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Abstract

In this paper, the unit Garima distribution is introduced. It is used for analysing proportional data. Some statisti-
cal properties of the proposed distribution are investigated, including survival and hazard functions, order statistics,
quantile function, and stress-strength reliability measures. A new family of continuous distributions, called the unit
Garima-generated family of distributions, is also provided. It used the unit Garima distribution as the main generator.
Some sub-models of the unit Garima-generated family of distributions are provided, such as the unit Garima-beta, unit
Garima-Weibull, and unit Garima-normal distributions. The method of maximum likelihood is used to estimate the
model parameters. A Monte Carlo simulation is used to illustrate the performance of the percentile confidence interval
construction for each parameter of the proposed distributions. Finally, the developed distributions are applied to eight
real data sets.
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1. Introduction

The Garima distribution is introduced by Shanker in 2016. It is applied in behavioral science and compared with
some existing continuous distributions, for instance, Sujatha, Aradhana, Akash, Shanker, Lindley, and exponential
distributions (Shanker, 2016). Some results based on the goodness of fit test show that the Garima distribution is
one of the continuous distributions for modelling behavioral science data. Its cumulative density function (cdf) and
probability density function (pdf) respectively, are

0 0
G(y;0)=1-— <1 + 942_/2> exp {—0y}, and g(y;0) = 912 (1+ 6+ 0y)exp{—0y}; fory >0and § > 0. (1)

However, in many applied scenarios, we are often confronted with the uncertainty of a phenomenon that can be quan-
tified in different bounded ranges. Some selected probability distributions will be considered to fit with observed data
for the model fitting. As an example of a bounded range, in modelling with proportion, we employ a random variable
with a unit interval (0, 1), which is followed by a particular unit distribution (Bantan et al., 2020). By this means,
the selected distributions have (0, 1) support. A transformation of a random variable is one of several techniques to
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construct the unit distribution (Johnson, 1949). Some existing unit distributions based on the transformation of ran-
dom variables, such as unit-Lindley distribution by Mazucheli et al. (2019), unit-Rayleigh distribution by Bantan et al.
(2020), new unit-Lindley distribution by Mazucheli et al. (2020a), and unit-Weibull distribution by Mazucheli et al.
(2020b).

In this paper, we propose a new one-parameter unit distribution, called the unit-Garima distribution, as an alternative
distribution for continuous data modelling on the unit interval (0,1). In addition, we developed the unit Garima-
generated family of distributions using the introduced method of Alzaatreh et al. (2013). Since the past two decades
or so, many researchers have developed a generalized family of distributions. Eugene et al. (2002) used the beta
distribution as a generator to develop the so-called family of beta-generated distributions. Its cdf is defined as

G(z)
FBeta—G(x') = / ’/‘(t)dt 2)
0

where r(t) is the pdf of the beta random variable and G(x) is the pdf of the selected random variable. In 2002, the
beta-normal distribution was introduced by Eugene et al. (Eugene et al.,2002). Later, Jones 2009 and Cordeiro and
de Castro (2011) replaced the beta distribution in (2) with the Kumaraswamy distribution, called the Kumaraswamy-
generated distribution, which extends the beta-generated distributions. The beta-generated family of distributions and
the Kumaraswamy-generated family of distributions are generated using distributions with support between 0 and 1 as
the generators.

Alzaatreh et al. (2013) developed a new method for generating families of continuous distributions for the interest
of using a generator with support lying between a and b for —co < a < b < oo. A random variable X, “the
transformer”, is used to transform another random variable 7', “the transformed”. The distribution is called the T-X
family of distributions. Consequently, the cdf of a T — X random variable X is defined as

[G(=)]
Pr(o) = [ r(oy )

where r(t) is the pdf of the random variable 7" and W[G(x)] is the function of cdf of selected random variable X .
The W (G(x)) satisfies the following conditions (Alzaatreh et al.,2013),

)
(i) W(G(x)) € [a,b],

(il) W(G(z)) is differentiable and monotonically non-decreasing,
(W (G(x)) - aasz — —oo and W(G(x)) — bas z — oo.

If T be any continuous random variable in the interval (0,1), then W[G(z)] can be defined as G(z) or G*(z) for
a > 0. Several researchers have generated new probability distributions by utilizing recent families of distributions
for different choices of G(x).

