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Abstract  
In this study, we introduce a novel approach for estimating the mean of a finite population using Ranked Set 
Sampling (RSS), termed the generalized exponential ratio estimator. We derive expressions for the bias and mean 
squared error (MSE) of the proposed estimator up to the first order of approximation. To assess its performance, 
we conduct a thorough theoretical and numerical analysis using simulated and real data. Our results demonstrate 
that the generalized exponential ratio estimator outperforms both the classical ratio estimator and the estimator 
proposed by Kadilar et al. (2009) under RSS, highlighting its superior efficiency. 
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1. Introduction  

Ranked Set Sampling (RSS) was first introduced by McIntyre (1952) as a method to estimate pasture yield. 
Since its inception, RSS has attracted sustained interest from researchers who have further developed and refined the 
technique (Muttlak and Mc Donald, 1990; Kadilar and Cingi, 2005; Ozturk, 2011; Bouza, 2013; Singh et al., 2007; 
Singh et al., 2014; Kadilar, 2016; Rather and Kadilar, 2021; Rather et al., 2022; Bhushan and Kumar, 2022; 
Mahdizadeh and Zamanzade, 2022; Alomair and Shahzad, 2023; Bhushan and Kumar, 2023, 2024; Koçyiğit and 
Rather, 2023; Koçyiğit and Kadılar, 2024a, 2024b). The RSS method involves randomly selecting sets, each 
comprising n units, from the population. Within each set, the units are visually ranked. The measurement process 
starts by recording the value of the lowest-ranked unit from the first set of n units. Subsequently, the second lowest-
ranked unit is measured from the second set, and this procedure continues until the n-th ranked unit is measured. 

McIntyre (1952) demonstrated the advantages of RSS through a computational comparison encompassing 
five distributions. To provide a concise introduction to the concept of RSS, consider a random variable X with a 
density function F(x) and (x1, x2, ..., xn) as the unobserved values from n units. These values can be ranked either 
through visual inspection or based on a concomitant variable. In RSS, one unit is selected from each ranked set, 
resulting in a total of m units chosen for quantification. For example, the unit with rank 1 is selected from the first set, 
rank 2 from the second set, and so on, until the m-th ranked unit is chosen from the m-th set. It should be noted that 
the selected rank order can be any permutation of 1, 2, ..., k. Each cycle consists of m2 units, out of which only m units 
are selected for quantification. This cycle can be repeated a certain number of times (rm = n). In the case of ranking 
based on an auxiliary variable, (y[i], x(i)) denotes the i-th judgment ordering in the i-th set for both the study and 
auxiliary variables, respectively. 
 
2. Estimators in Literature 

Samawi and Muttlak (1996) introduced an estimator for the population ratio utilizing RSS as follows: ����� � �̄�	
�̄�	
  
(1) 
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where�̄�	
 � �	 ∑ ���
	���  and �̄�	
 � �	 ∑ ���
	��� . It is worth noting that the estimator presented in equation (1) can also 

be applied to estimate the population total and mean. Specifically, the estimator for the population mean can be 
expressed as follows: 

�̄���� � �̄�	
�̄�	
 ��   
(2) 

In Equation (2), we assume that the population mean of an auxiliary variable x is known. The expression for the MSE 
of the estimator is given as follows:  

�����̄����
 ≅ 1�� ���� − 2���! + ���!�# − 1��� $% &���
�'
��� − 2� % &�!��


'
��� + �� % &!��
�'

��� ( 
 

 
(3) 

where� � *�+� ,�!� and  ���are the population variance of the auxiliary and study variables, Syx is the population covariance 

between the auxiliary and study variables, &!��
 � ,!��
 − �- , &���
 � ,���
 − .- , and&�!��
 � �,���
 − .-# �,!��
 − �-#. 

Here,Y  represents the population mean of the study variable. It should be noted that the values of ,!��
 and ,���
 are 
influenced by the order statistics derived from specific distributions, and these values can be referenced from Arnold 
et al. (1993). Additionally, it is important to highlight that in the absence of judgment error and under the assumption 
of identical distributions, the values of ,!��
 and ,���
 can be considered equal (Dell and Clutter, 1972).  

