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Abstract 

Co-efficient of variation is a unitless measure of dispersion and is very frequently used in scientific 

investigations. This has motivated several researchers to propose estimators and tests concerning the co-

efficient of variation of normal distribution(s). While proposing a class of estimators for the co-efficient of 

variation of a finite population, Tripathi et al., (2002) suggested that the estimator of co-efficient of 

variation of a finite population can also be used as an estimator of C.V for any distribution when the 

sampling design is SRSWR. This has motivated us to propose 28 estimators of finite population co-

efficient of variation as estimators of co-efficient of variation of one component of a bivariate normal 

distribution when prior information is available regarding the second component. Cramer Rao type lower 

bound is derived to the mean square error of these estimators. Extensive simulation is carried out to 

compare these estimators. The results indicate that out of these 28 estimators, eight estimators have larger 

relative efficiency compared to the sample co-efficient of variation. The asymptotic mean square errors of 

the best estimators are derived to the order of 








n
O

1
 for the benefit of users of co-efficient of variation. 

Keywords: Co-efficient of variation, Finite population, SRSWR, Bivariate normal 

distribution, Cramer Rao lower bound. 

1.   Introduction 

Co-efficient of Variation (C.V) is a widely used measure of dispersion. It is a relative 

measure and is unitless. Thus C.V is popular among the researchers and scientists in 

various disciplines and is defined as, 



 where ‘ ’ refers to the standard deviation and  

‘ ’ refers to mean respectively. C.V is used in the analysis of rainfall data 

(Ananthakrishnan and Soman (1989)) and is equally important as that of the mean 

rainfall. For comparing the variability in rainfall, C.V is a better measure of dispersion 

rather than the standard deviation, as the mean rainfall changes across the places and it is 

quite natural to expect a higher variability when the average rainfall is low. C.V is also 

used in the analysis of stock market prices. In the stock market data, ‘  ’ refers to mean 

return and ‘ ’ refers to volatility in the stock prices. Thus C.V can be interpreted as the 

volatility per mean return (Verril and Johnson (2007) and Curto and Pinto (2009)). For 

some of the applications of C.V in the financial analysis see Brief and Owen (1969) and 
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Weinraub and Kuhlman (1994). In finance, the C.V can be used as a measure of relative 

risks (Miller and Karson (1977)) and a test of the equality of the C.V’s for two stocks, 

can help to determine if the two stocks possess the same risk or not. For other 

applications of C.V refer Nairy and Rao (2003), Bhat and Rao (2007) and some of the 

references cited therein. 

 

The earliest reported work on C.V dates back to McKay, Pearson and Fieller (1932); 

wherein they proposed confidence interval for the C.V of the normal distribution. These 

confidence intervals were improved upon by Hendrick and Robey (1936) and Koopmans 

et al., (1964). Since then the later works on C.V were concentrated in two directions. 

i)  Improved Estimators of C.V for the normal distribution. 

Some of the works in this area are the following: 

Ahmed (1995) proposed shrinkage preliminary test estimator of the co-efficient of 

variation of a normal distribution when additional sample is available to increase the 

precision of the estimator. An almost unbiased estimator of the co-efficient of variation 

was proposed by Breunig (2001) where a bias corrected estimator is provided for the 

C.V. Liu, Pang and Huang (2006) suggested exact confidence bounds for C.V of a 

normally distributed population. Three methods for constructing confidence intervals for 

the co-efficient of variation from normal populations are compared through simulation 

study by Ng (2006). Mahmoundvand and Hassani (2009) proposed an approximately 

unbiased estimator for the population C.V in a normal distribution. Using this estimator 

and its variance, two approximate confidence intervals for C.V are also proposed. Other 

work in this area was by Panichkitkosolkul (2009) who proposed improved confidence 

intervals for the C.V of a normal distribution.  

 

ii) Tests for equality of C.V’s of normal distributions. 

