 

or failure rate function. This aids in understanding the patterns of event occurrences over time. Furthermore, we utilize 

the normal-quantile-quantile (NQQ) graph to assess the normality of the reinsurance revenue data, enabling us to 

gauge whether it adheres to a Gaussian distribution. In our arsenal of graphical tools, we also consider the "Kernel 

estimation" and "nonparametric Kernel density estimation (N-KDE) method." These techniques allow us to examine 

the intrinsic shape of our dataset, providing valuable insights into its underlying structure. Moreover, we employ the 

"box-graph" to identify extreme values within the reinsurance revenue dataset, helping us pinpoint outliers or 

significant fluctuations. To gain a deeper understanding of the temporal relationships within the data, we employ the 

autocorrelation function (AUCF). This function reveals how the correlation between any two data points changes as 

their temporal separation varies. By studying the theoretical AUCF, we can delve into the randomness and memory 

characteristics of the time series, especially at lag 1. However, it's important to note that this analysis primarily focuses 

on the distribution of peaks and troughs over time and doesn't provide insights into the frequency content of the 

underlying process. Our comprehensive analysis employs a range of numerical and graphical tools to scrutinize the 

reinsurance revenue data. We assess distribution fits, temporal patterns, normality, data shape, extreme values, and 

temporal correlations, all of which contribute to a holistic understanding of the dynamics within the American 

insurance industry's reinsurance revenue dataset. 

 

Figure 1 shows the box-graph, CFG, NQQ graph, scattergram (fragmentary diagram), fitted fragmentary diagram, 

AUCF (under lag 1), partial AUCF (under lag  𝑘 = 1 ), TTS graph, and N-KDE graph, respectively, for the original 

reinsurance revenues dataset. For the converted reinsurance revenues dataset, Figure 2 shows the box-graph, CFG, 

NQQ graph, fragmentary diagram, fitted fragmentary diagram, AUCF (under lag  1 ), partial AUCF (under lag  1 ), 

TTS graph, and N-KDE graph, in that order. 

 

Figure 1 and Figure 2 provide valuable insights into the characteristics of both the original reinsurance revenues dataset 

and the converted reinsurance revenues dataset, offering a comprehensive assessment of their behaviors and statistical 

properties. In Figure 1, the top left and top right plots illustrate that neither the original reinsurance revenues dataset 

nor the converted reinsurance revenues dataset exhibit extreme revenue values. This absence of extreme values 

signifies a degree of stability in the data, suggesting that there are no outlier observations that significantly deviate 

from the overall pattern. 

Furthermore, the top middle graph in Figure 1 highlights that neither dataset conforms to any of the theoretical 

distributions and beta distributions. This finding suggests that the observed revenue data does not align with these 

hypothesized distribution patterns, indicating a departure from classical distributional assumptions. Moving to the 

middle left and middle right plots in Figure 1, the original reinsurance revenues dataset is depicted as being randomly 

dispersed without any discernible pattern. This random dispersion implies that there is no evident structure or trend in 

the data, further emphasizing its stochastic nature. Additionally, the middle right plots in both Figure 1 and Figure 2 

illustrate that the autocorrelation functions (AUCFs) under lag 1 exhibit exponential decay, indicating a diminishing 

level of correlation between adjacent data points. Similarly, Figure 2 reaffirms the observations made in Figure 1. The 

top middle graph in Figure 2 reiterates that neither the converted reinsurance revenues dataset nor the original 

reinsurance revenues dataset adheres to any of the theoretical distributions, reinforcing the departure from classical 

distributional assumptions. 

The middle left and middle right plots in Figure 2 mirror those in Figure 1, indicating that the converted reinsurance 

revenues dataset is also randomly dispersed without any apparent pattern, emphasizing the stochastic nature of the 

data. Furthermore, the middle right plots in both Figure 1 and Figure 2 consistently demonstrate the exponential 

diminishment of AUCFs under lag 1, corroborating the decline in correlation between adjacent data points. In 

summary, both the original reinsurance revenues dataset and the converted reinsurance revenues dataset exhibit 

stability in terms of extreme values and depart from classical distributional assumptions. They display random 

dispersion patterns and demonstrate a diminishing correlation between adjacent data points, as evidenced by the 

AUCFs. These findings provide valuable insights into the statistical properties and behaviors of the revenue datasets, 

contributing to a deeper understanding of their underlying characteristics. 
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Figure 1: Graphical description for the original revenues data. 
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Figure 2: Graphical description for the converted revenues data 

 

The partial AUCFs (under lag 1) are vanishing with frequency pattern, according to Figures 1 and 2 (bottom left plots). 