The paper is organized as follows: The unit-Garima distribution is a new one-parameter unit distribution that is intro-
duced in Section 2. Its properties are also given, including order statistics, the quantile function, the stress-strength
reliability measure, and survival and hazard rate functions. In Section 3, we concentrate on a generated family of dis-
tributions by using the unit-Garima distribution. Some properties of the proposed family of distributions are provided.
In addition, some examples of the proposed family of distributions are shown in Section 4. Section 5 presents the
proposed distributions’ methods of the parameters. In Section 6, a simulation study about estimating the parameters
of the proposed distributions is illustrated. In Section 7, the application study is presented to show the performance of
the proposed distributions by various real data sets. Finally, the conclusion is included in Section 8.

2. A new unit distribution

In this section, a new unit distribution, the so-called unit-Garima distribution. Our main interest in this paper is to
introduce a new unit distribution, the unit-Garima, which is introduced in Theorem 2.1. Some statistical properties of
the proposed distribution are discussed.

Theorem 2.1. Let Y be a random variable distributed as the Garima distribution with a positive parameter 6. A
random variable T = 1/(1 4+ Y) is distributed as the unit-Garima (UGa) distribution with a parameter 0, denoted as

A generating family of unit-Garima distribution: Properties, likelihood inference, and application 70



Pak j.stat.oper.res. Vol.20 No.1 2024 pp 69-84 DOI: http://dx.doi.org/10.18187/pjsor.v20i1.4307

(a) (b)
o _
— 9=05 — 9=05
< 4 - - 0=1 Q4 -- 0=1
- 9=15 S - e=15
PR T | I 0=3 . dl --. 0=3
= —45 L = — - 9=45 .
o N z o 3 A 7
/ = )
S R
- i L. .
s .’
o g ] e =

Figure 1: The pdf and cdf of T ~ UGa(6) with some specified values of 6
T ~ UGa(9), for0 <t <1 and 0 > 0. Its pdf and cdf respectively are:

T Y L O RN | Y Y Y

Proof: If Y is a random variable with the pdf as (1). Let T = 1/(1 4+ Y), we have y = 1/t — 1 and the pdf of T' by
using the transformation of variable technique as follows:

i) 30
csta(ern (i) o1}
it 1+ oo () - e ().

where 0 < ¢t < 1 and 6 > 0. Its corresponding cdf can be obtained by

j 21 0)s <1+i>eXp{_9(i—1>}ds.

Letu = —0(1/s — 1), we have du/ds = §/s* and

246

1 1
= 1 -—1 1 —01--1
2+9[( —|—0)+0< >—|— ]exp{ 0(15 )}
0 1 1
1+ —-=-1 —O1-=1];.
et (i) e (o))
Figure 1(a) and Figure 1(b) show the pdf and cdf of the UGa distribution for some specified values of 6, respectively.

Some properties of the UGa distribution are shown as follows:
Survival and hazard rate functions: Let T ~ UGa(6), its survival and hazard functions respectively are:

—6(1/s—1) 1 _
R(t:6) = / A6 —wexp(w),,
0

0(0 + 2)(t + 0)e~00/t=1)
2 [(0+2)t — (2t 4 0)e=00/t=D]

(0 +2)t — (2t + §)e 0C/t=1)

0+ 2)t )

S(t) = and h(t) =

Order statistics: Let 77, ...,7T,, be a random variable sample of size n of the UGa distribution with parameter 6.
Let Ty < T2y < -+ < T{;) denote the corresponding order statistics. Its pdf and cdf of the kth order statistics,
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respectively, are:

n!

) = G i

FF () [1 = Ft)]" " f () and R(t(r)) Z ) FI(tay)[1 = F(tay)]" ™,

fork =1,2,3,...,n. If T; ~ UGa(6), then the cdf and pdf of the k" order statistics respectively are:

n - -7’ —0(1/tay—1) "
n! (0 + 2t (1)) e~ 00/t =1) (0 + 2tpy)e *)
R(t(k)) — Z _ (k) 1— (k) ,

= (n=j)Y! (0 +2)tx) (0 + 2)t )
r(t) nle=00/t@ 1) [(0 4 2t 9)e /101" L (O 2ty )e oY "ot +0)
(k) (k—1)l(n—k)! 0+ 2)t () 0+ 2)t) 0+2)82,

Quantile function: Let T ~ UGa(0), with its cdf R(t) as in (4). We can set R(t;0) = U where U is a random
variable distributed as the uniform distribution on the interval (0, 1). Hence its quantile function is

0

Qrlw) = B0 = g0 oo

(6)

where 0 < u < 1 and W () is the Lambert W function, which is a multi-valued complete function defined as the
solution of the expression T (z)e"V(*) = 2 (Corless et al.,1996).

