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Abstract 

Depending on Yousof et al. (2017a), a new one parameter G family of distributions called the reciprocal Burr X-G 

family is defined and studied. Special member based on the well-known Burr type XII model called the reciprocal 

Burr X-Burr XII distribution is studied and analyzed. Relevant properties of the new family including ordinary 

moments, moment of the residual life, moment of the reversed residual life and incomplete moments are derived 

and some of them are numerically analyzed. Four different applications to real-life data sets are presented to 

illustrate the applicability and importance of the new family. The new family has proven to be highly capable and 

flexible in practical applications and statistical modeling of real data. 
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1. Introduction  

The statistical literature contains many new continuous G families of distributions, some of them are have been 

generated by merging (compounding) such as Aryal and Yousof (2017) for exponentiated generalized-G Poisson 

family, Alizadeh et al. (2018) for odd log-logistic Poisson G family, Abouelmagd et al. (2019 a, b) for Poisson Burr 

X family and Topp Leone Poisson family of distributions, El-Morshedy et al. (2021) for the Poisson generalized 

exponential G family. Many other continuous G families of distributions have been generated by adding one or more 

parameters to the G family such as Gupta et al. (1998) for the exponentiated-G family, Marshall and Olkin (1997) for 

the Marshall-Olkin-G family, Eugene et al. (2002) for beta generalized-G family, Yousof et al. (2015) for the 

transmuted exponentiated generalized-G family, Rezaei et al. (2017) for the Topp Leone generated family, Merovci 
et al. (2017) for the exponentiated transmuted-G family, Brito et al. (2017) for the Topp-Leone odd log-logistic-G 

family, Yousof et al. (2017a) for Burr type X G family, Cordeiro et al. (2018) for Burr type XII G family, Nascimento 

et al. (2019) for the odd Nadarajah-Haghighi family of distributions, Karamikabir et al. (2020) for the Weibull Topp-

Leone generated family, Alizadeh et al. (2020 a, b) for flexible Weibull generated family of distributions and 

transmuted odd log-logistic-G family, Merovci et al. (2020) for Poisson Topp Leone family of distributions and Altun 

et al. (2021) for the Gudermannian generated family of distributions and among others. These new continuous G 

families have been employed in modeling of real-life datasets in many applied studies such as econometrics, insurance, 

medicine, engineering, biology, environmental sciences, and statistical forecasting. As New alternative methodology, 

we can consider reciprocal distribution for generating a new continuous G family of distributions. Consider the CDF 

Burr X (BX) distribution where 

𝐹𝜃(𝑦) = [1 − 𝑒𝑥𝑝(−𝑦2)]−𝜃|𝑦 > 0,  𝜃 ≥ 0. 
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where  𝜃  is the shape parameter. For  𝜃 = 1 , BX distribution reduces to the Rayleigh distribution. Let  𝑋 = 𝑌−1 , 

then the CDF and reciprocal Burr X (RBX) distribution can be written as  

𝐹𝜃(𝓍) = 1 − [1 − 𝑒𝑥𝑝(−𝓍−2)]𝜃|𝓍 > 0,  𝜃 ≥ 0, (1) 

where  𝜃  is the shape parameter. For  𝜃 = 1 , RBX distribution reduces to the reciprocal Rayleigh (RR) distribution. 

The corresponding RBX distribution can be derived 

𝑓𝜃(𝓍) = 2𝜃𝓍−3 𝑒𝑥𝑝(−𝓍−2) [1 − 𝑒𝑥𝑝(−𝓍−2)]𝜃−1, (2) 

Let  𝑔𝜳(𝓍)  and  𝐺𝜳(𝓍)  denote the density and cumulative functions of the baseline model with parameter vector  𝜳  

and consider the CDF of the RBX model with positive parameter  𝜃. Hence, the CDF of the reciprocal Burr X-G 

(RBX-G) family of distributions can be derived as  

𝐹𝜃,𝜳(𝓍) = 1 − [1 − 𝑒𝑥𝑝(−𝛿𝓍;𝜳
−2 )]

𝜃
. 

(3) 

where  𝛿𝓍;𝜳
−2 = [𝐺𝜳(𝓍)/𝐺𝜳(𝓍)]

−2
 and  𝐺𝜳(𝓍) = 1 − 𝐺𝜳(𝓍)  is the survival function. For  𝜃 = 1, RBX-G family of 

distributions reduces to the reciprocal Rayleigh G (RR) family of distributions. The PDF of the RBX-G is given by  

𝑓𝜃,𝜳(𝓍) = 2𝜃𝑔𝜳(𝓍)𝐺𝜳(𝓍)𝐺𝜳(𝓍)−3 𝑒𝑥𝑝(−𝛿𝓍;𝜳
−2 ) [1 − 𝑒𝑥𝑝(−𝛿𝓍;𝜳

−2 )]
𝜃−1

. (4) 

The hazard rate function of the RBX-G family of distributions can be written as  

ℎ𝜃,𝜳(𝓍) = 2𝜃𝑔𝜳(𝓍)
𝐺𝜳(𝓍)−3𝐺𝜳(𝓍)

1 − 𝑒𝑥𝑝 (−𝛿𝓍;𝜳
−2 )

𝑒𝑥𝑝(−𝛿𝓍;𝜳
−2 ). 

For simulating the RBX-G family of distributions, the following formula can be used 

𝑄𝑈 = 𝐺−1 ({− 𝑙𝑛 [1 − (1 − 𝑈)
1
𝜃]}

−
1
2

+ 1). 