Additionally, Figure 1 The first value of lag can be proved to be significant (see the middle right plots), but none of 

the other coefficients of autocorrelation or partial ones for the other delays are. The hazard rate function (hzrf) for the 

initial reinsurance revenues dataset is monotonically growing, as shown in Figure 1 (bottom center graph). The hzrf 

for the converted reinsurance revenues dataset is similarly monotonically growing, according to Figure 2 (bottom 

middle graph). The density functions for the original and converted reinsurance revenues dataset are bimodal, as 

shown in Figures 1 and 2 (plots in the bottom right corner). 
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In Figure 3, we can observe the initial plots representing the reinsurance revenues dataset, with the original dataset 

displayed on the right panel and the transformed dataset on the left panel. These visualizations reveal a distinct 

seasonal pattern present in both datasets.  

 

 
Figure 3: Initial time series plot for the original revenues (right plot) and converted revenues (left plot). 

 

To effectively model and account for this seasonality, we employ a methodology known as seasonal adjustment within 

an additive model. The essence of this approach lies in estimating the seasonal component inherent in the data and 

subsequently eliminating it from the original time series. This adjustment process enables the additive model to 

accurately capture the underlying seasonal variations within the time series data. To achieve this, we leverage the 

"decompose ()" function, which provides an estimate of the seasonal component. This estimate is then used to separate 

the seasonal influence from the reinsurance revenue time series. As a result, we obtain a breakdown of the additive 

reinsurance revenue time series, effectively isolating the seasonal patterns and rendering the data more amenable to 

analysis and forecasting. This procedure enhances our ability to understand and model the inherent seasonality within 

the dataset, facilitating more accurate predictions and informed decision-making in the context of reinsurance revenue 

analysis. 

 

Moving forward, Table 2 offers a complementary perspective by presenting the separated trend components for both 

the original and converted reinsurance revenues datasets. This table illuminates the underlying long-term trends and 

fluctuations within the datasets, offering valuable insights into the broader patterns and directional shifts in reinsurance 

revenue. Additionally, Table 3 complements the decomposition process by offering a comprehensive view of the 

separated random components for both the original and converted reinsurance revenues datasets. This table sheds light 

on the stochastic or irregular aspects of the data, aiding in the identification of unpredictable elements within the 

revenue datasets. To enhance the clarity of these findings and provide a visual representation of the decomposition 

process, we have incorporated decomposition charts in Figures 4 and 5. Figure 4 offers a detailed depiction of the 

decomposition plots for the initial reinsurance revenues dataset. These plots encompass observed revenues, trend 

components, seasonal variations, and random elements, offering a comprehensive view of how these components 

interact and contribute to the overall revenue pattern. 

 

Figure 5, on the other hand, provides a parallel set of decomposition charts for the converted reinsurance revenues 

dataset. These charts offer a visual comparison between observed revenues and their corresponding trend, seasonal, 

and random components, allowing for a detailed examination of the decomposition process within this specific dataset. 

These tables and figures collectively serve as indispensable tools in unraveling the intricacies of the decomposition 

process applied to the reinsurance revenues datasets. They provide a comprehensive view of the seasonal, trend, and 
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random components, enabling analysts to gain a deeper understanding of the underlying patterns and dynamics within 

the data. 

 

Table 1: Seasonal components. 

Time                                                      Original data 

2015  4715247.02    -742028.390    12060973.98    -2212708.70    -7976948.32    -18955.4103 

  1242600.57    -10733295.64    1872643.01    -214220.570     -7524548.14     9531240.59 

2016  4715247.02    -742028.390    12060973.98    -2212708.70    -7976948.32    -18955.410 

  1242600.57    -10733295.64    1872643.01    -214220.570     -7524548.14     9531240.59 

2017  4715247.02    -742028.390    12060973.98    -2212708.70    -7976948.32    -18955.410 

  1242600.57    -10733295.64    1872643.01    -214220.570     -7524548.14     9531240.59 

2018  4715247.02    -742028.390    12060973.98    -2212708.70    -7976948.32    -18955.410 

  1242600.57    -10733295.64    1872643.01    -214220.570     -7524548.14     9531240.59 

2019  4715247.02    -742028.390    12060973.98    -2212708.70    -7976948.32    -18955.410 

  1242600.57    -10733295.64    1872643.01    -214220.570     -7524548.14     9531240.59 

2020  1242600.57    -10733295.64    1872643.01    -214220.570     -7524548.14     9531240.59 

  1242600.57    -10733295.64    1872643.01    -214220.570       -----------            ----------- 

  

                                                    Converted  

2015  0.175671531    0.003676427    0.334268406   -0.032238677   -0.270362010   0.008874969 

  0.062403719    -0.408166948   0.079778219   0.020623802   -0.271303781   0.296774344 

2016  0.175671531    0.003676427    0.334268406   -0.032238677   -0.270362010   0.008874969 

  0.062403719    -0.408166948   0.079778219   0.020623802   -0.271303781   0.296774344 

2017  0.175671531    0.003676427    0.334268406   -0.032238677   -0.270362010   0.008874969 

  0.062403719    -0.408166948   0.079778219   0.020623802   -0.271303781   0.296774344 

2018  0.175671531    0.003676427    0.334268406   -0.032238677   -0.270362010   0.008874969 

  0.062403719    -0.408166948   0.079778219   0.020623802   -0.271303781   0.296774344 

2019  0.175671531    0.003676427    0.334268406   -0.032238677   -0.270362010   0.008874969 

  0.062403719    -0.408166948   0.079778219   0.020623802   -0.271303781   0.296774344 

2020  0.175671531    0.003676427    0.334268406   -0.032238677   -0.270362010   0.008874969 

  0.062403719    -0.408166948   0.079778219   0.020623802   -0.271303781   0.296774344 

 

Table 2: Trend components. 