Rao and Bhatt (1989) proposed tests for C.V in one and two populations and derived the 

Edgeworth expansion for the distribution function of sample C.V. The asymptotic 

robustness of these tests was discussed in Rao and Vidya (1992). On the other hand Singh 

(1993) uses inverse sample co-efficient of variation (ISCV) and derives the expression 

for the standard error of these estimators (first order) for various distributions. The paper 

by Sharma and Krishnan (1994) also uses ISCV to make inference about population C.V. 

Inverse C.V (ICV) is also the focal point of the paper by Chaturvedi and Rani (1996) 

where, a sequential procedure is developed inorder to construct a confidence interval of 

fixed width and pre-assigned coverage probability for the inverse of the C.V of a normal 

distribution. In addition to the above tests of C.V for one and two normal populations, 

tests are also available for the case of ‘k’ normal populations. Bennett (1976) proposed a 

likelihood ratio test for equality of C.V of ‘k’ independent normal populations using the 

transformed sample C.V’s which was later modified by Shafer and Sullivan (1986). 

Doornbos and Dijkstra (1983) proposed two tests: a likelihood ratio test and a non-central 

‘t’ test for this problem. Gupta and Ma (1996) proposed score test for the equality of 

C.V’s of ‘k’ normal populations. Singh (1993) observed that the Taylor series expansion 
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of ISCV involves less number of terms than the sample C.V. This has motivated Nairy 

and Rao (2003) to propose three new tests for the equality of ICV of ‘k’ independent 

normal populations. Verril and Johnson (2007) proposed confidence bounds and 

hypothesis tests for C.V of ‘k’ independent normal distribution. The likelihood ratio test 

proposed in this paper differs from the test given in Gupta and Ma (1996) and Nairy and 

Rao (2003) and provides a rigorous proof of the 2 -approximation to the asymptotic null 

distribution of the test statistic. Forkman (2009) proposed an explicit estimator and tests 

for common co-efficients of variation of ‘k’ independent normal distributions which is an 

extension of the work of Ahmed (2002). All the previous references relate to the case of 

samples from independent normal distributions. This is extended for the non-iid case by 

Curto and Pinto (2009), where they develop tests for equality of C.V’s for a time series 

data.  

 

Although the above works relate to C.V of one or more normal distributions, the 

estimation of C.V did not draw the attention of the researchers in finite population for a 

long time. It was Das and Tripathi (1981 a, b), who first proposed the estimator of 

population C.V when samples were selected using simple random sampling without 

replacement (SRSWOR). Subsequently, Das and Tripathi (1992, 93) proposed a class of 

estimators for population C.V using the idea of ratio and regression estimators. Tripathi 

et al., (2002) extended this class by defining a class of estimators satisfying certain 

conditions. In a certain sense this is an abstract class where, in the proposition of this 

class no reference is made to any particular estimator. They obtained the optimum 

estimators belonging to this class and the estimators of Das and Tripathi (1981 a, b) are 

members of this class. Patel and Shah (2009) conducted a Monte Carlo comparison of the 

several estimators of finite population C.V under SRSWOR. The problem of estimation 

of C.V has also been discussed by Rajyaguru and Gupta (2002, 2006) where in they 

propose new estimators of C.V under simple random sampling as well as stratified 

random sampling.  

 

Tripathi et al., (2002) noted that the estimators of C.V proposed under SRS with 

replacement (SRSWR) scheme can also be considered as estimators of C.V for any 

distributions. This idea is also used in Maiti (2009) and Maiti and Tripathi (2009) to 

propose new shrinkage-type estimators of population variance of some univariate and 

bivariate populations. This has motivated us to propose improved estimators of C.V of a 

bivariate normal distribution when auxiliary information is available regarding the second 

component of the bivariate normal distribution. In this paper we propose 28 estimators of 

finite population C.V under SRSWR as estimators of C.V of one component of a 

bivariate normal distribution when prior information is available regarding the second 

component (in terms of mean, variance or C.V). Archana and Rao (2011) observed that 

we can always propose an improved estimator of any parameter ‘θ’ using the regression 

estimators. A question which remains unanswered is that, what would be the lower bound 

for the variance of such type of estimators? A partial answer to this question is provided 

in this paper by deriving the Cramer Rao (C.R) type lower bound for the variance of any 
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estimator of C.V from a bivariate normal distribution. We have derived C.R lower bound 

for the variance of the estimators of C.V, of a bivariate normal distribution. Extensive 

simulation is carried out to compare these estimators. The finite sample performance of 

the estimators indicate that out of these 28 estimators, eight estimators perform well 

(having smaller mean square error) compared to the sample C.V.    

