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∗Corresponding author
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Abstract

In quality engineering, process capability indices play a crucial role in assessing the capability of a given process.
Among the widely recognized indices are Cp, Cpk, Cpm, and Cpmk, all of which presuppose the normality of the
product lifetime. However, Maiti et al. (2010) proposed a more versatile process capability index, denoted as Cpyk,
which does not rely on distributional assumptions. The study is currently investigating statistical inferences for the
Cpyk index within the context of progressively type-II censored samples, marking the first exploration of this aspect in
the research. This paper investigates maximum likelihood and Bayesian inference for the Cpyk when the underlying
distribution follows the inverse Rayleigh distribution. Additionally, the study explores Bayesian credible intervals
and the highest posterior density intervals using the Markov Chain Monte Carlo procedure. Various types of bootstrap
confidence intervals are also taken into consideration. To assess the performance of these intervals, a Monte Carlo sim-
ulation is executed, comparing their coverage probabilities and mean lengths. The paper concludes with an illustrative
example utilizing real data, providing a practical application of the discussed methodologies.

Key Words: Bayesian Estimation; Bootstrap; Capability Index; Monte Carlo Simulation; Progressive Censoring;
Confidence Interval.

Mathematical Subject Classification: 60E05, 62E15, 62F10.

1. Introduction

The assessment of a manufacturing process’s capability and performance is frequently carried out through the use of
the process capability index (PCI). These indices are determined by distribution parameters, lower and upper specifi-
cation limits, and the target value. The noteworthy characteristic of PCIs is their dimensionless nature. In the industry,
various PCIs are employed, including Cp, Cpk, Cpm, and Cpmk. For further details, we refer to the work of Chan et al.
(1988), Hsiang (1985), Juran et al. (1974), Kane (1986), Pearn et al. (1992). It is noted that these indices are studied
under the normality assumption of the process. However, the normality assumption is violated in most manufacturing
processes, according to Gunter (1989). Recently, Maiti et al. (2010) suggested a generalized PCI Cpyk based on the
arbitrary distribution function. Furthermore, this index can be used in all continuous and discrete processes. Let X be
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a lifetime of products with cumulative distribution function (cdf) F. Then the Cpyk is defined as

Cpyk = min

{
F (U)− 1

2
1
2 − α2

,
1
2 − F (L)
1
2 − α1

}
, (1)

where F (L)+F (U) = 1, α1 = P (X < LDL) and α2 = P (X > UDL). In the α1 and α2, the LDL and UDL are
the desired lower and upper limits, respectively. It is noted that The limits LDL and UDL can be regarded as the lower
and upper tolerance limits, respectively. Specification limits (L,U ) represent externally imposed standards, whereas
lower and upper desirable limits (LDL,UDL) are internally established goals designed to enhance performance
or characteristics. Breaching specification limits could result in regulatory or customer-related repercussions while
deviating from desirable limits primarily pertains to internal objectives related to quality or efficiency. The Cpyk > 1
is interpreted as indicating a capable process. The Cpyk can detect the incapability of the process, i.e., the process is
not satisfactory from a capability point of view even though the process is in statistical control.

To draw statistical inferences, it is essential to gather data from the distribution of the lifetime. Given the extended
lifespan of high-tech products, censoring becomes inevitable in lifetime tests. Among the various censoring schemes,
progressive censoring is the most commonly employed. Suppose n identical units are subjected to a lifetime test.
Upon the observation of the ith failure Xr

i:m:n, where ri surviving units are randomly removed from the test (with
1 ≤ i ≤ m), a total of m failures are observed, and r1 + · · ·+ rm units are progressively censored. Consequently, we
have n = m + r1 + · · · + rm, and the order statistics Xr

1:m:n < Xr
2:m:n < · · · < Xr

m:m:n describe the progressively
censored type-II sample (PCS). Here, r = (r1, . . . , rm) represents the censoring scheme in progressive censoring.
For more detailed information on progressive censoring, refer to the book authored by Balakrishnan and Aggarwala
(2000).