                                             

Time                                           Original data 

2015    ----------- ----------- ----------- ----------- ----------- ----------- ----------- ------ 

   19044119    19842077    20435866    21153695    21602843    21971379 

2016   22718310    23151217    23801309    24737116    25287155    26141365 

   27042538    27685683    28767734    29459504    29807304    30490634 

2017   30952217    31183336    31045570    31010826    31212133    31384062 

   31842900    32413052    32618942    32945625    33498678    33786615 

2018   33959008    34325328    34766470    35267834    36051673    36585360 

   36362366    36067310    36389348    36573107    36574756    37294785 

2019   38320378    39313320    40428645    41154962    41475990    42097259 

   43404050    44383512    44362770    45004444       ------            ------ 

2020   ----------- ----------- ----------- ----------- ----------- ----------- ----------- ------ 

  

  

                                          Converted 

2015   ----------- ----------- ----------- ----------- ----------- ----------- ----------- 

   16.73961    16.77825    16.80518    16.83474    16.85536    16.87447 

2016   16.90799    16.92613    16.94972    16.98501    17.01146    17.04325 

   17.07006    17.09244    17.12489    17.14254    17.16100    17.19161 
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2017   17.20749    17.21635    17.21394    17.21354     17.22091    17.22597 

   17.23722    17.25271    17.25918    17.27001    17.28870     17.29875 

2018   17.30392    17.32072    17.33985    17.35423    17.37997    17.39806 

   17.39221    17.38492   17.39146     17.39399    17.39438   17.41321 

2019   17.43864    17.46830    17.50067    17.51808    17.52644    17.53960 

   17.56680    17.58889    17.58955    17.60573        ----------- -----------  

2020   ----------- ----------- ----------- ----------- ----------- ----------- ----------- --- 

 
Table 3: Random components. 

                                                        

Time                                                       Original data 

2015  ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- 

  -1124826.94     6096203.01    -1704569.52     53400.2300      915074.82       -3710811.510 

2016  1168029.490    -42114.110     -6123674.50      5 826601.03    -2045603.08    -1736751.30 

  1201378.940    -1682270.30    5500650.36     -1330139.91     -1010706.55     1992284.89 

2017  339916.2300     -44532.610      4571586.42      -1784152.20     1713659.74      -263760.970 

  763321.9800     -5225089.24    -2841492.68    -1159198.74      -3527758.98    1648270.59 

2018  5393266.24      2436987.07    168546.8900     2481361.95       1624874.14       -3305339.08 

  -1778431.44    -2065358.71    -2838501.39      3472678.96      3948937.70       395803.010 

2019  -6575664.98    -2024793.36    1709088.16      -6198263.80      -967383.83        5631398.33 

  1345491.190    3283448.97     2290846.95      -629806.82           -----------  ------------------ 

2020  ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- -------- 

                                                   Converted  

2015  ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- 

  -0.033583719    0.167047781   -0.043969469    0.004330781    -0.060935802    -0.030989344 

2016  0.085308885    -0.006703094    -0.076027990   0.207399927    -0.200045490    -0.042616219 

  0.066971281    -0.142863469    0.198272615   -0.018487552    -0.016797469    0.065138573 

2017  0.016067219     0.009820656     0.131774510   -0.069439240     0.081795344    0.017910031 

  0.037785448    -0.228423052    -0.068710302   -0.022840885    -0.090751219   0.025890656 

2018  0.121639719    0.075191073     -0.008551740    0.064079510    0.097034094     -0.087038719 

  -0.060411219    -0.014129302    -0.088350719   0.085552031    0.188914615    -0.039609760 

2019  -0.202585698    -0.057878510    -0.026764656   -0.181610073    0.041646177   0.132175031 

  0.014775865     0.243905698      0.028295531    -0.023016719           ----------- ----------- ------ 

2020  ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- 
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Figure 4: Decomposing the revenues dataset. 
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Figure 5: Decomposing the converted revenues dataset. 

 

 

The decomposition process provides valuable insights into the various components that make up the reinsurance 

revenue datasets, shedding light on their individual characteristics and interactions. To present this decomposition 

effectively, we have organized the results into three distinct tables and complemented them with informative plots. 
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Table 1 serves as a comprehensive reference, listing the separated components of the seasonal values for both the 

original reinsurance revenues dataset and the converted reinsurance revenues dataset. This tabulated data allows for a 

detailed examination of the seasonal patterns within each dataset, facilitating comparative analysis. 