The organization of the paper is as follows: 

 

In section 2, we describe 28 estimators of C.V proposed under SRSWR as estimators of 

C.V of a bivariate normal distribution. In section 3, we drive the C.R type lower bound 

for the variance of the estimators of C.V. In section 4, we compare finite sample 

performance of these estimators using extensive simulation. The concluding remarks are 

provided in section 5. 

2.   New estimators of C.V of bivariate normal distribution 

Let the paired observations (x1, y1), ... , (xn, yn) be a sample from a bivariate population. 

When the design is SRSWR, this can also be viewed as a sample from any bivariate 

distribution (Tripathi et al., (2002)). Thus treat this as a sample of size ‘n’ from a 

bivariate normal distribution with parameters   ,,,, 22

yyxx . Here   refers to mean 

and 
2 refers to variance of the random variable under consideration and   refers to the 

correlation co-efficient. To make the things explicit, let Y denote the response variable 

and X, the auxiliary variable. The parameter of interest is
y

y

y



  , the C.V of the 

response variable ‘Y’. For a finite population, various estimators of y are proposed in the 

past (see Archana and Rao (2011), Tripathi et al. (2002)). In this paper we propose these 

estimators as estimators of y  from bivariate normal distributions. The estimators are 

suitably modified for the bivariate normal distribution to accommodate the fact that all 

odd ordered moments are zero and co-efficient of kurtosis is equal to 3. 

2.1  Sample C.V (
1

ˆ
y ) 

The sample C.V is obtained by using the sample mean and sample standard deviation as 

an estimators of the denominator and numerator respectively. It is given by  

 
y

sy

y 
1

̂
         

(2.1) 

where y  is the sample mean and 
2

ys is the sample variance and are given by, 
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Note: This sample C.V also turns out to be maximum likelihood estimate (MLE) of y for 

a bivariate normal distribution.  
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In the sequel, we propose the estimators of C.V. under SRSWR as estimators of C.V of a 

bivariate normal distribution. 

2.2. Archana and Rao (2011) proposed a class of ratio and product estimators of 

population C.V and a class of regression/regression type estimators of population C.V 

under simple random sampling. Here we list below, some of the best estimators 

considered by them. 

2.2.1. Regression type estimator (
2

ˆ
y ) is given by, 

  
  xXby

sbs xxy

y





1

2

1
22

2

2

2

ˆ




       

(2.2) 

where 
xx

xy
B




1  and 
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











22

xxxxxx

yyxxxxyy
B




 under simple random  sampling with 

replacement. 

 

Under normal distribution the expression for B1 and B2 simplifies to,  
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2.2.2. Regression estimators (
3

ˆ
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under SRSWR. 

Under normal distribution this simplifies to,    
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2.2.3. Ratio estimator (
4

ˆ
y ) 

x

X

y

sy

y 
4

̂           (2.4) 

This ratio estimator uses information on mean of the auxiliary variable. 
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2.2.4. Ratio estimator (
5

ˆ
y ) 



















x
s

X
S

y

s

x

x

y

y4
̂         (2.5) 

This ratio estimator uses information on C.V of the auxiliary variable. (For details see 

Archana and Rao (2011)) 

2.3. Das and Tripathi (1980) proposed a class of hybrid estimators (mixture of ratio and 

regression estimators) of C.V under simple random sampling. This class of estimators is 

generalized by Tripathi et al., (2002). Some of the best estimators considered by them 

(under simple random sampling) are proposed as estimators of C.V for bivariate normal 

distribution and are listed below. The finer details are available in their paper. 
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2.3.5. 
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Under normal distribution this expression simplifies to,  
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(See Tripathi et al., (2002) for further details.) 
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2.3.9. 
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(See Patel and Shah (2009) for further details.) 