The RBX-G family could be useful in modeling the monotonically increasing hazard rate real data sets as illustrated 

in Figures 4, 5 and 6 (bottom left panels), the bathtub hazard rate real data sets as illustrated in Figure 7 (bottom left 

panel), the real data sets which have some extreme observations as shown Figures 4, 5 and 6 (top left panels), the real 

data sets which have no extreme observations as shown Figure 7 (top left panel), the real data sets which their Kernel 

density is semi-symmetric and bimodal real data as shown in Figure 4 (bottom right panel) and the real data sets which 
their Kernel density is asymmetric bimodal and left skewed real data as shown in Figure 5, 6 and (bottom right panels). 

The RBX-G family of distributions proved its wide applicability in mathematical modeling against common G 

families of distributions as shown below: 

I. In modeling engineering data (the breaking stress data), the RBX-G family is compared with many well-known 

G families of distributions such as the Marshall-Olkin G family, Topp-Leone G family, Zografos-Balakrishnan 

G family, beta G family, Beta exponentiated G family and Kumaraswamy G family under the Hannan-Quinn 

information criteria, Bayesian information criteria, consistent-information criteria and Akaike information 

criteria. 

II. In modeling veterinary medicine data (the survival times of guinea pigs’ data), the RBX-G family is compared 

with many well-known G families of distributions such as the Marshall-Olkin G family, Topp-Leone G family, 

Zografos-Balakrishnan G family, beta G family, Beta exponentiated G family and Kumaraswamy G family 

under the Hannan-Quinn information criteria, Bayesian information criteria, consistent-information criteria and 
Akaike information criteria. 

III. In modeling econometrics data (the revenue data data), the RBX-G family is compared with many well-known 

G families of distributions such as the Marshall-Olkin G family, Topp-Leone G family, Zografos-Balakrishnan 

G family, beta G family, Beta exponentiated G family and Kumaraswamy G family under the Hannan-Quinn 

information criteria, Bayesian information criteria, consistent-information criteria and Akaike information 

criteria. 

IV. In modeling medicine data (the leukemia data data), the RBX-G family is compared with many well-known G 

families of distributions such as the Marshall-Olkin family, Topp-Leone family, Zografos-Balakrishnan G 

family, beta G family, Beta exponentiated G family and Kumaraswamy G family under the Hannan-Quinn 

information criteria, Bayesian information criteria, consistent-information criteria and Akaike information  

criteria. 
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1. Properties 

Linear representation 

In this section, we provide a very useful linear representation for the RBX-G density function. If  |
𝜍1

𝜍2
| < 1  and  𝜍3 > 0  

is a real non-integer, the power series holds  

(1 −
𝜍1

𝜍2

)
𝜍3

= ∑

𝜅0=0

∞

(−1)𝜅0
𝛤(1 + 𝜍3)

𝛤(1 + 𝜅0)𝛤(1 + 𝜍3 − 𝜅0)
(

𝜍1

𝜍2

)
𝜅0

.  
(5) 

Applying (5) to (4) we have 

𝑓𝜃,𝜳(𝓍) =  2𝜃𝑔𝜳(𝓍)𝐺𝜳(𝓍)𝐺𝜳(𝓍)−3 ∑

𝜅0=0

∞
(−1)𝜅0𝛤(𝜃)

𝜅0! 𝛤(𝜃 − 𝜅0)
𝑒𝑥𝑝[−(𝜅0 + 1)𝛿𝓍;𝜳

−2 ]. 
(6) 

 

Applying the power series to the term  𝑒𝑥𝑝[−(𝜅0 + 1)𝛿𝓍;𝜳
−2 ], Equation (6) becomes 

𝑓𝜃,𝜳(𝓍) =  2𝜃𝑔𝜳(𝓍) ∑

𝜅0 ,𝜅1=0

∞

(−1)𝜅0+𝜅1
(𝜅0 + 1)𝜅1𝛤(𝜃)

𝜅0! 𝜅1! 𝛤(𝜃 − 𝜅0)

𝐺𝜳(𝓍)−2𝜅1−3

𝐺𝜳(𝓍)−2𝜅1−1
. 

(7) 

Applying (5) to (7) for the term  𝐺𝜳(𝓍)2𝜅1+1, Equation (7) can be written as  

𝑓𝜃,𝜳(𝓍) = ∑

𝜅1 ,𝜅2=0

∞

𝐶𝜅1,𝜅2
𝜋𝜍(𝓍)|𝜍=𝜅2−2(𝜅1+1)>0, 

 

(8) 

where 

𝐶𝜅1,𝜅2
=  2𝜃(−1)𝜅1+𝜅2

𝛤(𝜃)𝛤(2𝜅1 + 2)

𝜅1! 𝜅2! 𝛤(2𝜅1 + 2 − 𝜅2)𝜍
∑

𝜅0=0

∞

(−1)𝜅0
(𝜅0 + 1)𝜅1

𝜅0! 𝛤(𝜃 − 𝜅0)
, 

and  𝜋𝜍(𝓍) = 𝜍𝑔𝜳(𝓍)𝐺𝜳(𝓍)𝜍−1. Based on (8), the density of 𝑋 can then be expressed as a mixture of the exp-G PDFs 

and several mathematical properties of the new family can be obtained using the exp-G distribution. Similarly, the 

CDF of the RBX-G family of distributions can also be expressed as a mixture of exp-G CDFs given by 

𝐹𝜃,𝜳(𝓍) = ∑

𝜅1 ,𝜅2=0

∞

𝐶𝜅1,𝜅2
 𝛱𝜍(𝓍), 

where  𝛱𝜍(𝓍)  is the CDF of the exp-G family with power parameter (𝜍). 