 

In Table 2, we delve into the trend components of both the original and converted reinsurance revenues datasets. This 

table offers a breakdown of the underlying trends, providing valuable insights into the long-term patterns and 

fluctuations in reinsurance revenue over the given time frame. 

 

Table 3 complements the decomposition process by presenting the random components after separating for both the 

original and converted reinsurance revenues datasets. This table unveils the stochastic or irregular elements within the 

data, helping us understand the unpredictability inherent in reinsurance revenues. 

 

To enhance the clarity of these findings, we have incorporated visualization in the form of decomposition plots. Figure 

4 offers a detailed depiction of the decomposition plots, showcasing the observed revenues alongside their trend, 

seasonal, and random components for the original reinsurance revenues dataset. This graphical representation aids in 

visually understanding the interplay of these components. 

 

Similarly, Figure 5 provides a parallel set of decomposition plots for the converted reinsurance revenues dataset. These 

plots offer a visual comparison between the observed revenues and their corresponding trend, seasonal, and random 

components, facilitating a comprehensive understanding of the data's decomposition. 

 

In Figure 6, we take a step further by presenting seasonally adjusted plots, trend-adjusted plots, and random-adjusted 

plots for both the original and converted reinsurance revenues datasets. These adjusted plots offer a refined view of 

the data, highlighting specific components and patterns, making it easier to discern and analyze. 

 

To conclude, Table 4 offers a comprehensive assessment of the Single Exponential Smoothing (SEXS) model for the 

years 2015 and 2016. This assessment consolidates the model's performance metrics and findings for these specific 

years, providing a concise summary of its predictive capabilities. 

 

Collectively, these tables, plots, and assessments offer a holistic view of the decomposition process and its implications 

for the reinsurance revenue datasets, enabling a thorough analysis of the underlying trends, seasonality, and 

randomness within the data. 

 

Table 4: Assessing the SES model for 2015 and 2016. 

2015 

Jan ----------- --------- 

Feb 16010072 16.58873 

Mar 15962607 16.58566 

Apr 17388895 16.66365 

May 17723093 16.68454 

Jun 16855391 16.62938 

Jul 16838640 16.63096 

Aug 17383238 16.66415 

Sep 16872629 16.63348 

Oct 17747293 16.68359 

Nov 18508096 16.72611 

Dec 17684202 16.67710 

 

2016 

Jan 20053545 16.78892 

Feb 22057307 16.88069 

Mar 22129920 16.89093 

Apr 23913487 16.96747 

May 24953694 17.01400 

Jun 22682457 16.89981 
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Jul 23081707 16.92629 

Aug 24583071 16.99225 

Sep 22400004 16.88339 

Oct  25621063 17.00884 

Nov 26158822 17.04164 

Dec 25013305 17.00089 

 

Table 5: Assessing the SES model. 

2017 

Jan 28998507 17.13433 

Feb 30641470 17.19829 

Mar 30584111 17.20591 

Apr 34591151 17.32037 

May 32814969 17.27003 

Jun 30971056 17.21264 

Jul 31001598 17.22233 

Aug 31669021 17.25011 

Sep 28102596 17.09703 

Oct 28934171 17.13886 

Nov 29552558 17.16999 

Dec 27886783 17.11123 

 

2018 

Jan 31890384 17.23442 

Feb 34744849 17.32298 

Mar 35043827 17.34148 

Apr 37845555 17.41973 

May 37304283 17.41160 

Jun 35521655 17.36212 

Jul 34991746 17.35192 

Aug 35187430 17.36213 

Sep 32393528 17.26567 

Oct 33103787 17.29397 

Nov 34680858 17.34376 

Dec 34286645 17.33609 

 

Table 6: Assessing the SES model (continued). 

2019 

Jan 37318805 17.41680 

Feb 37117482 17.41558 

Mar 36983636 17.41522 

Apr 41019053 17.51010 

May 39079280 17.46039 

Jun 37544440 17.42111 

Jul 39927297 17.48378 

Aug 41348969 17.52246 
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Sep 40313969 17.49884 

Oct 42239028 17.54683 

Nov 42689424 17.56048 

Dec 41209238 17.52400 

 

2020 

Jan 45322518 17.61211 

Feb 47893027 17.66858 

Mar 46095608 17.63029 

Apr 47016039 17.65388 

 

π 0.2344118 0.2414504 

MSE 868.3633 864.2555 
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Figure 6: Adjusted seasonally graph under the main revenues (the right plots)  

and revenues after converting ( the left plot). 
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Up to this point, we have explained the reinsurance revenue data and used the decomposition process to remove the 

seasonal components. We haven't yet thought about how well a particular model might describe our work, though. In 

this section, we look at ways to select the "optimal" model to describe the study system as well as techniques for 

assessing the additive H-WNS' method's forecasting performance. To do this, we will use the H-WNS filtering plots 

to re-predict all of the reinsurance revenue numbers as if we were unaware of their existence. So, by evaluating the 

discrepancy between actual observations and forecasts generated using the H-WNS approach for the same months, 

we may evaluate the H-WNS method. Figure 7 illustrates the H-WNS filtering plots for both the original (on the right) 

and converted (on the left) reinsurance revenue data. This visual representation serves to showcase the model's 

accuracy in predicting the values of reinsurance revenue. 