2.4. Generally while proposing regression estimators, sample C.V is used to construct a 

regression estimator. Archana and Rao (2011) noted that any estimator of a parameter 

(including regression estimator) can be used to construct a new regression estimator. 

Here we use the estimator 
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(of Tripathi et al., (2002)) to construct a new regression 

estimator. These classes of estimators are listed below. 
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2.4.4. 
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distribution. 

2.4.7. 
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under normal distribution. 
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distribution. 
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under normal distribution. 
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normal distribution. 

 

The expressions for the asymptotic mean square errors of the best 8 estimators of C.V are 

derived to the order of 








n
O

1

 

under normal distribution by the authors. The mean square 

errors of these best estimators are presented in Appendix A. 
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3.   Lower bound for the variance of the estimator of 
y  

Archana and Rao (2011) observed that if y̂  is any estimator of ‘’ a regression 

estimator of the form  ̂   ̂(    ̂ ) can be obtained which has got a smaller mean 

square error compared to  ̂ . This estimator can be taken as the estimator of ‘’ and one 

can propose another regression estimator with a smaller mean square error. A question 

that needs to be addressed is that, can we propose a lower bound for the variance of the 

estimator of ‘’. In this section, we derive the Cramer Rao (C.R) type lower bound for the 

variance of the estimator of y. Let ),,,,(  yyxxg  denote the fisher information 

matrix for the parameters of the bivariate normal distribution (see Kotz, Balakrishnan and 

Johnson (2000, p294)) and is given by, 
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The C.R. type lower bound for an unbiased estimator of g(.) is given by(see Lehmann and 

Casella (1998)),  

 (
  ( )
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(  ( ))
  
(
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where ),,,,(  yyxx  

 

After some simplification, C.R lower bound is given by,  

 
  
 

 
(     )  

 

  
  
 
 

 

In general, unbiased estimator of y does not exists and this lower bound can be treated as 

the lower bound for the asymptotic mean square error of an estimator of y̂  
which is 

unbiased to the order of 








n
O

1
. 
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4.   Finite sample comparison of the estimators of C.V. 

4.1.  Simulation experiment 

A simulation experiment is carried out to compare the MSE’s of various estimators. The 

estimated MSE’s using simulation are more accurate and thus gives a clear comparison of 

the efficiency of the various estimators. For this purpose a sample of size ‘n’ is generated 

from a bivariate normal distribution with parameters (  ,,,, xxyy
). Using this 

sample the values of the various estimators of population C.V are computed. The MSE of 

the various estimators are computed using 10,000 replicated samples. The configurations 

used in the simulations are as follows: 

 

The values of the C.V of the study variable used in the simulations were 0.1, 0.3, 0.5, 0.8, 

1.0 and 2.0. For each fixed value of C.V of the study variable, a set of four values of C.V 

of the auxiliary variable are considered. They are 0.5, 1.0, 1.5 and 2.0 times the C.V of 

the study variable. The correlation co-efficient ‘r’ used in the simulation study are -0.9,    

-0.7,-0.5,-0.3,-0.1, 0, 0.1, 0.3, 0.5, 0.7, 0.9. The sample sizes considered are n=100,200.  

The total number of configurations works out to be 6*4*11*2=528. 