In this paper, we discuss the Bayesian inference of Cpyk for the inverse Rayleigh (IR) distribution under progressive
censoring. The IR distribution is given by the probability density function (pdf) and cdf

f (x) =
2θ

x3
exp

(
− θ

x2

)
, x > 0, (2)

and

F (x) = exp

(
− θ

x2

)
, (3)

respectively, where θ > 0 is a scale parameter. Lately, the IR distribution is being made quite attractive. The IR
holds significance as a notable model in the field of reliability studies and finds widespread application in reliability
and survival analysis. The latest reference can be found in Dey (2012), Sindhu et al. (2013), Zaki and Jabir (2015),
Athirakrishnan and Abdul-Sathar (2022), Kumar and Kumari (2023), Kumar and Gupta (2023).

By substituting Eq. (3) into Eq. (1), the generalized PCI for the IR distribution is written by

Cpyk = Cpyk (θ) = min

{
exp

(
− θ
U2

)
− 1

2
1
2 − α2

,
1
2 − exp

(
− θ
L2

)
1
2 − α1

}
. (4)

By reviewing the literature, we observe that there are several studies on statistical inference for Cpyk in various
distributions. Please refer to Gedik Balay (2021), Dey and Saha (2019), Dey et al. (2018), and Kumar et al. (2022) for
more details. However, statistical inferences for the Cpyk index is being examined for the first time in this study under
progressive type-II censored samples.

In this paper, we examine progressively Type-II censored samples from the IR distribution, discussing the inference on
the capability index Cpyk. The rest of the paper is organized as follows: Section 2 considers the maximum likelihood
estimation. Section 3 discusses Bayes estimation for the index Cpyk under three different loss functions. Additionally,
credible (Cr) and highest posterior density (HPD) intervals are outlined. Section 4 covers the discussion of the boot-
strap confidence interval (CI) procedure with four methods. Section 5 presents a simulation study aimed at observing
the risks of Bayes estimates of the index Cpyk. The simulation also evaluates the coverage probability (CP) and mean
length (ML) of all constructed intervals. In Section 6, a numerical example illustrates the discussed methodologies in
the paper. Finally, Section 7 concludes the paper with some closing remarks.
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2. Maximum likelihood estimation

Let Xr
1:m:n < Xr

2:m:n < · · · < Xr
m:m:n be progressive type-II censored data from the IR distribution with pdf (2),

then the log-likelihood function is given by

` (θ|x) ∝ m log (θ)− θ
m∑
i=1

x−2i +

m∑
i=1

ri log

{
1− exp

(
− θ

x2i

)}
. (5)

Then the likelihood equation is found to be

d` (θ|x)

dθ
=
m

θ
−

m∑
i=1

x−2i +

m∑
i=1

ri exp

(
− θ

x2i

){
x2i

(
1− exp

(
− θ

x2i

))}−1
= 0, (6)

where xi is the realization of Xr
i:m:n, i = 1, 2, . . . ,m and x = (x1, x2, . . . , xm) . The maximum likelihood estimate

(MLE) of θ is given by
θ̂ = arg max

θ
` (θ|x) .

The Eq. (6) does not allow for an explicit solution. A numerical method can be used to attain MLE (See, Ma and Gui
(2019)). According to the invariance principle for MLE, by substituting the θ̂ into Eq. (1), we obtain the MLE of the
Cpyk as follows:

Ĉpyk = min

exp
(
− θ̂
U2

)
− 1

2

1
2 − α2

,

1
2 − exp

(
− θ̂
L2

)
1
2 − α1

 . (7)

The asymptotic variance of θ̂ can be estimated by

V̂ ar
(
θ̂
)

= I−1 (θ)
∣∣
θ=θ̂

, (8)

where I (θ) is observed Fisher Information which is provided by the negatives of the second derivatives of ` (θ|x).
Using Eq. (4) and Eq. (8) with the well-known delta rule, an estimator of asymptotic variance of the Ĉpyk can be
written as

V̂ ar
(
Ĉpyk

)
=

(
d

dθ
Cpyk

)2

I−1 (θ)

∣∣∣∣∣
θ=θ̂

.