Kadilar et al. (2009) introduced an estimator for RSS by adapting the estimator proposed by Prasad (1989). 
The estimator is defined as follows: �-/��� � 0 �-�	
�̅�	
 �- � ��/����- 

 
(4) 

whereκ is a constant that makes the MSE minimum and ��/��� � 0 �̄�2
!̄�2
 � 0 �̄344!̄344. The MSE of the estimator in (4) is 

given as 

���'�	��̄/���
 ≅ 1�� �0∗���� − 2�0∗��! + ���!�# + .� ��0∗ − 1
� 
− 1��� $0∗� % &���
�'

��� − 2�0∗ % &�!��

'

��� + �� % &!��
�'
��� ( 

 
(5) 

 
where 0∗ � �67 8 9: 9;<=:;�>
�67 9:?<=:�>
? ,  @�!��
 � �'?�+-  *- A &�!��
'���  and @���
� � �'?�*� ? ∑ &���
�'��� . Here, B � �'�, Cx, and Cy are the population coefficients of 

variation of the x and y, ρ is the correlation coefficient between the variables. 

 
 

3. The Suggested Estimator 

Motivated by the work of Yadav and Shukla (2014) and Yadav (2015), we propose the following generalized 
exponential ratio type estimator of the finite population mean of study variable under RSS, 

 �C�D � ��	
 EF G ���	
H + �1 − F
 I�J G� − ��	
� + ��	
HK  
(6) 

 

where F is a constant that makes the MSE minimum.  

In order to find the MSE equation of the estimator in (2.6), we use the following notations:  

 �-�	
 � .-�1 +∈M
, and  �̅�	
 � �-�1 +∈�
, 
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��∈M
 � ��∈�
 � 0,  

 ��∈M
� � O P�-�2
*-? Q � �'� �*-? R��� − �' ∑ S���
� T � UVW�� − X���
� Y, 
 ��∈�
� � O P!̅�2
+- ? Q � �'� �+- ? R�!� − �' ∑ S+��
� T � UVW!� − X!��
� Y, 
 ��∈M∈�
 � �'� �*-+- R��! − �' ∑ S�!��
T � UVZ�!W�W! − X�!��
Y, 
where @!��
� � �'?�+- ? % &!��
�'

��� . 

The proposed estimator can be expressed in terms of ϵi (i=0, 1) as 

 �C�D � ��1 +∈M
 EF G ���1 +∈�
H + �1 − F
 I�J G� − ��1 +∈�
� + ��1 +∈�
HK  
(7) �C�D � ��1 +∈M
 [F�1 +∈�
<� + �1 − F
 I�J \ −∈�2 +∈�]^ (8) 

�C�D � ��1 +∈M
 EF�1 −∈�+∈��
 + �1 − F
 I�J G−∈�2 \1 + ∈�2 ]<�HK (9) 

Upto first degree approximation 

���-C�D − �-# � .-� [_M − 12 _� − 12 F_� + 58 F_�� + 38 _�� − 12 F_M_� − 12 _�_M^  
(10) 

 

The bias of the proposed estimator can be expressed as follows: 

cdef��-C�D
 ≅ .- g 1���-� \58 F + 38] $��� − 1� % S!��
�'
��� (

− 1���-.- \12 F + 12] $��!� − 1� % &�!��

'

��� (h 
 
(11) 

 
By squaring both sides and taking the expectation, we can obtain the MSE of up to the first order of approximation as 
follows: ���-C�D − �-#� ≅ .-�� [_M − 12 _� − 12 F_�^�

 
 
(12) �����-C�D
 ≅ .-� [_M� + 14 F�_�� + 14 _�� − F_Mj� − _M_� + 12 F_��^ (13) 

F�DCk
 � 2 P_M_� − 12 _��Q_��  

(14) 