 
Figure 7: Filtering under H-WNS for the original (right panel) and converted (left panel) under the revenues data. 

 

The SEXS model serves as a valuable tool for generating short-term forecasts, particularly when dealing with time 

series data that adhere to an additive model characterized by a constant level and an absence of seasonality. Within 

this context, the simple exponential smoothing method plays a pivotal role in estimating the current level at a given 

time point. To control the smoothing process, the model relies on a parameter with values ranging from zero to one. 

The parameter's value effectively determines the weight assigned to the most recent data when predicting future 

values. When the parameter approaches zero, it implies that recent data points are accorded relatively less significance 

in forecasting future values. To assess the performance of the SEXS model, we provide a detailed evaluation in Table 

4, Table 5, and Table 6. These tables present the projected values generated by the model, facilitating a comprehensive 

examination of its forecasting capabilities. Table 5 specifically focuses on the assessment of the SEXS model for the 

years 2017 and 2018, while Table 6 extends this evaluation to cover the years 2019 and 2020. Within these tables, 

you will find critical information regarding the estimated parameter values for both the original and transformed data. 

For the original data, the estimated parameter stands at 0.2344118, while for the translated data, it is calculated to be 

0.2414504. 

 

Furthermore, the SSE serves as an essential metric for evaluating model performance. For the original data, the SSE 

amounts to 868.3633, while for the transformed data, it is slightly lower at 864.2555. This discrepancy suggests that 

employing the transformed data may be a more preferable choice, indicating improved model performance. In 

summary, the SEXS model proves to be a valuable tool for short-term forecasting in cases where time series data 

conform to an additive model with a constant level and no seasonality. Through the assessment of parameter values 

and SSE, we can determine the suitability of the model for different datasets, ultimately guiding us towards making 

more informed decisions regarding forecasting strategies. 
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Using the additive H-WNS algorithm, we may forecast using a SEXS predictive model. The forecast HoltWinters() 

function provides an annual forecast as well as 80% and 95% prediction intervals. The projected values for evaluating 

the SEXS model for two subsequent years are presented in Table 7. The H-WNS forecasting plots for the original 

(right) and converted (left) reinsurance revenue data up to the year of 2022 are also shown in Figure 8. Figures 9 and 

10 show the AUCFs for the original and converted reinsurance revenues dataset, respectively. These AUCFs guarantee 

the predictive accuracy of the additive H-WNS model. 

 

 
Figure 8: Forecasting under H-WNS for the original revenues (right) and converted revenues (left). 
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Figure 9: AUCFs analysis under original revenues. 
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Figure 10: AUCFs under the converted revenues. 
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Ensuring the reliability and effectiveness of a predictive model is a paramount concern in the field of reinsurance 

revenue analysis. To achieve this, it is essential to conduct a rigorous assessment of the forecast errors generated by 

the model. This assessment serves as a critical step in evaluating the model's performance and ascertaining whether it 

has reached its optimal state, leaving minimal room for further refinement. One of the key aspects in assessing forecast 

errors is to determine whether they exhibit consistent patterns. This entails scrutinizing whether these errors have an 

average value close to zero and whether their variance remains stable over time. These characteristics are indicative 

of a well-calibrated and reliable predictive model. 

A valuable technique employed in this evaluation is the creation of a temporal graph, as demonstrated in Figure 11. 

This graphical representation provides a dynamic and visual perspective on the behavior of forecast errors within the 

in-sample dataset across time. By closely examining this graph, analysts can gain insights into whether the variance 

of in-sample forecast errors exhibits a consistent and steady pattern throughout the observed period. Such stability in 

variance is a positive indicator, suggesting that the model's performance remains robust over time. In addition to 

graphical assessments, statistical measures play a pivotal role in gaining deeper insights into the nature of forecast 

errors. When analyzing the original reinsurance sales data, we observe specific statistical indicators. For instance, a 

p-value of 0.70634 and a Box-Ljung test statistic of 23.4914 provide valuable information. These findings suggest the 

presence of non-zero autocorrelations within the in-sample forecast errors at various lag intervals, particularly at lags 

1 to 20. This autocorrelation analysis is essential for detecting potential temporal dependencies and patterns within 

the forecast errors, thereby offering guidance for refining and optimizing the predictive model. 