Mathematical and statistical properties 

Moments 

Let  𝑌𝜍  be a rv having density  𝜋𝜍(𝓍). The  𝑟𝑡ℎ  ordinary moment of  𝑋, say  𝜇𝑟,𝑋
′ , follows from (8) as  

𝜇𝑟,𝑋
′ = 𝐸(𝑋𝑟) = ∫ 𝓍𝑟

+∞

−∞

𝑓𝜃,𝜳(𝓍)𝑑𝓍 = ∑

𝜅1,𝜅2=0

∞

𝐶𝜅1,𝜅2
 𝐸(𝑌𝜍

𝑟), 
 

(9) 

Where  𝐸(𝑌𝜍
𝑟) = 𝜍 ∫ 𝓍𝑟∞

−∞
 𝑔𝜳(𝓍)𝐺𝜳(𝓍)𝜍−1 𝑑𝓍  can be evaluated numerically in terms of the baseline qf 𝑄𝐺(𝑢) =

𝐺−1(𝑢)  as  𝐸(𝑌𝜍
𝑛) = 𝜍 ∫ 𝑢𝜍−11

0
 𝑄𝐺(𝑢)𝑛 𝑑𝑢.  Setting  𝑟 = 1  in (9) gives the mean of 𝑋. 

Incomplete moments 

The  𝑟𝑡ℎ  incomplete moment of 𝑋 is given by  𝑚𝑟,𝑋(𝑦; 𝜳) = ∫ 𝓍𝑟𝑦

−∞
𝑓𝜃,𝜳(𝓍)𝑑𝓍.  Using (8), the  𝑟𝑡ℎ incomplete moment 

of RBX-G family is  

𝑚𝑟,𝑋(𝑦; 𝜳) = ∑

𝜅1,𝜅2=0

∞

𝐶𝜅1,𝜅2
 𝑚𝑟,𝜍(𝑦; 𝜳), 

where 𝑚𝑟,𝜍(𝑦; 𝜳) = ∫ 𝑢𝜍−1𝐺(𝑦)

0
𝑄𝐺

𝑟 (𝑢)𝑑𝑢. The 𝑚𝑟,𝜍(𝑦; 𝜳) can be calculated numerically by using the software such 

as Matlab, R, Mathematica etc. 

Moment generating function 

The moment generating function (MGF) of  𝑋, say  𝑀(𝑡) = 𝐸(𝑒𝑡𝑋), is obtained from (8) as  

𝑀(𝑡) = ∑

𝜅1 ,𝜅2=0

∞

𝐶𝜅1,𝜅2
 𝑀𝜍(𝑡), 
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where 𝑀𝜍(𝑡) is the generating function of  𝑌𝜍  given by  

𝑀𝜍(𝑡) = 𝜍 ∫ exp (𝑡𝓍)
∞

−∞

𝐺𝜳(𝓍)𝑔𝜳(𝓍)𝜍−1𝑑𝓍 = 𝜍 ∫ 𝑢𝜍−1
1

0

𝑒𝑥𝑝[ 𝑡𝑄𝐺(𝑢; 𝛼)]𝑑𝑢. 

The last two integrals can be computed numerically for most parent distributions. 

 

Residual and reversed residual life 

The  𝑛 th moment of the residual life, say  𝑚𝑛,𝑋(𝑡) = 𝐸[(𝑋 − 𝑡)𝑛 |𝑋>𝑡] ,  𝑛 ∈ 𝑁 . The  𝑛th moment of the residual life 

of 𝑋 is given by  

𝑚𝑛,𝑋(𝑡) =
1

1 − 𝐹𝜃,𝜳(𝑡)
∫ (𝓍 − 𝑡)𝑛

∞

𝑡

𝑑𝐹𝜃,𝜳(𝓍). 

Therefore, 

 

𝑚𝑛,𝑋(𝑡) =
1

1 − 𝐹𝜃,𝜳(𝑡)
∑

𝜅1 ,𝜅2=0

∞

𝐶𝜅1,𝜅2
∑

𝑟=0

𝑛

(
𝑛
𝑟

) (−𝑡)𝑛−𝑟 ∫ 𝜋𝜍(𝓍)
∞

𝑡

𝓍𝑟 . 

The  𝑛th moment of the reversed residual life, say 𝑀𝑛,𝑋(𝑡) = 𝐸[(𝑡 − 𝑋)𝑛 |𝑋≤𝑡,𝑡>0]  and  𝑛 ∈ 𝑁. We obtain  

𝑀𝑛,𝑋(𝑡) =
1

𝐹(𝑡)
∫ (𝑡 − 𝓍)𝑛

𝑡

0

𝑑𝐹(𝓍). 

Then, the  𝑛 th moment of the reversed residual life of  𝑋  becomes 

𝑀𝑛,𝑋(𝑡) =
1

𝐹𝜃,𝜳(𝑡)
∑

𝜅1 ,𝜅2=0

∞

𝐶𝜅1,𝜅2
∑

𝑟=0

𝑛

(−1)𝑟 (
𝑛
𝑟

) 𝑡𝑛−𝑟 ∫ 𝜋𝜍(𝓍)
𝑡

0

𝓍𝑟 . 

2. Special RBX-G models 

In this Section, we present some new model based on the new family. Table 1 gives some new sub models. Table 2 

gives expected value  (𝐸(𝑋)),  variance  (𝑉(𝑋)),  skewness  (𝑆(𝑋))  and kurtosis  (𝐾(𝑋))  for the RBXBXII model. 