���'�	��-C�D
 ≅ .-�� E_M� − �_M_�
�_�� K (15) 

���'�	��-C�D
 ≅ 1�� l$��� − 1� % &���
�'
��� ( − P��! − 1� ∑ &�!��
'��� Q�

P�!� − 1� ∑ &!��
�'��� Q m 

(16) 

 
 

4. Efficiency Comparisons 
This section aims to evaluate and compare the performance of the proposed estimator with both the traditional 

ratio estimator in RSS and the estimator proposed by Kadilar et al. (2009). The results of the performance analysis are 
presented as follows: 
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(i) MSE��-����
 − MSE'�	��-q�D
 > 0 �'� ���� − 2���! + ���!�# − �'?� �∑ &���
�'��� − 2� ∑ &�!��
'��� + �� ∑ &!��
�'��� # −
�'� EP��� − �' ∑ S���
�'��� Q − P�:;? < st ∑ k:;�>
t>us Q?

P�:?< st ∑ k;�>
?t>us Q K > 0  

 
(17) 

 

(ii)  MSE P�- κRSS Q − MSE'�	��-q�D
 > 0, 1�� �0∗���� − 2�0∗��! + ���!�# + .-��0∗ − 1
�
− 1��� $0∗� % &���
�'

��� − 2�0∗ % &�!��

'

��� + �� % &!��
�'
��� (

− 1�� l$��� − 1� % S���
�'
��� ( − P��!� − 1� ∑ S�!��
'��� Q�

P��� − 1� ∑ S!��
�'��� Q m > 0 

 
(18) 

 
When the efficiency conditions specified in equations (17) and (18) are satisfied, we can conclude that the proposed 
estimator demonstrates superior efficiency when compared to both the traditional ratio estimator in RSS and the 
estimator proposed by Kadilar et al. (2009).  
 

5. Numerical Analysis 
This section presents numerical studies using both real and simulated data to compare the performance of the 

proposed estimator with other existing estimators at different values of the correlation coefficients, m, and r. 

5.1. Simulation study 
A finite population of size 400 is generated from a bivariate normal distribution with specified means and covariances 
for both the auxiliary and study variables. 

(i) , � �v�#,  Σ � P100 3535 25Q, and Z � �0.3, 0.6, e{| 0.9
 

 The following steps summarize the procedure for finding the average MSE and relative efficiency (PRE) 
of the estimators under study. 
Set  � � 3, 5, 7 and cycle � � 5, 10, 15 to obtain a sample of size { � ��. 

(ii)  Use the sample data from (i) to obtain the MSE of all the estimators under study. 
(iii)  Repeat steps (i) and (ii) 100 times  to obtain 100 values for MSEs. 
(iv) The average of the 100 values obtained in (iii) are the MSE of each estimator of  population mean. 
(v) The values of MSEs obtained in (iv) are used in calculating the values of percent relative efficiencies 

(PREs) defined as  ��� � �����-�344
�����-�
 × 100, 

where � � �- κRSS  and �-q�D. 

Simulation studies show that the proposed estimator outperforms other existing estimators for different values 
of m and r. It is observed that the value of PRE for �- κRSS  increases with increasing correlation coefficient. However, 

the value of PRE for �-q�D decreased with increasing correlation coefficient. Moreover, the values of PRE for all 
estimators decreased as the value of r increased. 

Figure 1 displays plots of the PRE for the finite population mean estimator at various values of m and r. The 
plot clearly illustrates that the proposed estimator consistently exhibits higher PRE compared to the Samawi and 
Mutlak et al. (1996) estimator and the Kadilar et al. (2009) estimator. Notably, as the correlation coefficient increases, 
the PRE values of the proposed estimators gradually decrease. These findings emphasize the advantageous 
performance of the proposed estimator, particularly in scenarios with higher correlation coefficients, where it 
demonstrates superior efficiency compared to the alternative estimators. 
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Table 1: PREs of different estimators for simulated data 