Similarly, when examining the converted reinsurance revenues dataset, we encounter another set of statistical results, 

including a Box-Ljung test statistic of 22.6911 and a p-value of 0.73665. These findings echo the presence of non-

zero autocorrelations within the in-sample forecast errors at similar lag intervals, further emphasizing the importance 

of considering temporal dependencies. In conclusion, the meticulous assessment of forecast errors is a critical element 

in the evaluation of a predictive model's performance and stability. This multifaceted analysis, which combines 

graphical representations and statistical evaluations, as demonstrated through the temporal graph and Box-Ljung tests, 

provides a comprehensive understanding of how forecast errors behave over time. These insights are instrumental in 

ensuring the reliability and accuracy of the predictive model, facilitating informed decision-making in the context of 

reinsurance revenue analysis and management. 
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Figure 11: Plots for describing the residuals for the original (right) and converted (left) revenues data. 
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In essence, these assessments help us gauge the quality and reliability of the predictive model, particularly with regards 

to the persistence of autocorrelations in the forecast errors over various lag periods. 

 

Table 7 provides detailed insights into predictive confidence intervals for the years 2020 through September 2022, 

spanning from May 2020 onwards. These intervals are delineated for two confidence levels: 80% and 95%, with lower 

and upper bounds denoted as LO-B and UP-B, respectively. A noteworthy observation from the data is the trend where 

the width of the 80% confidence intervals tends to exceed that of the 95% confidence intervals across all months. This 

discrepancy in interval width can be attributed to the nature of statistical forecasting. As the time range for future 

projections extends further into the future, the inherent uncertainty and variability in the data tend to amplify, 

consequently widening the confidence intervals. Therefore, it is not uncommon for the 80% confidence intervals to 

be wider than their 95% counterparts due to the increased forecast inaccuracy associated with longer time horizons. 

 

Moreover, the preference for the 95% confidence intervals over the 80% intervals is justified by their higher level of 

confidence. The 95% confidence intervals offer a greater degree of certainty in capturing the true value of the 

forecasted variable within the specified range. This preference stems from the understanding that a higher confidence 

level provides a more conservative estimate of the forecast uncertainty, thereby offering a more reliable basis for 

decision-making. The observed increase in prediction error and widening of confidence intervals with the statistical 

forecast's time horizon corroborates with the general principles of forecasting. As the forecast horizon extends further 

into the future, the accuracy of predictions tends to diminish due to the accumulation of various sources of uncertainty 

and unpredictability. Therefore, it becomes imperative for analysts to consider and account for the increasing levels 

of uncertainty associated with longer-term forecasts when interpreting and utilizing the forecast results. So, the data 

presented in Table 7 highlights the dynamic interplay between forecast accuracy, confidence levels, and forecast 

horizon. By acknowledging and understanding these nuances, analysts can make informed decisions and adjustments 

to their forecasting methodologies to better account for and mitigate the inherent uncertainties associated with longer-

term predictions. 

 

Table 7: Predictive confidence intervals, Box-Ljung and its p-value. 

                2020 

(Original)                                                             (Converted) 

80% (LO-B, UP-B), 95% (LO-B, UP-B)                       80%(LO-B, UP-B), 95%(LO-B, UP-B) 

May (38247556, 58271470), (32947546, 63571480) (17.35505 18.01019), (17.18164 18.18359) 

Jun (37976161, 58542865), (32532484, 63986542) (17.34563 18.01960), (17.16725 18.19799) 

Jul (37711747, 58807279), (32128098, 64390928) (17.33648 18.02876), (17.15324 18.21199) 

Aug (37453802, 59065224), (31733604, 64785423) (17.32756 18.03768), (17.13960 18.22564) 

Sep (37201871, 59317155), (31348309, 65170717) (17.31885 18.04638), (17.12629 18.23895) 

Oct (36955555, 59563472), (30971600, 65547426) (17.31035 18.05488), (17.11329 18.25194) 

Nov (36714492, 59804534), (30602927, 65916099) (17.30204 18.06319), (17.10058 18.26465) 

Dec (36478360, 60040666), (30241795, 66277231) (17.29391 18.07132), (17.08814 18.27709) 

 

                   2021 

Jan (36246870 60272156), (29887761 66631265) (17.28595 18.07929), (17.07596 18.28927 

Feb (36019757 60499269), (29540421 66978605) (17.27814 18.08709), (17.06402 18.30121 

Mar (35796782 60722244), (29199410 67319616) (17.27048 18.09476), (17.05231 18.31293 

Apr (35577726 60941300), (28864394 67654632) (17.26296 18.10228), (17.04080 18.32443) 

May (35362391 61156635), (28535067 67983959) (17.25557 18.10966), (17.02951 18.33573) 

Jun (35150593 61368433), (28211149 68307877) (1 17.24831 18.11693), (17.01840 18.3468) 

Jul (34942162 61576864), (27892382 68626644) (17.24116 18.12407), (17.00747 18.35776) 