Stress-strength reliability measure: A stress-strength reliability involving two independent random variables, X and
Y, where X represents the stress variable, and Y represents the strength variable. Its measure is defined as P(Y < X).

Theorem 2.2. Let X ~ UGa(01) andY ~ UGa(03). If X and Y are two independent random variables, then its
stress-strength reliability measure is

01 (203 + 467 + 63 + 3603 + 6305 + 70105 + 2037603 + 6,03 + 66103 + 96165)

P(Y < X)= (01 +2)(02 + 2) (01 + 02)°

;91,92 > 0. (7

Proof: If X and Y are two independent random variables, then the stress-strength reliability measure is calculated as
(Kotz and Pensky, 2003),

1
PY < X) = [ POV < XIY = 9}y (3 01y
0

If X ~UGa(#;) and Y ~ UGa(6s), we have

1

1 1
PY < X — Oy +2+05 (= —1)| e Or+02)0/y=1) gy,
¥<X)= (91+2 02+2 /yz( )[2+ +2<y )]e Y
0

Letu = —(6; + 65) (7—1) wehaved zaly%e%md

1

01u Oau
PlY <X)= 0 1-— 0 2 — “d
( ) (01—|—2)(92—|—2 91+92 /<1+ +92)(2+ 91+92>6 “
0

0162
0, + 92)2

0y + 260165 + 26
= 0 ) (6 2))— | ————m—
(91+2)(92+2 )(61 + 62) /{ (6 +1)(62 +2) ( 01 + 02 )

05 + 20,605 + 26, 2016, }

u2} e"du

T 6+ 2)(92 + 2)(61 + 05)

(0 -‘1—1 (02 +2) +
{ ! ? ) 01+ 02 (91 —|—(92)2
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01 (207 + 407 + 03 + 303 4 0705 + 76705 + 20705 4 0,605 + 660,05 + 96,0,)
(61 +2)(02 + 2)(61 + 02)°

3. A generating of the UGa family of distributions

In this section, a generated family of distributions by using the UGa distribution as a generated random variable, called
the unit-Garima-generated (UGa-G) family of distributions

Theorem 3.1. If X be a random variable distributed as the UGa-G family of distributions with the parameters o > 0
and 6 > 0, and a vector parameter £, denoted as X ~ UGa-G(«, 0, ). Then its the cdf and pdf respectively are,

Fyac(z) = [1 + % (G~ %(x;8) — 1)} exp {—0 (G~ *(z;6) - 1)}, (8)
frouo(e) = S (LEEED ) o (-0 (670 - 1)} ©

Proof: Let T' ~ UGa(0) with pdf r(t) in (4), and W[G(z)] = G*(x; &) is a function of the cdf of a random variable
X which is any distribution with a parameter vector £. By using the method of T'— X generated family of distributions
(Alzaatreh et al., 2013) where its cdf as in (3). We can obtain the cdf of the UGa-G family of distributions as follows:

/Oca(x;g) (&) (’5;9> exp [-0(1/t — 1)]dt

1 70 71 1 0 71 1
1+ 553 (i )| {0 (e 1))
Its corresponding pdf is

octe) = 2 {[14 525 (g 1) oo {0 (g 1))

— asln 06 @) (515 ) (T ) v -00/6 @) - ]

- () (5

Fygac(x)

) exp [-0(G"(:6) — 1))

Some properties of the UGa-G family of distributions are discussed as the following.

The survival and hazard rate functions of the UGa-G family of distributions respectively are:

SuGac(z) = 1 (2+60—[2+0G*(x;€)] exp{—0 (G~ *(z;¢) —1)}), and (10)

2440
af (G(x;€) +0) exp [-0(G~*(%;§) — 1)]

G2+ 0 (24 0G(@:8)) exp [—0(C(@:6) ~ )]’ (an

huga-c(x)

If X be a random variable distributed as the UGa-G family of distributions with the cdf as in (8). Let Fyga_g(z) = U
where U be a random variable distributed as the uniform distribution on the interval (0, 1). By inverting the cdf as (8),
we then have its quantile function as:

- 9 1/«
Qucac(u) =G { {—2 —W(—u(2+0)exp{—(2+ 9)})] } 7 "

where 0 < w < 1 and W (-) is the Lambert W function.