Now, an approximate 100 (1− α) % CI (ACI) of Cpyk is given by(
Ĉpyk −

√
V̂ ar

(
Ĉpyk

)
z1−α/2, Ĉpyk +

√
V̂ ar

(
Ĉpyk

)
z1−α/2

)
,

where za is the a-th quantile of the standard normal distribution. We refer to Lehmann (1999) for information on the
asymptotic distribution of MLE and the delta rule.

3. Bayesian estimation

Let Xr
1:m:n < Xr

2:m:n < · · · < Xr
m:m:n be a PCS from the IR distribution with cdf (3) and suppose that the unknown

parameter θ is a continuous random variable. Let θ̂ denote the estimator of this parameter. Three loss functions

are considered in the Bayesian analysis. These are L1

(
θ̂, θ
)

=
(
θ̂ − θ

)2
, L2

(
θ̂, θ
)

=
∣∣∣θ̂ − θ∣∣∣ and L3

(
θ̂, θ
)

=

1 − δ
(
θ̂ − θ

)
, where δ denotes the Dirac delta function. Let θ has Gamma(λ, φ) prior distribution with mean λ/φ,
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where λ and φ are shape and scale parameters, respectively. Then, the log-posterior distribution is given by

π (θ|x) ∝ ` (θ|x) + log (π (θ))

= m log (θ) + θ

m∑
i=1

x−2i +

m∑
i=1

ri log

{
1− exp

(
− θ

x2i

)}
+ (λ− 1) log (θ) + λ log (φ)− log (Γ (λ))− φθ, (9)

where π (θ) is prior pdf. Under the loss functions L1, L2 and L3, the Bayes estimates of θ are given, respectively, by
the mean, median, and mode of posterior in (9). The Metropolis-Hastings algorithm can be used to get these Bayes
estimates, the Cr and HPD intervals. The steps for the Metropolis-Hastings algorithm are given below:

Algorithm 1.
Step 1: Set i = 1 and the initial value θ(0),
Step 2: Using the Metropolis-Hastings algorithm, generate θ from π

(
θ(i−1)|x

)
with the normal distribution with

mean θ(i−1) and variance S2
θ as a proposal distribution, where S2

θ is inverse of the observed Fisher information,
Step 3: Set i = i+ 1;
Step 4: To produce the Monte Carlo Markov Chain (MCMC) sample of size M + N : θ(0), θ(1), . . . , θ(M+N−1),
repeat Steps 3 and 4 M +N times.
Step 5: First M elements of MCMC sample are burned and the our useful sample is θ(M+1), θ(M+2), . . . , θ(M+N).
We call the sample θ1, θ2, . . . , θN for abbreviation. Under loss functions L1, L2, the approximate Bayes estimates of
Cpyk based on chain C1

pyk, C
2
pyk, . . . , C

N
pyk can be calculated as

Cpyk =
1

N

N∑
i=1

Cipyk,

C̃pyk = med
(
C1
pyk, C

2
pyk, . . . , C

N
pyk

)
,

where Cipyk = Cpyk (θi) , i = 1, 2, . . . , N , Cpyk (·) is defined as in Eq. (1) and med(·) is the sample median.
Under loss functions L3, the approximate bayes estimate of Cpyk is defined by

C̆pyk = arg max
θ

(π (θ|x)) .

The C̆pyk can be achieved by any optimization algorithm such as Nelder-Mead or BFGS which are available in R
function optim.
It is noted that the credible and HPD intervals can also easily be obtained based on MCMC sample θ1, θ2, . . . , θN .
Based on ordered chain C(1)

pyk < C
(2)
pyk < . . . < C

(N)
pyk , a 100 (1− α) % symmetric Cr interval for Cpyk is(

C
(bNα/2c)
pyk , C

(bN(1−α/2)c)
pyk

)
,

where bac is the floor function of a. To construct the HPD interval, one can utilize the Monte Carlo procedures
introduced by Chen and Shao (1999). For a straightforward application of this procedure, we recommend consulting
the work of Pasha-Zanoosi et al. (2022). The HPD interval using the Monte Carlo procedure is as follows: First,(