Table 3 gives  𝐸(𝑋),  𝑉(𝑋),   𝑆(𝑋)  and  𝐾(𝑋)  for the BXII model. From Tables 2 and 3 we note that the  𝑆RBXBXII(𝑋)  

of the RBXBXII model can rage in (− 26.0700,51.49377) however  𝑆BXII(𝑋) of the BXII model can rage in (− 

0.55325, 4.64758). The  𝐾RBXBXII(𝑋) of the RBXBXII model starts from −602.018 to 2957.861 however the  𝐾BXII(𝑋)  

of the BXII model starts from 3.070043 to 73.8. Figure1 gives 3-dimensional (3-D) plots for skewness and kurtosis 

for 𝜃 = 0.01,0.05,0.65 and 3.5. Figure 2 gives some 3-D plots for skewness and kurtosis for 𝑎 = 0.01,0.25,5.25  

and 90 . Figure 3 gives 3-D plots for skewness and kurtosis for  𝑏 = 0.001,0.05,10  and 50. 

Table 1: New sub models based on the new RBXG family. 

Baseline model 𝛿𝓍;𝜳
−2  Sub model 

log-logistic (LL) (𝓍/𝑎)𝑏|𝑎, 𝑏>0 RBXLL 

exponential (E) exp(𝑏𝓍) − 1|𝑏>0 RBXE 

Lomax (Lx) (1 + 𝓍)𝑏 − 1|𝑏>0 RBXLx 

inverse Lomax (ILx) [(1 + 𝓍−1)𝑏 − 1]−1|𝑏>0 RBXILx 

Burr XII (BXII) (1 + 𝓍𝑎)𝑏 − 1|𝑎, 𝑏>0 RBXBXII 

 

Table 2: E(X), V(X), S(X) and K(X) for the RBXBXII model. 

θ a b E(X) V(X) S(X) K(X) 

1 3 2 0.8154317 0.0227300800 1.6074570 8.116445 

20   0.6237279 0.0009914400 0.0320100 3.011561 

50   0.6009795 0.0005965152 −0.1492178 3.018410 

100   0.5872088 0.0004329362 −0.2526406 3.075719 

500   0.5623202 0.0002371261 −0.4237477 3.258300 

1000   0.5536853 0.0001911473 −0.4730763 3.152824 

2000   0.5459456 0.0001571489 −0.5236663 3.417648 

5000   0.5368201 0.0001242829 −0.5748409 3.515111 

10000   0.5306027 0.0001056807 −0.6078919 3.584151 

150 1 5 0.07414598 4.748036×10⁻⁵ −0.1336004 2957.861 

 2  0.2719993 0.0001623435 −0.2744358 3.084172 
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 3  0.4196996 0.0001728096 -0.3224319 3.138697 

 4  0.5213913 0.0001504779 −0.3466572 3.169352 

 5  0.5938978 0.0001251878 −0.3612679 3.188875 

3 1 1 0.8674569 0.11056480 2.297332 17.28222 
  2 0.3617870 0.01299295 1.599782 8.576392 

  5 0.1305731 0.00134601 1.308430 6.467252 

  10 0.0631468 0.00029188 1.223986 16.93484 

  25 0.02476427 4.290549×10⁻⁵ −5.10736 113.5008 

  35 0.01762261 2.154636×10⁻⁵ −26.0700 285.1315 

  45 0.01367801 1.291354×10⁻⁵ 30.28078 -392.661 

  50 0.01230126 1.042869×10⁻⁵ 51.49377 -602.018 

 

Table 3: E(X), V(X), S(X) and K(X) for the BXII model. 

1 5 0.2500000 0.104166700 4.64758000 73.80000 

5  0.6824236 0.028995090 0.04014894 3.070043 

15  0.8738445 0.005874990 −0.5532521 3.716229 

35  0.9429226 0.001308798 −0.7556787 4.268102 

50  0.9595446 0.000670762 −0.8044469 4.428862 

75  0.9727649 0.000308832 −0.8433321 4.565136 

100  0.9794732 0.000176835 −0.8628163 4.608513 

150  0.8312523 0.004948929 −0.6735949 3.837231 

15 0.5 1.1138790 0.044241730 2.13181600 15.34159 

 1 1.0073480 0.015102360 0.59899810 5.108375 

 10 0.8738445 0.005874988 −0.5532521 3.716229 

 25 0.7802835 0.004183556 −0.7426381 3.929249 

 50 0.7445115 0.003757431 −0.7651261 3.962605 

 100 0.7106364 0.003400300 −0.7762729 3.979733 

 200 0.6784242 0.003088641 −0.7818293 3.988533 

 500 0.6381542 0.002727363 −0.7851529 3.993804 

 1000 0.6093145 0.002484757 −0.786259 3.995556 

 5000 0.5473072 0.002003691 −0.7871443 3.996980 

 10000 0.5225898 0.001826675 −0.7872549 3.998318 
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Figure 1: 3-D plots for skewness and kurtosis for 𝜃 = 0.01; 0.05; 0.65; 3.5. 
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Figure 2: 3-D plots for skewness and kurtosis for a = 0.01; 0.25; 5.25; 90. 
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Figure 3: 3-D plots for skewness and kurtosis for b = 0.001; 0.05; 10; 50. 
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3. Parameter Estimation 

Several approaches for parameter estimation were proposed in the literature but the maximum likelihood method is 

the most commonly employed. So, we consider the estimation of the unknown parameters of this family from complete 

samples only by maximum likelihood. Let  𝓍1, 𝓍2, … , 𝓍𝑛  be a random sample from the RBX-G family with parameters 