4.2.  Finite sample MSE 

This paper evaluates the performance of 28 estimators of C.V over 528 configurations. In 

order to facilitate a meaningful inference, the results are tabulated by taking the average 

of the mean square error for each of the estimators across the four values of C.V of the 

auxiliary variable. The results are carefully examined for each value of the C.V of the 

study variable over various value of the correlation co-efficient between the study and 

auxiliary variable. To save space, the best eight estimators (having smaller mean square 

error) are identified. Table (4.1) represent the relative efficiency of the 8 best estimators 

compared to sample C.V, 
1

ˆ
y  

when the sample size n=100 across all correlation co-

efficient when C.V of the study variable are 0.1, 0.3, 0.5 and 1.0. The following 

conclusions emerge. 

C. V of the study 

variable 

Correlation co-efficient ‘r’  (n=100) 

-0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9 

 

 

 

 

0.1 

 

 

 

1̂  100 100 100 100 100 100 100 100 100 100 100 

3̂  358.3 326.67 272.5 96.87 98.68 98.89 97.62 95.57 269.82 330.01 340 

2̂  300 286.67 213.13 95.42 97.56 97.60 97.01 94.89 222.25 262.08 280.50 

16̂  275 250.11 215.67 94.34 95.67 99.78 94.58 93.89 210.08 242.50 276.67 

18̂  236.80 239.42 212.13 91.56 90.98 98.10 91.47 92.70 208.35 222.25 242.50 

9̂  200 182.30 150 80 75 98.0 78.89 82.28 161.13 170.01 233.33 

12̂  200 171.66 150 75 66.67 99.01 69.89 76.67 158.67 165.67 228.76 

4̂  133.33 125 110 62.27 58.84 99.08 60 69.98 107.32 129.18 142.42 

5̂  125 119.87 105.54 61.14 50 98.89 52.25 62.58 108.56 119.88 129.80 
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0.3 

 

 

1̂  100 100 100 100 100 100 100 100 100 100 100 

3̂  372.8 333.34 280.56 97.67 98.90 99.01 97.65 94.57 289.82 340.05 382.46 

2̂  350 290.45 229.92 96.48 98.56 98.89 97.78 97.42 238.84 275.67 298.80 

16̂  292.34 268.11 223..47 93.45 96.57 98.78 95.58 94.49 220.21 253.54 283.56 

18̂  276.67 245.64 218.33 93.48 92.89 98.10 92.87 94.45 215.32 235.36 254.60 

9̂  222.32 190.36 165.02 88.98 79.01 98.67 80.50 84..27 170.25 182.30 242.46 

12̂  217.18 182.64 160 84.49 75 97.02 72.90 79.89 166.67 175 232.58 

4̂  142.23 129.65 120.09 74.42 65.57 98.07 66.89 72.18 115.87 128.32 158.89 

5̂  130.09 122.98 110 68.34 61.17 97.68 63.45 69.98 112.65 120.90 135.43 

0.5 

 

 

 

1̂  100 100 100 100 100 100 100 100 100 100 100 

3̂  350.28 320.45 265.58 95.87 96.80 98.38 95.67 96.82 254.65 310.18 340.09 

2̂  300 276.37 224.02 94.89 93.15 97.54 93.58 92.36 222.18 269.98 281.56 

16̂  272.28 252.18 215.67 92.64 91.68 98.87 92.67 93.45 208.89 238.64 269.87 

18̂  243.18 236.67 210.56 91.45 92.38 98.60 93.18 92.06 205.89 224.56 249.76 

9̂  210 186.87 160 85 78.89 97.84 88.87 83.49 153.58 176.67 230.52 

12̂  200 168.87 148.89 71.67 65.45 97.10 66.58 70.07 150.87 168.64 218.98 

4̂  128.36 119.18 112.36 66.45 59.60 96.68 61.02 67.41 113.15 120.08 135.68 

5̂  125 115.56 108.24 63.18 55.89 97.78 54.02 64.89 106.69 116.67 128.45 

 

1.0 

 

 

 

 