Aug (34736944 61782082), (27578528 68940498) (17.23414 18.13110), (16.99672 18.36851) 

Sep (34534794 61984232), (27269367 69249659) (17.22721 18.13802), (16.98614 18.37909) 
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Oct (34335579 62183448), (26964693 69554333) (17.22040 18.14484 16.97571 18.38952) 

Nov (34139173 62379853), (26664317 69854709) (17.21368 18.15155), (16.96544 18.39979) 

Dec (33945463 62573563), (26368062 70150964) (17.20706 18.15818), (16.95531 18.40992) 

               2022 

Jan (33754339 62764687), (26075764 70443262) (17.20052 18.16471), (16.94532 18.41991) 

Feb (33565701 62953325), (25787267 70731759) (17.19408 18.17115), (16.93546 18.42977) 

Mar (33379454 63139572), (25502427 71016599) (17.18772 18.17752), (16.92574 18.43950) 

Apr (33195510 63323516), (25221108 71297918) (17.18144 18.18380), (16.91613 18.44910) 

May (33013785 63505241), (24943184 71575842) (17.17524 18.19000), (16.90664 18.45859) 

Jun (32834200 63684826), (24668533 71850493) (17.16911 18.19613), (16.89727 18.46796v 

Jul (32656683 63862343), (24397044 72121982) (17.16305 18.20218), (16.88801 18.47722) 

Aug (32481162 64037864), (24128608 72390418) (17.15707 18.20817), (16.87886 18.48638) 

Sep (32307573 64211453), (23863126 72655900) (17.15115 18.21408), (16.86981 18.49543) 

Box-Ljung       23.4914                                                                22.6911 

p-value                     0.70634                                                                0.73665 

 

 

A few observations about Table 7: 

I. The confidence intervals seem to be converted from an original format to another format, possibly for 

easier interpretation or different statistical analysis. 

II.  The Box-Ljung statistics and p-values are likely related to some form of time series analysis or 

autocorrelation assessment. These statistics are commonly used to assess whether there is significant 

autocorrelation remaining in the residuals of a time series model. 

III. The p-values provided indicate the significance of the autocorrelation. A higher p-value (close to 1) 

suggests that there is no significant autocorrelation remaining in the residuals, while a lower p-value 

(close to 0) suggests the presence of significant autocorrelation. 

 

4. Concluding remarks discussion and future research points 

SEXS is a widely employed forecasting technique within the realm of time series analysis, serving as a valuable tool 

for generating short-term predictions or forecasts based on historical data. Its fundamental premise lies in assigning 

weights to past observations, with a crucial twist – these weights decrease exponentially as we move further back in 

time, thereby giving greater importance to more recent data points. The forecast for the upcoming period is a calculated 

blend of the current observation and the previous forecast, with the assigned weights determining the significance of 

each component in shaping the prediction. This method finds its true efficacy when dealing with time series data that 

can be effectively modeled using an additive approach characterized by a constant level and an absence of seasonality. 

It excels at short-term forecasting, making it an invaluable choice for scenarios where the need is to anticipate trends 

and variations in the near future without being confounded by complex seasonal patterns or long-term trends. For 

reinsurance companies, having a grasp of future values for projected reinsurance revenues is imperative to preempt 

substantial financial losses stemming from potential claims. Time series data plays a pivotal role in this context, 

providing the foundation for informed decision-making and risk management. In our study, we delve into the 

application of the additive H-WNS' method for forecasting reinsurance revenues, a technique renowned for its ability 

to capture seasonal and trend components. To achieve this, a decomposition process is applied to remove the 

seasonality components, allowing for a clearer focus on the underlying trends and patterns. The effectiveness of this 

proposed approach is rigorously assessed through the application of additive H-WNS' filtering and comprehensive 

testing investigations. A novel time series dataset is employed to showcase the practical utility of our paradigm, 

demonstrating its prowess in predicting reinsurance revenues accurately. Furthermore, we employ the Box-Ljung test 

and its corresponding p-value as valuable tools for evaluating the predictive accuracy of our model, ensuring its 

robustness in real-life applications. Additionally, our analysis extends to residual analysis, which encompasses both 

point and interval predictions for reinsurance revenue data. This comprehensive assessment enhances our 

understanding of the model's performance and allows us to fine-tune its predictive capabilities. Overall, our study 

underscores the significance of time series analysis and forecasting in the context of reinsurance revenue management, 



Pak.j.stat.oper.res.  Vol.20  No. 2 2024 pp 311-340  DOI: http://dx.doi.org/10.18187/pjsor.v20i2.4409 

 

  
Using the Single-Exponential-Smoothing Time Series Model under the Additive Holt-Winters Algorithm with Decomposition and Residual Analysis to 
Forecast the Reinsurance-Revenues Dataset 

338 

 

offering a robust and effective framework for ensuring financial stability and informed decision-making in this critical 

industry. 