𝜃 and 𝜉. For determining the MLE of  𝜳 , we have the log-likelihood function 

ℓ𝜃,𝜳(𝓍𝑖) = 𝑛 𝑙𝑜𝑔 2 + 𝑛 𝑙𝑜𝑔 𝜃 + ∑ 𝑙𝑜𝑔 𝑔𝜳 (𝓍𝑖)

𝑛

𝑖=1

− 3 ∑ 𝑙𝑜𝑔 𝐺𝜳 (𝓍𝑖)

𝑛

𝑖=1

 

+ ∑ 𝑙𝑜𝑔 𝐺
𝜳

(𝓍𝑖)

𝑛

𝑖=1

− ∑ 𝛿𝓍𝑖;𝜳
−2

𝑛

𝑖=1

+ (𝜃 − 1) ∑ 𝑙𝑜𝑔[1 − 𝑒𝑥𝑝(−𝛿𝓍𝑖;𝜳
−2 )]

𝑛

𝑖=1

, 

The components of the score vector, 𝑈(𝜃, 𝜳) =
𝜕

𝜕𝛩
ℓ𝜃,𝜳(𝓍𝑖) = (𝑈𝜃 =

𝜕

𝜕𝜃
ℓ𝜃,𝜳(𝓍𝑖), 𝑈𝜳 =

𝜕

𝜕𝜳
ℓ𝜃,𝜳(𝓍𝑖))

T

.  Setting the 

nonlinear system of equations 𝑈𝜃(𝓍𝑖) = 0  and  𝑈𝜳(𝓍𝑖) = 0  and solving them simultaneously yields the MLEs. To 

solve these equations, it is usually more convenient to use nonlinear optimization methods such as the quasi-Newton 

algorithm to numerically maximize  ℓ𝜃,𝜳(𝓍𝑖). 

4. Four examples for comparing models 

Based on Table 1, we will consider the Burr XII distribution as base line model for deriving the reciprocal Burr X-

Burr XII (RBXBXII) distribution. To illustrate the flexibility of the RBXBXII model, we provide four applications to 

four real-life data sets. For the four real-life data sets, we compare the RBXBXII distribution, with the standard Burr 

XII (BXII), Marshall-Olkin Burr XII (MOBXII), Topp-Leone Burr XII (TLBXII), Zografos-Balakrishnan Burr XII 

(ZBBXII), Five Parameters beta Burr XII (FBBXII), Beta Burr XII, Beta exponentiated Burr XII (BEBXII), Five 

Parameters Kumaraswamy Burr XII (FKmBXII) and Kumaraswamy Burr XII distributions.  

 

All competitive Burr XII models and data sets are given in Afify et al. (2018), Altun et al. (2018 a, b) and Elsayed and 
Yousof (2019). We consider the following well-known (G-O-F) statistic tests: the Akaike Information Criterion  
(𝐴𝐼 − 𝐶𝑟), Bayesian Information Criterion  (𝐵𝑎𝑦𝑒𝑠 − 𝐶𝑟), Hannan-Quinn Information Criterion  (𝐻𝑄 − 𝐶𝑟), 

Consistent Akaike Information Criterion  (𝐶𝐴 − 𝐶𝑟) . The data set I is the breaking stress data (see Nichols, Padgett 

(2006)). The data set II presents survival times of guinea pigs see (Bjerkedal (1960)). The data set III are taxes revenue 

data see (Altun et al. (2018 a, b)). The data set IV called leukemia data see (Elsayed and Yousof (2019)).  

 

 

Many useful graphical tolls are used such as the plots and the box plots, Quantile-Quantile (Q-Q) plots, the total time 

in test (TTT) plots and the nonparametric Kernel density estimation (NKDE). Figures 4, 5, 6 and 7 give the box plots, 

the Q-Q, TTT plot and NKDE plots for the four real data sets. The outliers (extreme observations) are checked ad 
spotted by the box plot (see Figures 4, 5, 6, 7 (top left panels)). The normality of the four real-life data sets is checked 

using the Q-Q plot (see Figures 4, 5, 6, 7 (top right panels)).  The initial HRF shapea are explored by using the TTT 

tool (see Figures 4, 5, 6, 7 (bottom left panels)). The NKDE tool is used for exploring the initial PDF shape (see 

Figures 4, 5, 6, 7 (bottom right panels)). Based on Figures 4, 5, 6, 7 (top left panels), it is proved that no extreme 

values were spotted in data set IV. However, data sets I, II and III have some extreme values. Based on Figures 4, 5, 

6, 7 (top right panels), it is seen that the normality is exists for the data sets I and III. Based on Figures 4, 5, 6, 7 

(bottom left panels), it is seen that the HRF of the two real data sets is monotonically increasing for data sets I, II and 

III and U-HRF for data set IV. Based on Figures 4, 5, 6, 7 (bottom right panels), it is seen that the NKDE of the four 

data sets are bimodal and right skewed density for data sets I, bimodal and right skewed density with heavy tail for 

data sets II, III and IV. Tables 4, 5, 6 and 7 give the estimates of the maximum likelihood method (MLEs), standard 

errors (SEs), 95%-confidence interval (95%-CL) with AI-Cr, Bayes-Cr, HQ-Cr and CA-Cr values for the data set I, 