The measures of skewness and kurtosis, based on quantile functions of the 7" — X family of distributions (Alzaatreh
et al., 2013), of the UGa-G family of distributions are derived. The measure of skewness .S is defined by Galton (1883)
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and the measure of kurtosis K is defined by Moors (1988). They are expressed as
_ Q(6/8) —2Q(4/8) + Q(2/8) _ Q(7/8) —Q(5/8) + Q(3/8) —Q01/8
ST e T R Q(6/8) -~ Q(2/5) | 9

respective. When the distribution is symmetric, S = 0 and when the distribution is right (or left) skewed, S > 0 (or
S < 0). As K increases, the tail of the distribution becomes heavier.

4. Sub-models of the UGa-G family of distributions
4.1. The UGa-beta distribution

The beta distribution has been applied to model the behavior of random variables limited to interval (0,1). Its pdf and

cdf are given by

l,afl(]_ _ m)bfl
B(a,b)

I.(a,b)
B(a,b)’

g(z;a,b) = and G(z;a,b) = forO <z <1, (14)

where a and b are a positive shape parameter, I, (a,b) fo (1 — w)’~dw is an incomplete beta function,
and B(a,b) = fo w2 (1 — w)® " tdw. According to (9), the cdf and pdf of the UGa-beta (UGa-B) distribution,

respectively, are
1+2-9re (( (( Z;) —1)] eXp{—@((Ig((Z:Z))>_a—l>}, (15)

pote) = (5%9) [(53) ] (26) ™ [
Xexp{e (I(( 2) -1 } (16)

where a > 0, 8 > 0, a > 0 and b > 0. Consequently its quantile function is

Fucan(x)

_ 71
QUGa—B(U) - 191/0‘[—2—W(—u(2+6) cxp{—(2+9)})]*1/“ ((l7 b)a 0<u<l (17)

4.2. The UGa-Weibull distribution

Let X be a random variable distributed as the Weibull distribution with parameters k£ and A. Its pdf and cdf respec-
tively, are

g(z;k,\) = § (f\)klexp{— (i)k} and G(z; k,\) =1 —exp{— (f\)k}, for 0 < x < oo, (18)

where £ is a positive shape parameter and A is a positive scale parameter. From (9), we can obtain the cdf and pdf of
the UGa-Weibull (UGa-W) distribution as

([l @)oo Q)
(7%2) ) (i)’“j_{l— (i)’“}{[1—exp{—(i)k}]fa+9}
o= )Y oo (e - )Y 1) @
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Figure 2: Sub-models of the pdf and cdf plots of X for X ~ UGa-B(«, 6, a,b).
Its quantile function is

) a7y L/
QUGGW(u)—)\{—log [1— {—2—W(—u(9+2)exp{—(9+2)})] ]} , O<u< 1. 2D

4.3. The UGa-normal distribution

Let X be a random variable distributed as the normal distribution with the pdf and cdf respectively

2
g(x;u,a):m}%exp{—; (x;u) }andG(a:;u,a)_;{l—&— f(a\[ﬂ for —co < <00, (22)

where erf(z) = % fox e=%"ds is the related error function. Inserting these functions in (9), we can obtain the cdf and

pdf of the UGa-normal (UGa-N) distribution as
e 0 (1 [1+erf<w_“>Da 1(23)
<p { — - _

(e ()
o = () (B e ()] oo (5529 )
e (1 BT ) | R
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Figure 3: Plots of the pdf and cdf of X ~ UGa-W(a, 0, k, ).
where a > 0, 8 > 0, —0o < p < oo and o > 0. Consequently, its quantile function is
0 1/«
Qucan (1) = V2erf 71 {2 —13, 0<u<l. (25)

-2 —W (—u(f +2)exp{—(0 +2)})

Plots of pdf and cdf for selected parameter values of the UGa-B, UGa-W, and UGa-N distributions are shown in
Figures 2-4, respectively.