C
(bN∗(1−α)c+h)
pyk , C

(h)
pyk

)
, 1 ≤ h ≤ bN∗ (1− α)c ,

intervals are computed. Then the 100(1−α)% HPD intervals for Cpyk is obtained as(
C

(bN∗(1−α)c+h∗)
pyk , C

(h∗)
pyk

)
,

where
h∗ = arg min

1≤h≤N∗(1−α)

(
C

(bN∗(1−α)c+h)
pyk − C(h)

pyk

)
.
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4. Bootstrap CIs for Cpyk

In tandem with the advancement of computer technology, bootstrap-type Confidence Intervals (CIs) are gaining pop-
ularity. The appeal of bootstrapping lies in its independence from theoretical results. Notable variations of bootstrap
intervals include the normal bootstrap (NB), percentile bootstrap (PB), basic bootstrap (BB), and bias-corrected per-
centile bootstrap (BCa). The bootstrap method presents itself as an alternative to the approach outlined in the preceding
section for constructing an approximate CI for Cpyk. Bootstrap CIs have found application in estimating diverse PCIs;
for further details, we refer to Rao et al. (2016), Franklin and Gary (1991), and Dey et al. (2018). The parametric
bootstrap sampling on a PCS is given by the following algorithm:

Algorithm 2 A1. Consider a PCS from an IR distribution, denoted as Xr
1:m:n < Xr

2:m:n < · · · < Xr
m:m:n. Obtain the

MLE of the parameter θ based on this sample, denoted as θ̂.

A2. Calculate the MLE of Cpyk by Ĉpyk = Cpyk

(
θ̂
)

.

A3. Generate the PCS X∗1:m:n < X∗2:m:n < · · · < X∗m:m:n from the IR distribution with parameter θ̂.

A4. Obtain the MLE of Cpyk based on the bootstrap sample X∗1:m:n < X∗2:m:n < · · · < X∗m:m:n and denote it by
Ĉ∗pyk.

A5. Repeat Steps 2-4 B times, and obtain Ĉ∗pyk,1, Ĉ
∗
pyk,2, . . . , Ĉ

∗
pyk,B . These can be treated as a copy of Ĉ∗pyk.

In this section, four parametric bootstrap methods are provided to construct the bootstrap CIs for Cpyk. It is noted
that, the R function boot.ci gives all types of CIs. These methods are adapted from Ugarte et al. (2008) and described
below:

The (1− α)100% NB CI for Cpyk is calculated as

CI1−α
Normal

=

(
2Ĉpyk − Ĉ∗pyk − z1−α/2

√
V̂ ar

(
Ĉ∗pyk

)
, 2Ĉpyk − Ĉ∗pyk + z1−α/2

√
V̂ ar

(
Ĉ∗pyk

))
,

where zp is p-th quantile of standard normal distribution,

Ĉ∗pyk =
1

B

B∑
i=1

Ĉ∗pyk,i,

and

V̂ ar
(
Ĉ∗pyk

)
=

1

B − 1

B∑
i=1

(
Ĉ∗pyk,i − Ĉ∗pyk

)2
.

The (1− α)100% BB and PB CI for Cpyk are given, respectively, by

CI1−αBasic =
(

2Ĉpyk −QĈ∗
pyk

(1− α/2) , 2Ĉpyk −QĈ∗
pyk

(α/2)
)
,

and
CI1−αPercentile =

(
QĈ∗

pyk
(α/2) , QĈ∗

pyk
(1− α/2)

)
,

where QĈ∗
pyk

(p) is p-th sample quantile based on data Ĉ∗pyk,1, Ĉ
∗
pyk,2, . . . , Ĉ

∗
pyk,B .

In below, Algorithm 3 is provided to compute the (1− α)100% BCa bootstrap CI for Cpyk.