II, III and IV respectively. Figures 8, 9, 10 and 11give estimated PDF (EPDF), estimated CDF (ECDF), Probability-
Probability (P-P) plot, Kaplan-Meier survival plot and estimated HRF (EHRF) for data sets I, II, III and IV. Based 

on the values in Tables 8, 9, 10 and 11, the RBXBXII model has the best fits as compared to BXII extensions in the 

four applications with small values of AI-Cr, Bayes-Cr, HQ-Cr and CA-Cr where for data set I AI-Cr=291.102, Bayes-

Cr=298.917, HQ-Cr=294.265 and CA-Cr=291.352, for data set II AI-Cr=206.371, Bayes-Cr=213.561, HQ-

Cr=209.450 and CA-Cr=207.084, for data set III AI-Cr=382.752, Bayes-Cr=388.985, HQ-Cr=383.188 and CA-

Cr=385.185 and finally for data set IV AI-Cr=312.988, Bayes-Cr=317.478, HQ-Cr=313.816 and CA-Cr=314.499.  
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Figure 4: Plots for describing and exploring data set I. 
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Figure 5: Plots for describing and exploring data set II. 
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 Figure 6: Plots for describing and exploring data set III. 
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Figure 7: Plots for describing and exploring data set IV. 
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Figure 8: EPDF, ECDF, P-P plot, Kaplan-Meier survival plot and EHRF for data set I. 
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Figure 9: EPDF, ECDF, P-P plot, Kaplan-Meier survival plot and EHRF for data set II. 
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Figure 10: EPDF, ECDF, P-P plot, Kaplan-Meier survival plot and EHRF for data set III. 
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Figure 11: EPDF, ECDF, P-P plot, Kaplan-Meier survival plot and EHRF for data set IV. 

 



Pak.j.stat.oper.res.  Vol.19  No. 2 2023 pp 373-394  DOI: http://dx.doi.org/10.18187/pjsor.v19i2.4310 
 

 
A New Reciprocal System of Burr Type X Densities with Applications in Engineering, Reliability, Economy, and Medicine 390 

 

 

Table 4: MLEs, SEs and CL with AI-Cr, Bayes-Cr, HQ-Cr and CA-Cr values for the data set I. 

Model θ,a,b,α,β AI-Cr, Bayes-Cr, CA-Cr, HQ-Cr 

BXII ___, 5.9415, 0.1878, ___ 382.94, 388.15, 383.06, 385.05 

 ___, (1.2792), (0.0443), ___  

 ___, (3.43,8.455), (0.10,0.272), ___  

MOBXII ___, 1.1924,4.8345,838.7341, ___ 305.78, 313.61, 306.03, 308.96 
 ___, (0.9524), (4.8965), (229.344), ___  

 ___, 0, 3.06), (0, 14.43), (389.22,1288.24), ___  

TLBXII ___, 1.3502,1.0611,13.72773, ___ 323.52, 331.35, 323.77, 326.70 

 ___, (0.3783), (0.384), (8.4003), ___  

 ___, (0.613, 2.09), (0.31,1.81), (0, 30.19), ___  

KmBXII 48.1033 ,79.516 ,0.351 ,2.730, ___ 303.76, 314.20, 304.18, 308.00 

 (19.3483), (58.1864), (0.098), (1.0773), ___  

 (10.18,86.03), (0,193.56), (0.16,0.54), (0.62,4.84), ___  

BBXII 359.683 ,260.097 ,0.17534 ,1.1235, ___ 305.64, 316.06, 306.06, 309.85 

 (57.944), (132.213), (0.013), (0.243), ___  

 (246.1,473.2), (0.96,519.2), (0.14,0.20), (0.65,1.6), ___  

BEBXII 0.381, 11.949, 0.937, 33.402, 1.705 305.82, 318.84, 306.46, 311.09 
 (0.078), (4.635), (0.267), (6.287), (0.478)  

 (0.23,0.533), (2.86,21), (0.41,1.5), (21,45), (0.8,2.6)  

FBBXII 0.4214, 0.8343, 6.115, 1.674, 3.450 304.26, 317.31, 304.89, 309.56 

 (0.011), (0.943), (2.314), (0.226), (1.957)  

 (0.4,0.44), (0. 2.7), (1.57, 10.7), (1.23, 2.1), (0, 7)  

FKmBXII 0.5424,4.2232, 5.31332, 0.4112, 4.1523 305.50, 318.55, 306.14, 310.80 

 (0.137), (1.882), (2.318), (0.497), (1.995)  

 (0.3, 0.8), (0.53,7.9), (0.9,9), (0, 1.7), (0.2,8)  

ZBBXII 123.101,0.3683, 139.24725, ___, ___ 302.96, 310.78, 303.21, 306.13 

 (243.011), (0.343), (318.546), ___, ___  

 (0, 599.40), (0, 1.04), (0, 763.59), ___, ___  
RBXBXII 1565.5, 0.2252, 0.383, ___, ___ 291.102, 298.917, 291.352,294.265 

 (8.169), (0.0025), (0.00945), ___, ___  

 (1549.3,1581.7), (0.2212,0.229), (0.365,0.40), ___, ___  

 

Table 5: MLEs, SEs and CL with AI-Cr, Bayes-Cr, HQ-Cr and CA-Cr values for the data set II. 