1̂  100 100 100 100 100 100 100 100 100 100 100 

3̂  340.87 310.67 268.87 93.38 94.38 98.87 93.78 92.56 250.45 298.46 336.67 

2̂  305.48 270.26 220.08 92.16 94.89 97.41 94.52 92.08 230.08 254.76 270.02 

16̂  285.67 256.75 218.92 91.18 92.56 98.76 92.01 91.76 210.58 236.67 265.45 

18̂  246.51 239.02 212.75 92 92.79 98.60 93.18 92.18 208.75 225.36 250.08 

9̂  208.67 190.04 181.46 88.87 82.47 98.0 84.65 87.64 168.98 184.39 220.86 

12̂  203.32 170.78 150.67 74.58 70.82 97.02 72.69 78.26 155.25 169.50 215.54 

4̂  135.34 125 120.08 65.48 60.10 96.16 62.76 69.91 115.56 128.87 140.65 

5̂  129.87 119.67 110.35 61.90 54.67 97.26 56.89 65.40 108.24 120.06 131.68 

Table (4.1): Relative efficiency of the eight best estimators compared to the sample 

C.V (
1

ˆ
y ) 
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From the table it is clear that when the correlation co-efficient is moderate to high  

(r= ±0.9, ±0.7, ±0.5), the estimator which has got the maximum relative efficiency 

corresponds to (
3

ˆ
y ) where information on C.V of the auxiliary variable is used followed 

by the ratio type regression estimator (
2

ˆ
y ) where the regression estimators of mean and 

variance are used to estimate
y . The other estimators are the estimator proposed by Patel 

and Shah, i.e. (
16

ˆ
y ) and the regression estimator constructed from the optimum estimator 

of Tripathi et al., (2002), namely (
18

ˆ
y ) also emerges as the best estimators. Their 

positions in terms of relative ranking of the estimators are 3 and 4 respectively; ranking 

one corresponds to the estimator having maximum relative efficiency. Two of the 

estimators proposed by Tripathi et al., (2002) also emerge as the best estimators. The 

estimators 
9

ˆ
y

 
and 

12

ˆ
y

 
(in the notations of Tripathi et al., (2002), 6e

 
and 7e ) emerge as 

the fifth and sixth best estimators.  The other best estimators are the estimators proposed 

by Archana and Rao (2011); they are the ratio estimator 
4

ˆ
y , where information on mean 

of the auxiliary variable is used and the ratio estimator 
5

ˆ
y , where information on C.V of 

the auxiliary variable is used. The table also indicates that, the relative efficiency of the 

various estimators’ increases as the value of C.V of the study variable starts increasing 

from 0.1 to 0.3 and remains constant thereafter. 

 

We have also examined the relative efficiency of the various estimators of C.V across the 

correlation co-efficient for each value of C.V of the study variable. When the correlation 

is moderate to high (r=±0.9, ±0.7, ±0.5), the relative efficiency of the estimators are high 

and decreases for moderate or low values of the correlation co-efficient. As the relative 

efficiency is the ratio of two mean square error’s, they do not exactly indicate how the 

performance of an estimator is affected by the correlation co-efficient. For this purpose it 

is necessary to examine the mean square error of the various estimators. To save space 

the table of mean square error’s are not reported here. The examination of the mean 

square error for the various estimators indicates that the mean square error increases 

when the correlation co-efficient ranges from -0.9 to 0 and starts declining as the 

correlation co-efficient increases to 0.9(except for sample C.V which does not depend on 

the correlation co-efficient). Careful examination of the mean square error also reveals 

that the best estimators perform well when the study and auxiliary variable are highly 

correlated and when there is low correlation sample C.V emerges as the best estimator. 