5. Parameter Estimation

In this section, the parameter estimation of the unknown parameters of the UGa, UGa-B, UGa-N and UGa-W distri-
butions based on the maximum likelihood (ML) method will be derived.

5.1. The ML estimators for the UGa distribution

Let X1,...,X, be a random variable for observed x = (x1,--+ ,z,). If X; ~ UGa(0) with pdf 4, then its log-
likelihood function of € can be written as

£(0|x) = nlog® — nlog(6 + 2) + Zlog (%x—g 0) — GZ —+ né. (26)
i i1 "

i=1
The ML estimator 6 of 6 is obtained by solving the following linear equation:

d n n - 1 2 1

i=1

This equation represents a non-linear system that can be solved simultaneously by a numerical procedure using the
nlm function in the stats package as contribution packages in R (R Core Team, 2022) are used to find the value of
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Figure 4: Plots of the pdf and cdf of X ~ UGa-N(a, 8, i1, 0).

5.2. The ML estimators of the UGa-B distribution
Let X; ~ UGa-B(a, 0, a, b) with the pdf (16), its log-likelihood function of «, 6, a, b can be written as

n I,. ,b o n B ,b
U, 0,a,blx) = nloga+nlogh+ Zlog [(Bl(((jb))) + 9] + (2a+1) Zlog (I((aab))>
i=1 ' i=1 R

" 2071 — z;)0 ! - «(a, e
—nlog(2+9)+ZIOg [l(Bl(a,b))} +;{—9 <IB((a,ll)))>> - 1] } (28)

i=1
Setting the first-partial derivatives of (28) with respect to each unknown parameter to zero, the respective ML esti-
mators of «, 6, a, and b are obtained by a numerical procedure using the n1m function in the stats package as
contribution packages in R (R Core Team, 2022).

5.3. The ML estimators of the UGa-W distribution
Let X; ~ UGa-W(a, 0, k, \) with the pdf (20), its log-likelihood function of «, 8, a, b can be written as

U0,k Nx) = nloga+nlogh—nlog(d +2) +nloghk — nlog A
Jrilog{{lexp{(ii)k}]aﬂ‘)}(2a+1)§10g{lexp{(ﬂ;\i>kﬂ
—I—(k—l)iz:;log(gi\i)—zn:(a;\i)k—@g{[1—exp{(§i)k}}_a—1}. (29)

i=1

Setting the first-partial derivatives of (29) concerning each unknown parameter to zero, the respective ML estimators
of «, 0, k, and )\ are obtained by a numerical procedure using the n1m function in the st at s package as contribution
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packages in R (R Core Team, 2022).

5.4. The ML estimators of the UGa-N distribution

Let X; ~ UGa-N(q, 6, u, o) with the pdf (24), its log-likelihood function of «, 8, a, b can be written as

U, 0, p,0/x) = nloga+nlogh — nlogo —nlog(v2r) —nlog(d + 2)
- 1 T — ¢ " (1 Ti—
+;10g{[2 {1+erf< o~ >H +9}(2a+1);{2 {Herf( — >”

SEE - E{Gh D)) e

Setting the first-partial derivatives of (30) with respect to each unknown parameter to zero, the respective ML esti-
mators of «, 6, u, and o are obtained by a numerical procedure using the n1m function in the stats package as
contribution packages in R (R Core Team, 2022).

6. Simulation illustration

In this study, the estimating parameters of the proposed distributions (the UGa, UGa-B, UGa-W, and UGa-N distri-
butions) are determined, and the true parameters of each distribution are shown in Table 1. Because a theoretical
comparison is not possible, a Monte Carlo simulation study was designed using R (R Core Team, 2022). The study
was designed to cover cases with different sample sizes (n = 25, 50, 100, 500) reflecting small to large samples. In
addition, the 95% percentile confidence interval (PCI) would be (2.5th percentile, 97.5th percentile), where the per-
centiles refer to the distribution of the Monte Carlo simulation with 1000 replications. The results are provided in
Table 1. The maximum likelihood estimates (MLEs) of each parameter for the proposed distributions have a value
close to the true parameter when sample sizes are large. For the PCI for the parameters of the proposed distributions,
the width values between the upper and lower limits become smaller as the sample size increases.