 
Z  0.1   0.5   0.9  
r 5 10 15 5 10 15 5 10 15 

 ���M 100 100 100 100 100 100 100 100 100 
m=3 ���� 100.21 100.09 100.07 100.23 100.165 100.10 102.85 101.66 101.12 

 ���� 2037.07 2034.51 2035.22 1583.27 1588.93 1587.67 1275.75 1293.73 1288.88 
 ���M 100 100 100 100 100 100 100 100 100 

m=5 ���� 100.12 100.07 100.05 100.18 100.09 100.06 101.82 101.95 100.64 
 ���� 2031.32 2032.53 2033.23 1584.29 1582.67 1582.53 1275.12 1272.33 1271.19 
 ���M 100 100 100 100 100 100 100 100 100 

m=7 ���� 100.10 100.05 100.03 100.13 100.06 100.04 101.36 100.68 100.44 
 ���� 2033.26 2034.55 2034.56 1584.03 1582.66 1580.81 1278.13 1270.94 1264.36 
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m=5 

   

m=7 
Figure 1. PRE of estimators of the finite population mean at different values of m and r 



Pak.j.stat.oper.res.  Vol.20  No. 3 2024 pp 409-417  DOI: http://dx.doi.org/10.18187/pjsor.v20i3.4334 

 

 

Generalized Exponential Ratio Type Estimator for the Finite Population Mean Under Ranked Set Sampling 415 

 

5.2. Real life applicability 
 

The real data used are from Kadilar and Cingi (2003), especially from the Marmara region (Source: Institute of 
Statistics of the Republic of Turkey). In the dataset, the survey and auxiliary variables are apple yield and number of 
apple trees. The population parameters are: 

N=106, n=12, m=3, r=4, Z+* � 0.82, �-� � −0.846. �-� � 0, �-� � 0.846,  �̅� � −0.846, �̅� � 0, �̅� � 0.846, �- � 6.97 × 10<��, .- � 1.87 × 10<�� 

R=-2.398, ��� � 1, �!� � 1, k=-1.55 

Table 2 presents the MSE and PRE values for various estimators of finite population means. The numerical 
analysis consistently shows that the proposed estimator achieves the smallest MSE among all compared estimators. 
Furthermore, the generalized class of estimators proposed in this study demonstrates superior performance compared 
to the Samawi and Mutlak et al. (1996) estimator as well as the Kadilar et al. (2009) estimator. Figure 2 visually 
illustrates the higher efficiency of the proposed generalized exponential ratio type estimator compared to other existing 
estimators for estimating finite population means under RSS. These findings provide compelling evidence for the 
superiority of the proposed estimator and its potential to significantly enhance estimation accuracy in RSS 
applications. 

Table 2. MSEs and PREs of different estimators of the population mean 
Estimator MSE PRE 

Samawi and Mutlak (S����) 0.43115 100.00 
Kadilar et al. (S����) 0.14283 301.84 

Proposed (SC�DC) 0.02483 1735.99 
 

 
Figure 2. Plot of PREs of different estimators for real data 

6. Conclusion  

In conclusion, this study introduces a novel generalized exponential ratio estimator for estimating the finite 
population mean under RSS. By deriving bias and MSE expressions of the proposed estimator up to the first order of 
approximation using Taylor's series, we establish a robust framework for population mean estimation in RSS. Our 
findings highlight the effectiveness and superiority of the generalized exponential estimator compared to existing RSS 
estimators in the literature. 

Through extensive numerical analysis and comparisons, we demonstrate that our proposed estimator 
significantly enhances the efficiency of RSS estimators. These results not only validate the utility of the generalized 
exponential ratio estimator but also underscore its practical value in accurately estimating population means in real-
world applications. 

In particular, future work could explore the adaptation of the estimators presented in this article to stratified 
random samples. Drawing upon the methodologies established by Samawi and Siam (2003) and Kadilar and Cingi 
(2005), we anticipate that our estimators can be effectively extended to accommodate more intricate sampling designs. 
This advancement would cater to diverse research contexts and further enhance the applicability of our proposed 
methods. 
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