 

The examination of the table also indicates that, the relative efficiency of the various 

regression and ratio estimators of C.V decreases when the correlation co-efficient is low 

compared to the sample C.V. This conclusion is in line with the performance of these 

estimators in finite population. An important conclusion that needs to be highlighted is 

that the decrease in the relative efficiency is marginal compared to the sample C.V. For 

eg: For the best estimator 
3

ˆ
y , the relative efficiency ranges between (95.57, 98.68), 

when the correlation co-efficient ranges between -0.3 to 0.3 and C.V of the study variable 

is equal to 0.1. For the second best estimator
2

ˆ
y , the corresponding relative efficiency 

ranges from 94.89 to 97.56. Even when the correlation co-efficient is 0, the relative 
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efficiency of these 2 estimators compared to sample C.V are 97.60 and 98.89 

respectively. Thus the previous results indicate that these 2 estimators can safely be used 

when no knowledge is available regarding the correlation co-efficient. Among the other 

best estimators, this conclusion remains the same for the estimator of Patel and Shah  

(
16

ˆ
y ) and the regression estimator constructed from the optimum estimator of Tripathi et 

al., (2002), namely (
18

ˆ
y ). 

 

In this investigation an attempt is also made to study the impact of C.V of the auxiliary 

variable on the efficiency of the various estimators. For fixed value of C.V of the study 

variable and the correlation co-efficient, the mean square error is minimum for any 

estimator when the C.V of the auxiliary variable is lower or equal to the C.V of the study 

variable compared to higher values of C.V of the auxiliary variable. To save space the 

table is not reported here. 

4.3.   Discussions 

In this paper we have proposed various estimators of C.V in finite population (when the 

sampling design is SRSWR) as estimators of CV for a bivariate normal distribution. In 

addition to the estimator available in the literature, we have constructed 12 new 

estimators of C.V using the optimum estimators of Tripathi et al., (2002). Among these 

12 estimators only one estimator namely 
18

ˆ
y

 
emerge as one of the best estimator. The 

optimum estimator of Tripathi et al.,(2002) does not emerge as one of the best eight 

estimators. The reason is that here we are estimating the finite sample mean square error 

which is an accurate estimate of the mean square error and the optimality criterion is 

asymptotic in nature. On the other hand, two other estimators of Tripathi et al., (2002) 

 
129

ˆandˆ  . yyei  , emerges as the best estimators. The other salient finding is that the 

simple regression estimator using C.V of the study variable emerges as the best estimator. 

This result emphasizes the fact that additional information on the population mean or 

variance of the auxiliary variable does not improve the performance of the estimators. 

This conclusion is with special reference to the estimators  
1413

ˆˆ
yy and   of Tripathi et 

al., (2002). 

 

Archana and Rao (2011) observed that one can always improve any estimator of a 

parameter by constructing a regression estimator using this estimator. In this paper we 

have constructed 12 new estimators of C.V using the optimum estimator of Tripathi et al 

(2002). Among these 12 estimators, only one estimator namely 
18

ˆ
y  emerges as one of 

the best estimators and ranks in fourth position in terms of relative efficiency. This 

indicates that improved estimators have to be constructed with caution if at all. 

5.   Conclusion 

In this paper, we propose 28 estimators of C.V of a component of bivariate normal 

distributions when additional information is available regarding the parameter of the 

second component. The sample C.V of the component under consideration is the 
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maximum likelihood estimator of the C.V of the component from a bivariate normal 

distribution. When the correlation co-efficient is moderate to high, 8 of the proposed 

estimators have a smaller mean square error compared to the maximum likelihood 

estimator of C.V. Even when the correlation co-efficient is low, the performance in terms 

of relative efficiency is marginally lower compared to the maximum likelihood estimator. 

The best two estimators are the regression estimator using information on C.V of the 

auxiliary variable and regression type estimator where improved estimator of mean & 

variance are used to estimate the ratio 
y

y

y



  . Since the latter estimator needs addition 

information regarding mean and variance of the auxiliary variable, while the former 

needs information only on the CV of the auxiliary variable. Thus we recommend this 

estimator  
3

ˆ
y  when paired observations are available from a bivariate normal 

distribution. The finite sample estimate of the mean square error indicates that the 

maximum likelihood estimators as well as the other best 8 estimators are admissible. 

Further the numerical results indicate that, no estimator attains the CR type lower bound. 

This is in contrast to the conclusion that the asymptotic mean square error of sample C.V 

(the maximum likelihood estimator) attains the C.R lower bound for a univariate normal 

distribution. 
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