Algorithm 3
A1. Compute the bias factor:

z = Φ−1

(
1

B

B∑
i=1

I
{
Ĉ∗pyk,i < Ĉpyk

})
,

where Φ (·) is the cdf of standard normal distribution.

Statistical Inference on Process Capability Index Cpyk for Inverse Rayleigh Distribution under Progressive Censoring 41



Pak.j.stat.oper.res. Vol.20 No. 1 2024 pp 37-47 DOI: http://dx.doi.org/10.18187/pjsor.v20i1.4296

A2. Next, compute the skewness correction factor:

a =

n∑
i=1

(
Ĉpyk(−i) − Ĉpyk(−i)

)3
6

[
n∑
i=1

(
Ĉpyk(−i) − Ĉpyk(−i)

)2]3/2 ,

where Ĉpyk(−i) is the value of Ĉpyk when the ith value is deleted from the sample of n values and

Ĉpyk(−i) =
1

n

n∑
i=1

Ĉpyk(−i).

A3. Using z and a, compute

α1 = Φ

[
z +

z + zα/2

1− a
(
z + zα/2

)] and α2 = Φ

[
z +

z + z1−α/2

1− a
(
z + z1−α/2

)] .

A4. The (1− α)100% BCa CI for Cpyk is given by

CI1−αBCa =
(
QĈ∗

pyk
(α1) , QĈ∗

pyk
(α2)

)
,

where QĈ∗
pyk

(p) is p-th sample quantile based on data Ĉ∗pyk,1, Ĉ
∗
pyk,2, . . . , Ĉ

∗
pyk,B .

5. Simulation Study

In the simulation study, 1000 trials are performed. The prior distribution is fixed as the Gamma distribution with shape
parameter λ = 2 and scale parameter φ = 0.5. Different 18 censoring schemes are considered. In the bootstrap
sampling re-sample size is fixed B = 1000. The nominal level is fixed at 0.95 for the CIs. The MCMC method with
the Metropolis-Hasting algorithm is used to get the Bayes estimates. 10000 iteration is used for the chain and the first
1000 samples are removed from the chain to give the Markov Chain time to reach its equilibrium distribution. From
a Bayesian point of view, the simulated risks of MLE and Bayes estimates are given in Table 1 under different loss
functions. The simulated CPs and MLs are presented in Table 2 and Table 3, respectively.
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Table 1: Estimated risks of the estimators of Cpyk
Schemes Cpyk C̃pyk C̆pyk Ĉpyk(
010
)

0.0273 0.0233 0.0217 0.0389(
110
)

0.0170 0.0154 0.0161 0.0217(
5, 08, 5

)
0.0177 0.0159 0.0163 0.0219(

5, 5, 08
)

0.0187 0.0163 0.0166 0.0228(
08, 5, 5

)
0.0149 0.0134 0.0145 0.0182(

04, 5, 5, 04
)

0.0159 0.0143 0.0150 0.0195(
020
)

0.0163 0.0149 0.0154 0.0205(
120
)

0.0092 0.0087 0.0096 0.0108(
10, 018, 10

)
0.0103 0.0097 0.0102 0.0120(

10, 10, 018
)

0.0122 0.0114 0.0123 0.0147(
018, 10, 10

)
0.0083 0.0079 0.0086 0.0098(

09, 10, 10, 09
)

0.0082 0.0077 0.0085 0.0096(
050
)

0.0067 0.0065 0.0072 0.0078(
150
)

0.0044 0.0044 0.0047 0.0050(
25, 048, 25

)
0.0044 0.0044 0.0049 0.0051(

25, 25, 048
)

0.0057 0.0056 0.0063 0.0066(
048, 25, 25

)
0.0038 0.0038 0.0042 0.0044(

024, 25, 25, 024
)

0.0037 0.0037 0.0041 0.0043

Table 2: CPs of CIs of the Cpyk
Schemes NB BB PB BCa HPD Cr ACI(
010
)

0.9610 0.8990 0.9210 0.9480 0.9800 0.9270 0.9580(
110
)