Model θ,a,b,α,β AI-Cr, Bayes-Cr, CA-Cr, HQ-Cr 

BXII ___, 3.1025, 0.4654, ___, ___ 209.601, 214.155, 209.774, 211.402 

 ___, (0.5384), (0.0777), ___, ___  

 ___, (2.053,4.16), (0.31,0.62), ___, ___  

MOBXII ___, 2.2593,1.5333, 6.7603, ___ 209.74, 216.56, 210.09, 212.444 

 ___, (0.864), (0.907), (4.587), ___  

 ___, (0.57,3.95), (0,3.31), (0, 15.75), ___  

TLBXII ___, 2.393,0.458,1.796, ___ 211.801, 218.638, 212.153, 214.524 

 ___, (0.907), (0.244), (0.915), ___  
 ___, (0.62,4.17), (0, 0.94), (0.002,3.59), ___  

KmBXII 14.105,7.424, 0.525, 2.274, ___ 208.764, 217.858, 209.362, 212.384 

 (10.805), (11.850), (0.279), (0.990), ___  

 (0, 35.28), (0.30.65), (0, 1.07), (0.33, 4.21), ___  

BBXII 2.555, 6.058,1.800,0.294, ___ 210.444, 219.544, 211.034, 214.064 

 (1.859), (10.391), (0.955), (0.466), ___  

 (0, 6.28), (0, 26.42), (0, 3.67), (0, 1.21), ___  

BEBXII 1.876, 2.991, 1.780, 1.341, 0.572 212.103, 223.503, 213.001, 216.604 

 (0.094), (1.731), (0.702), (0.816), (0.325)  

 (1.7,2.06), (0, 6.4), (0.40, 3.2), (0, 2.9), (0, 1.21)  

FBBXII 0.621, 0.549,3.838, 1.381, 1.665 206.804, 218.243, 207.711, 211.302 

 (0.541), (1.011), (2.785), (2.3121), (0.436)  
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 (0, 1.7), (0, 2.54), (0, 9.34), (0, 5.9), (0.8, 4.5)  

FKmBXII 0.558,0.308, 3.999, 2.131, 1.475 206.50, 217.90, 207.41, 211.00 

 (0.442), (0.314), (2.082), (1.833), (0.361)  

 (0, 1.4), (0, 0.9), (0, 3.1), (0, 5.7), (0.76, 2.2)  

RBXBXII 317.363, 0.1743, 0.4623, ___, ___ 206.371, 213.561, 207.084, 209.449 
 428.088, 0.0389, 0.039, ___, ___  

 (0,1177.36), (0,0.574), (0,1.262), ___, ___  

 

Table 6: MLEs, SEs and CL with AI-Cr, Bayes-Cr, HQ-Cr and CA-Cr values for the data set III. 

Model θ,a,b,α,β AI-Cr, Bayes-Cr, CA-Cr, HQ-Cr 

BXII ___, 5.6153, 0.0725, ___, ___ 518.458, 522.622, 518.671, 520.082 

 ___, (15.048), (0.194), ___, ___  

 ___, (0, 35.11), (0, 0.45), ___, ___  

MOBXII ___, 8.0173, 0.419, 70.359, ___ 387.220, 389.388, 387.663, 389.683 

 ___, (22.083), (0.312), (63.831), ___  

 ___, (0, 51.29), (0, 1.035), (0, 195.47), ___  

TLBXII ___, 91.324, 0.012, 141.073, ___ 385.943, 392.184, 386.384, 388.40 

 ___, (15.071), (0.002), (70.028), ___  

 ___, (61.78,120.86) (0.008, 0.02) (3.82,278.33), ___  

KmBXII 18.130, 6.857, 10.694, 0.081, ___ 385.588, 393.901, 386.323, 388.86 
 (3.689), (1.035), (1.166), (0.012), ___  

 (10.89,25.4), (4.83,8.89), (8.41,12.98), (0.06,0.10), ___  

BBXII 26.725, 9.756, 27.364, 0.020, ___ 385.563, 394.10, 386.30, 389.105 

 (9.465), (2.781), (12.351), (0.007), ___  

 (8.17,45.27), (4.31,15.21), (3.16,51.57), (0.01,0.03), ___  

BEBXII 2.9245, 2.911, 3.270, 12.486, 0.3741 387.05, 397.424, 388.175, 391.094 

 (0.564), (0.549), (1.2515), (6.938), (0.788)  

 (1.82,4.03), (1.83,3.99), (0.82,5.72), (0, 26.08), (0, 1.92)  

FBBXII 30.4412, 0.5845, 1.0888, 5.166, 7.8624 386.740, 397.143, 387.872, 390.841 

 (91.745), (1.064), (1.0213), (8.268), (15.036)  

 (0, 210.26), (0, 2.67), (0, 3.09), (0, 21.37), (0, 37.33)  
FKmBXII 12.878, 1.225, 1.665, 1.411, 3.732 386.966, 397.365, 388.093, 391.064 

 (3.442), (0.131), (0.034), (0.088), (1.172)  

 (6.13,19.6), (0.97,2), (1.56,1.7), (1.2,1.58), (1.43,6), ___  

DBXII 5.376, 1.449, 0.149, ___, ___ 382.752, 388.985, 383.188, 385.19 

 2.6429, 1.422, 0.129, ___, ___  

 (0.176,10.57), (0,3.249), (0,0.389), ___, ___  

 

Table 7: MLEs, SEs and CL with AI-Cr, Bayes-Cr, HQ-Cr and CA-Cr values for the data set IV. 