Table 1: The 95%PCI for parameters of the proposed distributions and its MLEs.

n =25 n =50 n = 100 n = 500
Dist. Par. 95% PCls MLEs 95% PCI MLEs 95% PCI MLEs 95% PCI MLEs
UGa =1 (0.789,1.599) 1.007 (0.846,1.438) 1.063 (0.920,1.277) 1.077 (0.931,1.092)  1.067
UGa-B o =0.5 (0.080,6.852)  0.334 (0.108,6.174)  0.334 (0.198,3.679)  0.547 (0.287,1.815)  0.579
=1 (0.127,4.215)  0.545 (0.222,4.470)  0.860 (0.264,2.371)  0.681 (0.559,1.697)  0.980
a=3 (0.475,17.62)  6.658 (0.252,11.34)  3.863 (0.478,7.379) 3.169 (0.903,5.338)  2.735
b=3 (1.887,13.01)  4.479 (1.270,6.334)  2.642 (1.680,5.197)  2.703 (2.476,4.266) 3.124
UGa-W  a=0.5 (0.047,1.243)  0.334 (0.092,2.856)  0.334 (0.137,1.290)  0.471 (0.363,0.959)  0.576
0=1 (0.171,13.33) 1.407 (0.132,9.249) 1.099 (0.176,7.396)  0.807 (0.376,2.092)  0.853
k=3 (1.397,20.56) 3.562 (0.957,15.48)  2.296 (1.215,13.53) 3.357 (1.619,4.779)  2.866
A=15 (0.557,2.068) 1.400 (0.375,2.962) 1.442 (0.523,2.421) 1.634 (0.850,1.989)  1.519
UGa-N «a=0.5 (0.001,11.51)  0.458 (0.001,7.694)  0.458 (0.004,5.895)  0.681 (0.040,1.829)  0.434
=1 (0.218,9.671) 1.854 (0.366,7.998) 1.180 (0.247,6.724) 1.522 (0.556,5.045)  1.842
nw=3 (-1.376,5.379)  2.494 (-1.327,5.311)  3.388 (-1.117,5.450)  2.332 (0.245,4.502)  2.453
oc=3 (0.066,1.981)  0.983 (0.076,1.992)  0.784 (0.118,1.852) 1.158 (0.346,1.441)  0.947
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7. Empirical illustration

In this section, we discussed eight different datasets for produced by this model. A real data is provided to illustrate
the theoretical results. We shall analyze two real data applications in order to illustrate the proposed distributions of
the UGa and UGa-B distributions (Data I and II). In addition, examples of four data applications are employed to
show the proposed distributions of the UGa-W and UGa-N distributions (Data III to Data VIII). Statistics of these data
are provided in Table 2. For each distribution, we estimated the unknown parameters using the ML method. For the
comparison of the distributions, the goodness of fit criteria used is values of the Kolmogorov-Smirnov (KS) statistic
and the corresponding p-values.

Table 2: Summary Statistics of the real datasets.

Data sets n Min. 1st Qu. Median Mean 3rd Qu. Max. Variance Skewness Kurtosis

I 58 0.0100 0.0925 0.3450 0.3891 0.6775 0.9900  0.0987 0.3435 1.6568
II 48 0.0903 0.1623 0.1989 0.2181 0.2627 0.4641  0.0070 1.1693 4.1098
I 108  1.041 3.251 5.192 5.758 7.522 16.498 10.59 0.8655 4.1439
v 98 18.60  47.85 65.05 67.73 8290 16550 714.38 0.8655 4.1439
v 101 70.0 120.0 133.0 133.7 146.0 212.0  499.78 0.3305 4.0528
VI 69 1312  2.098 2478 2451 2.773 3.585 0.2452 -0.0282 2.9407
VIl 119 1.680  3.850 4.380 4.325 5.000 6.810 1.0373 -0.4167 3.0935
VIII 40 1.600  5.075 6.500 6.253 7.825 9.000 3.8241 -0.6626 2.6410

7.1. Some real data sets on interval value (0,1)

The first data (Data I) consists of the first 58 observations of the failure time of the Kevlar 49/epoxy strands test at
90% stress level. This data set is obtained from Andrews and Herzberg (2012). The second data set (Data II) refers to
the shape perimeter by squared (area) from measurements on petroleum rock samples obtained from Cordeiro and dos
Santos Brito (2012). The 48 rock samples were collected from a petroleum reservoir. From these results in Table 3,
we can see that UGa-G distribution provide smallest KS values and highest p-value as compare to other distributions.
This indicate that the proposed UGa-B model provides better fit to the concerned data than the other distributions (Beta
and UGa-B distributions).