0.9450 0.9270 0.9380 0.9490 0.9780 0.9280 0.9440(
5, 08, 5

)
0.9460 0.9050 0.9530 0.9480 0.9800 0.9500 0.9440(

5, 5, 08
)

0.9420 0.9130 0.9400 0.9440 0.9850 0.9340 0.9450(
08, 5, 5

)
0.9540 0.9140 0.9340 0.9270 0.9820 0.9450 0.9470(

04, 5, 5, 04
)

0.9700 0.9250 0.9440 0.9640 0.9840 0.9380 0.9670(
020
)

0.9510 0.9240 0.9340 0.9440 0.9730 0.9360 0.9450(
120
)

0.9490 0.9320 0.9450 0.9540 0.9730 0.9350 0.9450(
10, 018, 10

)
0.9560 0.9400 0.9410 0.9360 0.9790 0.9460 0.9530(

10, 10, 018
)

0.9460 0.9350 0.9460 0.9460 0.9710 0.9260 0.9450(
018, 10, 10

)
0.9450 0.9310 0.9460 0.9410 0.9770 0.9470 0.9430(

09, 10, 10, 09
)

0.9630 0.9410 0.9350 0.9660 0.9810 0.9420 0.9560(
050
)

0.9600 0.9470 0.9320 0.9400 0.9800 0.9540 0.9520(
150
)

0.9560 0.9480 0.9500 0.9550 0.9550 0.9420 0.9530(
25, 048, 25

)
0.9550 0.9460 0.9510 0.9480 0.9670 0.9600 0.9540(

25, 25, 048
)

0.9500 0.9360 0.9500 0.9490 0.9680 0.9430 0.9490(
048, 25, 25

)
0.9620 0.9520 0.9460 0.9440 0.9620 0.9470 0.9590(

024, 25, 25, 024
)

0.9500 0.9500 0.9350 0.9440 0.9710 0.9560 0.9400
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Table 3: MLs of CIs of the of Cpyk
Schemes NB BB PB BCa HPD Cr ACI(
010
)

0.5613 0.5583 0.5583 0.5000 0.5196 0.5668 0.5088(
110
)

0.3886 0.3878 0.3878 0.3634 0.4184 0.4546 0.3661(
5, 08, 5

)
0.4008 0.3995 0.3995 0.4101 0.4324 0.4695 0.3782(

5, 5, 08
)

0.4258 0.4249 0.4249 0.3983 0.4450 0.4841 0.4035(
08, 5, 5

)
0.3755 0.3753 0.3753 0.3856 0.4088 0.4437 0.3532(

04, 5, 5, 04
)

0.3870 0.3865 0.3865 0.3610 0.4150 0.4503 0.3642(
020
)

0.3722 0.3715 0.3715 0.3483 0.4083 0.4419 0.3488(
120
)

0.2652 0.2652 0.2652 0.2570 0.3231 0.3480 0.2569(
10, 018, 10

)
0.2796 0.2798 0.2798 0.2831 0.3351 0.3612 0.2714(

10, 10, 018
)

0.3020 0.3022 0.3022 0.2923 0.3557 0.3839 0.2949(
018, 10, 10

)
0.2543 0.2542 0.2542 0.2571 0.3134 0.3369 0.2460(

09, 10, 10, 09
)

0.2620 0.2619 0.2619 0.2532 0.3160 0.3414 0.2539(
050
)

0.2240 0.2243 0.2243 0.2183 0.2828 0.3035 0.2184(
150
)

0.1628 0.1634 0.1634 0.1610 0.2293 0.2423 0.1603(
25, 048, 25

)
0.1739 0.1742 0.1742 0.1748 0.2360 0.2511 0.1717(

25, 25, 048
)

0.1949 0.1953 0.1953 0.1926 0.2600 0.2773 0.1926(
048, 25, 25

)
0.1567 0.1572 0.1572 0.1576 0.2197 0.2319 0.1547(

024, 25, 25, 024
)

0.1618 0.1622 0.1622 0.1601 0.2229 0.2362 0.1595

According to simulation results given in Tables 1-3, some concluding remarks are given as follows:

1. All CIs are nearly at the nominal level 1− α = 0.95.

2. For small sample sizes, the CIs of bootstrap methods slightly fall below the nominal level. However, for moder-
ate sample sizes, the CIs tend to converge to the nominal level.