Model θ,a,b,α,β AI-Cr, Bayes-Cr, CA-Cr, HQ-Cr 

BXII ___, 58.711,0.006, ___, ___ 328.20, 331.19, 328.60, 329.19 

 ___, (42.382), (0.0044), ___, ___  

 ___, (0, 141.78), (0, 0.01), ___, ___  

MOBXII ___, 11.838, 0.078, 12.251, ___ 315.54, 320.01, 316.37, 317.04 

 ___, (4.368), (0.013), (7.770), ___  
 ___, (0, 141.78), (0, 0.01), (0, 27.48), ___  

TLBXII ___,0.2815, 1.8824 ,50.215, ___ 316.26, 320.75, 317.09, 317.76 

 ___, (0.288), (2.402), (176.50), ___  

 ___, (0, 0.85), (0, 6.59), (0, 396.16), ___  

KmBXII 9.201, 36.428, 0.242,0.941, ___  317.36, 323.30, 318.79, 319.34 

 (10.060), (35.650), (0.167), (1.045), ___  

 (0, 28.912), (0, 106.30), (0, 0.57), (0, 2.99), ___  

BBXII 96.104, 52.121, 0.104, 1.227, ___  316.46, 322.45, 317.89, 318.47 

 (41.201), (33.490), (0.023), (0.326), ___  

 (15.4,176.8), (0, 117.8), (0.6, 0.15), (0.59,1.9), ___  

BEBXII 0.087, 5.007, 1.561, 31.270, 0.318 317.58, 325.06, 319.80, 320.09 
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 (0.077), (3.851), (0.012), (12.940), (0.034)  

 (0, 0.3), (0, 12.6), (1.5, 1.6), (5.9, 56.6), (0.3,0.4)  

FBBXII 15.194, 32.048, 0.233, 0.581, 21.855 317.86, 325.34, 320.08, 320.36 

 (11.58), (9.867), (0.091), (0.067), (35.548)  

 (0, 37.8), (12.7,51.4), (0.05,0.4), (0.45,0.7), (0, 91.5)  
FKmBXII 14.732, 15.285, 0.293, 0.839, 0.034 317.76, 325.216, 319.98, 320.26 

 (12.390), (18.868), (0.215), (0.854), (0.075)  

 (0, 39.02), (0, 52.27), (0, 0.71), (0, 2.51), (0, 0.18)  

DBXII 253.235, 0.0815, 0.4201, ___, ___ 312.99, 317.4778, 313.82, 314.499 

 642.76, 0.036, 0.0507, ___, ___  

 (0,1533.3), (0 0.0015,0.162), (0.5201,0.3), ___, ___  

 

5. Conclusions 

A new one parameter G family of distributions called the Reciprocal Burr X-G Family (RBX-G) family is defined and 

studied. The RBX-G family is constructed by investing the well-known Burr X family (Yousof et al. (2017a)). Special 
member based on the Burr XII model called the reciprocal Burr X-Burr XII (RBXBXII) distribution is studied and 

analyzed. Relevant properties of the new family including ordinary moments, moment of the residual life, Moment of 

the reversed residual lif and incomplete moments are derived and some of them are numerically analyzed. The 

expected value, variance, skewness, and kurtosis for the RBXBXII model are numerically analyzed. It is noted that 

noted that the skewness of the RBXBXII model can rage in (− 26.0700,51.49377) however skewness of the base line 

Burr XII model can rage in (− 0.55325,4.64758). The kurtosis of the RBXBXII model starts from  − 602.018 to 

2957.861 however the kurtosis of the Burr XII model starts from 3.070043 to 73.8. Four different applications to real-

life datasets are presented to illustrate the applicability and importance of the RBXBXII model. Based on the four 

applications, the RBXBXII distribution gives the lowest values for all statistic tests where for data set I AI-

Cr=291.102, Bayes-Cr=298.917, HQ-Cr=294.265 and CA-Cr=291.352, for data set II AI-Cr=206.371, Bayes-
Cr=213.561, HQ-Cr=209.450 and CA-Cr=207.084, for data set III AI-Cr=382.752, Bayes-Cr=388.985, HQ-

Cr=383.188 and CA-Cr=385.185 and finally for data set IV AI-Cr=312.988, Bayes-Cr=317.478, HQ-Cr=313.816 and 

CA-Cr=314.499. 

 

The new family has high flexibility in statistical modeling operations, and therefore we hope that it will receive the 

expected interest from the statistics, as the new family can be used in many applications, including: 

I. Introducing a new discrete family based on the new argument (see Aboraya et al. (2020), see Ibrahim et 

al. (2021b) and see Eliwa et al. (2022)). 

II. Many new continuous distributions are derived based on it. 

III. Applying many statistical hypothesis tests in the case of complete data (see Ibrahim et al. (2020), Ibrahim 

et al. (2021a) and Khalil et al. (2023)). 

IV. Apply a lot of statistical hypothesis tests in the case of censored data. 
V. Presenting applications in the field of validity and engineering based on the stress-strength models and 

their extensions with Bayesian and non-Bayesian estimations. 

VI. Presenting applications in the field of validity and engineering based on the pressure and resistance 

model (follow Mohamed et al. (2022a, b, c) and Hamed et al. (2022)). 

 

We hope that the new family will attract the attention of researchers in the fields of mathematical statistics, applied 

statistics, and others. We hope that researchers will find sufficient importance in the fields of mathematical and 

statistical modeling and practical applications in the fields of engineering, medicine, industry, insurance, and actuarial 

sciences.  We recommend employing the new family also in the field of statistical hypothesis tests on various data 

(complete and censored). The mathematical characteristics of the new family also make us recommend its application 

in the areas of actuarial risk analysis and evaluation in relation to insurance and reinsurance companies.  Finally, the 
new family can also be used in acceptance sampling planes and stress-strength applications.  In other possible future 

work, we may present a bivariate version of the new family with some applications to bivariate data. 
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