Table 3: The parameter estimates and some statistics of the model fitting to the real data on interval value (0,1).

Datal Data II

Statistics Beta UGa UGa-B Beta UGa UGa-B

MLEs 4 =0.6776 0=0.1235 & =2.7812 a=59417 0=03527 & =0.1530
b =1.0412 6 =2.134 b =121.2055 6=0.129

a =0.0827 a=17.4237
b =0.8037 b =10.2876

KS test 0.1038 0.3929 0.0865 0.1428 0.2848 0.0800

(p-value)  0.5596 0.0000 0.7784 0.2820 0.0008 0.9184
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7.2. Right-skewed data set

The third data set (Data III) represents COVID-19 mortality rate data belonging to Mexico of 108 days (n = 108),
it is recorded from 4 March to 20 July 2020, which is discussed by Almongy et al. (2021). This data is the rough
mortality rate (X) of 108 observations. The fourth data set (Data IV), the brake pad lifetime (X)) for each car, only
cars that still had the initial pads, is selected from a random sample of 98 vehicles (n = 98) sold over the preceding
12 months to a group of dealers (see Lawless 2003; Arshad et al., 2021. From these results in Table 4, we can see that
the UGa-W distribution provides the smallest KS values and the highest p-value as compared to other distributions
(UGa-W, UGa-N, Weibull, and normal, respectively). This indicates that the proposed UGa-W model provides a better
fit to the concerned data than the other distributions.

Table 4: The parameter estimates and some statistics of model fitting for examples of right-skewed data.

Data III Data IV
Estimator ~ Weibull UGa-W  Normal UGa-N Weibull UGa-W  Normal UGa-N
& - 0.2804 - 24124 - 0.0124 - 0.8272
6 - 0.9777 - 0.4883 - 330.65 - 7.4391
k 1.8968 3.1642 - - 2.6837 1.4319 - -
A 6.5209 10.835 - - 76.197 41.548 - -
I - - 5.7581 3.2246 - - 67.730 15.089
o - - 3.2391 5.7225 - - 26.591 41.597
KS statistic ~ 0.0736 0.0494 0.0999 0.0700 0.0649 0.0415 0.0759 0.0583

(p-value)  (0.6028) (0.9545) (0.2315) (0.6656) (0.8042) (0.9959) (0.6253) (0.8927)

7.3. Symmetric data set

The fifth data set consists of 101 observations (n = 101), which is the fatigue life (X) of 6061-T6 aluminum coupons
cut parallel to the direction of rolling and oscillated at 18 cycles per second. This data is presented by Birnbaum and
Saunders (1969 see Arshad et al., 2021). The sixth data set represents the tensile strength (X'), measured in GPa, of 69
carbon fibers tested under tension at gauge lengths of 20 mm taken from Bader and Priest (1982; see Aderoju, 2021).
From these results in Table 5, we can see that UGa-N and normal distributions provide smallest KS values and highest
p-value as compare to other distributions (UGa-W, UGa-N, Weibull, and normal respectively) for Data V and Data VI,
respectively.

7.4. Left-skewed data set

The seventh data set presents the fracture toughness (X)) of material Alumina (AI203) of 119 observations, which were
discussed by Nadarajah and Kotz (2007). The eighth data set, which follows the skewed left lifetime data discussed
by Xu et al. (2003), represents the time (X) to failure (103h) of the turbocharger of one type of engine. From these
results in Table 6, we can see that the UGa-W distribution provides the smallest KS values and the highest p-value as
compared to other distributions. This indicates that the proposed UGa-W model provides a better fit to the concerned
data than the other distributions.

8. Conclusion

The unit-Garima (UGa) distribution is proposed for analysing proportion data. Its properties are investigated, such as
survival and hazard functions, order statistics, quantile function, and stress-strength reliability measures. A new family
of continuous distributions, called the unit Garima-generated (UGa-G) family of distributions, is also included. The
UGa-G family of distributions is the feature that uses the UGa distribution as the main generator, as is the concept of
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Figure 5: Plots of the empirical data and the estimated pdf of each distribution, and the probability plot of the best

model for Data I and Data II.