 

 

The application of SEXS, particularly within the framework of the additive H-WNS' method, has gained significant 

prominence in the realm of time series analysis. This statistical technique has proven to be invaluable for generating 

short-term forecasts based on historical data, and its fundamental premise revolves around assigning exponentially 

decreasing weights to past observations. This approach gives precedence to recent data points, reflecting the idea that 

more recent observations are often more indicative of future trends and patterns. SEXS stands out as an effective 

choice in scenarios where the underlying time series data can be effectively modeled using an additive approach, 

characterized by a constant level and the absence of seasonality. Its strength lies in its ability to excel at short-term 

forecasting, making it particularly suitable for predicting trends and variations in the near future without being 

confounded by complex seasonal patterns or long-term trends. In the context of reinsurance companies, where the 

anticipation of future values for projected reinsurance revenues is pivotal, SEXS offers a practical and efficient 

solution. 

 

Time series data plays a crucial role in the decision-making processes of reinsurance companies, as it forms the 

foundation for risk assessment and financial management. In the study at hand, we delve into the application of the 

additive H-WNS' method for forecasting reinsurance revenues, a technique renowned for its capability to capture both 

seasonal and trend components. The decomposition process employed in this method effectively removes the 

seasonality components, allowing for a clearer focus on the underlying trends and patterns that drive reinsurance 

revenues. To rigorously assess the effectiveness of our proposed approach, we apply additive H-WNS' filtering and 

conduct comprehensive testing investigations. These efforts aim to ensure that our model can accurately predict 

reinsurance revenues. A novel time series dataset is utilized to demonstrate the practical utility of our paradigm, 

showcasing its prowess in capturing and forecasting reinsurance revenue patterns. Furthermore, we employ statistical 

tools such as the Box-Ljung test and its corresponding p-value to evaluate the predictive accuracy of our model. These 

tests provide valuable insights into the robustness of our approach when applied in real-life scenarios, where the 

consequences of inaccurate forecasts can have significant financial implications. In addition to assessing the overall 

performance of our model, we conduct residual analysis, which encompasses both point and interval predictions for 

reinsurance revenue data. This comprehensive evaluation enhances our understanding of the model's strengths and 

weaknesses, allowing us to fine-tune its predictive capabilities and make informed decisions based on the uncertainty 

inherent in the forecasts. 

 

In conclusion, our study highlights the critical role of time series analysis and forecasting in the context of reinsurance 

revenue management. It provides a robust and effective framework for ensuring financial stability and informed 

decision-making within this vital industry. By applying the additive H-WNS' method with decomposition and 

thorough testing, we contribute to the growing body of knowledge aimed at enhancing the accuracy and reliability of 

reinsurance revenue forecasts, ultimately assisting reinsurance companies in managing risk and achieving their 

financial goals. 

 

Certainly, here are few potential future statistical points for research related this work: 

I. Conduct a comparative study to assess the forecasting accuracy of the Single-Exponential Smoothing 

model under the additive H-WNS Algorithm with Decomposition against other time series forecasting 

methods commonly used in the insurance and reinsurance industry, such as ARIMA, GARCH, or neural 

networks. 

II. Investigate the sensitivity of the model's forecasting performance to the choice of smoothing parameters 

and assess whether fine-tuning these parameters can lead to improved accuracy. 

III. Explore the applicability of the proposed model to different data frequencies (e.g., monthly, quarterly, 

annual) and evaluate its performance under various time intervals. 

IV. Develop techniques to handle outliers and anomalies in reinsurance revenue data, as these can 

significantly impact forecasting accuracy, and assess how robust the proposed model is in the presence 

of such data irregularities. 

V. Extend the research to evaluate the model's ability to provide reliable long-term forecasts for reinsurance 

revenue, which is crucial for strategic planning in the insurance industry. 

VI. Investigate the integration of external economic, political, or environmental factors into the forecasting 

model to improve its predictive power, as these factors can influence reinsurance revenue. 
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VII. Develop a framework for incorporating uncertainty and risk assessment into the reinsurance revenue 

forecasts, allowing insurers to make informed decisions while considering potential variability. 

VIII. Adapt the model for real-time forecasting by continuously updating it with new data and assessing its 

ability to adapt to changing market conditions. 

IX. Explore how the proposed model performs under extreme scenarios and conduct stress testing to assess 

its resilience in times of financial or economic crises. 

X. Evaluate and compare different forecast evaluation metrics to determine the most appropriate ones for 

assessing the accuracy of reinsurance revenue forecasts and ensuring robust model performance. 

XI. Develop methods for effectively communicating the uncertainty inherent in reinsurance revenue 

forecasts to decision-makers and stakeholders. 

XII. Apply the model to real-life case studies and provide practical insights into its utility for reinsurance 

companies, including its impact on decision-making theory and risk management analysis. 

 

These new statistical research points can provide advance the field of reinsurance revenue forecasting and contribute 

to more accurate and reliable predictions in the insurance and reinsurance industry. 
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