3. The MLs of CIs decrease to zero as the sample size increases in all cases.

4. All risks decrease to zero as the sample size increases in all cases.

5. In small sample cases, the Bayes estimate with loss function L2 exhibits better risk than other estimators. As
the sample size increases, the performance of MLE and Bayes estimates becomes equivalent.

6. HPD intervals demonstrate better CP and ML than the Cr intervals.

7. The Bias-corrected and accelerated (BCa) Bootstrap CIs outperform other Bootstrap CIs in terms of CPs and
compete with the ACI. Both the ACI and BCa Bootstrap CIs exhibit the same CPs and MLs for all discussed
censoring schemes.

6. An Application

In this section, a real data analysis is conducted to evaluate the performance of the proposed confidence intervals.
The data consists of the failure times of 20 mechanical components reported by Murthy et al. (2004). The complete
data are: 0.067, 0.068, 0.076, 0.081, 0.084, 0.085, 0.085, 0.086, 0.089, 0.098, 0.098, 0.114, 0.114, 0.115, 0.121,
0.125, 0.131, 0.149, 0.160, and 0.485. The p-value for the Kolmogorov-Smirnov test for the IR distribution on this
data is 0.1159>0.05 and we conclude that the IR distribution fits this data. According to Akdoğan (2022), it is
considered desirable for a failure to occur between times t1 and t2 from the manufacturer’s perspective. In this
context, the Cpyk index will be utilized for lifetime data in this example. To apply the results obtained through
progressive type censoring, a synthetic PCS is generated from the complete data as shown below with censoring
scheme r = (5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) : 0.067, 0.076, 0.081, 0.084, 0.085, 0.086, 0.089, 0.098, 0.098, 0.114,
0.115, 0.125, 0.131, 0.149, 0.160. In real data analysis, the lower and upper specification limits (L = 0.0574 and
U = 0.4387, respectively) and lower and upper tolerance limits (LDL = 0.0721 and UDL = 0.3061, respectively)
are determined based on the selected values F (L) = 0.05, F (U) = 0.95, α1 = 0.15, and α2 = 0.10 to create
a scenario suitable. This is done to configure a scenario that ensures the process is capable. Based on PCS data,
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Figure 1: Trace plot of MCMC sample and kernel estimate of the posterior pdf
the Ĉpyk, Cpyk, C̃pyk and C̆pyk found to be 1.1250, 1.1080, 1.1151, and 1.1250. A trace plot of the MCMC sample
and density estimate of the posterior pdf are given in Figure 1, and it is satisfactory for Bayes estimation. Note
that in Bayes estimation, 10000 MCMC sample is generated, and the first 1000 the sample is removed as burn-in.
Uniform(Improper) prior is used in the analysis. The Bootstrap CIs, ACI, HPD, and Cr CI are given in Table 4.

Table 4: CIs of Cpyk based on real data

Methods CIs
NB (1.064, 1.221)
BB (1.099, 1.258)
PB (0.992, 1.151)
BCa (1.062, 1.152)
HPD (1.050, 1.151)
Cr (1.016, 1.149)
ACI (1.069, 1.180)

From Table 4, all intervals, except for PB, having a lower limit greater than one, it can be said that the process is under
control.
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7. Concluding Remark

The novelty of this study lies in the estimation of the Cpyk index for the first time under progressively Type-II cen-
sored samples. The point and interval estimation of Cpyk index deals with classical and Bayesian perspectives for IR
distribution. We hope that quality engineers will utilize the methods discussed in the paper. In subsequent studies, the
performances of the Tierney-Kadane and Lindley approximation for Bayesian estimation can be examined. Addition-
ally, uncorrected likelihood ratio confidence intervals can be proposed, and their performances can be compared with
the methods presented in this paper.

References
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