(a) Plots of the estimated pdf of distributions for Data Il

o
& -
o — UGa-W|
Weibull
UGa-N
© | - =+ Normal
S
= ©
5 2
o o
0
8 |
S
8 J Bl e
< T T T 1
0 5 10 15
X
(c) Plots of the estimated pdf of distributions for Data IV
8 _
S — UGa-W|
Weibull
- <+ UGa-N
- = Normal
o
&
S
S
B -
2
o
S -
c Y
J R
] ﬁ‘&
S (m
g
o T T T 1
0 50 100 150

Empirical cumulative distribution

Empirical cumulative distribution

0.2 0.4 0.6 0.8 1.0

0.0

0.2 0.4 0.6 0.8 1.0

0.0

(b) The UGa-W probability plot for Data Il

62

T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Theoretical cumulative distribution

(d) The UGa-W probability plot for Data IV

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Theoretical cumulative distribution

Figure 6: Plots of the empirical data and the estimated pdf of each distribution, and the probability plot of the best

model for examples of right-skewed data.
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Figure 7: Plots of the empirical data and the estimated pdf of each distribution, and the probability plot of the best

model for examples of symmetric observations.
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Figure 8: Plots of the empirical data and the estimated pdf of each distribution, and the probability plot of the best
model for examples of left-skewed data.
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Table 5: The parameter estimates and some statistics of model fitting for examples of symmetric observations.

Data V Data VI

Estimator =~ Weibull UGa-W  Normal UGa-N Weibull UGa-W  Normal UGa-N
& - 0.1025 - 0.0070 - 0.1277 - 0.0213
0 - 45.771 - 507.07 - 11.544 - 33.221

k 6.0734 3.2037 - - 5.5048 4.3846 - -

A 143.17 107.50 - - 2.6509 2.4817 - -
I - - 133.73 104.39 - - 24513 2.6000
o - - 22.245 30.879 - - 0.4915 0.4480
KS statistic ~ 0.0991 0.0656 0.0679 0.0636 0.0562 0.0429 0.0376 0.0391

(p-value)  (0.2747) (0.7774) (0.7403) (0.8083) 0.9814)  (0.9996) (1.0000) (0.9999)

Table 6: The parameter estimates and some statistics of model fitting for examples of left-skewed data.

Data VII Data VIII
Estimator ~ Weibull UGa-W  Normal UGa-N Weibull UGa-W  Normal UGa-N
& - 0.0089 - 0.0046 - 0.0034 - 7.4397x107°
6 - 91.511 - 37.830 - 44.583 - 78.480
k 4.9649 5.5859 - - 3.8725 16.672 - -
A 47134 4.8848 - - 6.9200  8.5619 - -
i - - 4.3300 5.5400 - - 6.2525 9.5306
G - - 1.0142 0.5520 - - 1.9309 0.2114
KS statistic ~ 0.0720 0.0702 0.0885 0.0739 0.1077 0.0840 0.1063 0.1161

(p-value)  (0.5680) (0.6007) (0.3096) (0.5338) (0.7422)  (0.9403) (0.7571) (0.6540)

the T-X family of distributions. Sub-models, such as the UGa-Beta, UGa-Weibull, and UGa-normal distributions, are
introduced. We estimate the parameters in each distribution using the maximum likelihood method. A Monte Carlo
simulation, the MLEs and PCI for each parameter of the proposed distributions are provided. The results show that
the MLEs of each parameter for the proposed distributions have a value close to the true parameter when sample sizes
are large. Based on the confidence level of 95%, the PCI for the parameters of the proposed distributions, the width
values between the upper and lower limits become smaller as the sample size increases. Applications to eight practical
data sets (examples of left-skewed observations, right-skewed observations, and symmetric observations) are given to
demonstrate the usefulness of the proposed distributions. The results are: (i) The UGa-W distribution provides a better
fit to the concerned data than the other distributions (UGa-W, UGa-N, Weibull, and normal, respectively) for right-
skewed observations. (ii) The UGa-N and normal distributions provide the smallest KS values and highest p-values
as compared to other distributions (UGa-W, UGa-N, Weibull, and normal, respectively) for symmetric observations.
(iii) The UGa-W distribution provides a better fit to the concerned data than the other distributions for right-skewed
observations.
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