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Abstract
In this paper, we present a graphical method for selection of a good model among the several competitive
models for the same data set. The proposed method not only selects the model but also tests the equal
prediction accuracy of the models. The results of the proposed method are compared with that of the model
selection using Friedman test.
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1. Introduction
Model selection among many competing models is one of the crucial jobs in regression
and time series analysis. Most of these criteria attempt to find the model for which the
predicted values tend to be closest to the true expected values, in some average sense. In
this paper, selection of the model among several models based on their out-of-sample
forecasting errors is discussed. The proposed method is a two step procedure. In first
step, we test the statistical significance of the models with the overall mean and in the
second step; we select a good model which has minimum measure of error. Section 2
presents various procedures of model selection. Section 3 presents a graphical method for
model selection. Section 4 presents an empirical study by considering the three models
with equal number of parameters. Section 5 presents the conclusion.

2. Methods for Model Selection
There are many proposed methods for model selection. Some of these techniques are
presented below.

Model Selection using R2

The use of coefficient of determination, 2R in model selection is a common practice in
regression analysis and time series analysis. We have seen that maximizing 2R is not a
sensible criterion for selecting a model, because the most complicated model will have
the largest 2R value. This reflects that fact that 2R has an upward bias as an estimator of
the population value of 2R . This bias is small for large n but can be considerable with
small n or with many predictors. The major criticism of 2R is that due to the fact that the
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addition of an explanatory variable cannot cause this statistic to fall. In comparing
predictive power of different models, it is often more helpful to use adjusted 2R instead

of 2R . Adjusted 2R is given by 2
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estimated conditional error variance (i.e. the mean squared error) and
   1/22  nyysy is the sample variance of y. Unlike ordinary 2R , if an

explanatory variable is added to a model that is not especially useful, then 2
adjR may even

decrease. This happens when the new model has poorer predictive power, in the sense of
a larger value of the mean squared error. One possible criterion for selecting a model is to
choose the one having the greatest value of 2

adjR . This is, equivalently, selection of the
model with smallest mean squared error value.

Model Selection using Index of agreement (d)
The index of agreement(d) was proposed by Willmott (1981) to overcome the
insensitivity of 2R to differences in the observed and predicted means and variances .The
index of agreement represents the ratio of the mean square error and the potential error
(Willmot,1982) and is defined as
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The potential error in the denominator represents the largest value that the squared
difference of each pair can attain with the mean square error in the numerator. The range
of d is similar to that of 2R and lies between 0 (no agreement) and 1 (perfect agreement).
Select the model which has maximum index of agreement.

Model Selection using Measures of Error
One method for evaluating a forecasting technique uses the summation of the absolute
errors. The mean absolute error (MAE) measures forecast accuracy by averaging the
magnitudes of the forecast errors (i.e. absolute values of each error). MAE is most useful
when the analyst wants to measure forecast error in the same units as the original series.
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The mean squared error (MSE) is another method for evaluating a forecasting technique.
This approach penalizes large forecasting errors, since the errors are squared. This is
important because a technique that produces moderate errors may well be preferable to
one that usually has small errors but occasionally yields extremely large ones.
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And the root mean squared error (RMSE) is given as
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MAPE is a relative error statistic measured as average percent errors of the historical data
points and is most appropriate when the cost of the forecast error is more closely related
to the percentage error than the numerical size of the error. MAPE is computed as the
average of the absolute percentage error values.
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MAPE provides an indication of how large the forecast errors are in comparison to the
actual values of the series. A model is said to be good if the MAPE value is not greater
than five. Select the model which has minimum MAE, RMSE and MAPE values. (De
Gooijer and Hyndman, 2006).

Model Selection using Percentage Better Statistic

There are several commonly used types of scale-independent statistic. The first type
essentially relies on pair wise comparisons. If method A and method B, say, are tried on a
number of different series, then it is possible to count the number of series where method
A gives better forecasts than B (using any sensible measure of accuracy). Alternatively,
each method can be compared with a standard method, such as the random walk forecast
(where all forecasts equal the latest observation), and the number of times each method
outperforms the standard is counted. Then the percentage number of times a method is
better than a standard method can readily be found. This statistic is usually called
‘Percent Better’.

Let *
t

t
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er  denote the relative error, where *
te is the forecast error obtained from the

base method. Usually, the base method is a benchmark method or the naive method
where tŷ is equal to the last observation.
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100 where I(u)=1 if u is true and 0 otherwise.

We select the model which has maximum percentage better performance comparing to
other models. (De Gooijer and Hyndman, 2006).



Naveen Kumar Boiroju, M. Krishna Reddy

Pak.j.stat.oper.res. Vol.VIII No.4 2012 pp767-776770

Model Selection using AIC or SBC

An approach to model selection that considers both the model fit and the number of
parameters has been developed. The information criterion of Akaike or AIC, selects the
best model from a group of candidate models as the one that minimizes AIC =

p
n
2ˆln 2  where 2̂ is the residual variance, n is the number of residuals and p is the

number of parameters in the model.

The Bayesian information criterion developed by Schwartz or SBC, selects the model

that minimizes SBC = p
n
n )ln(ˆln 2  . The second term in both AIC and SBC is

penalty factor for including additional parameters in the model. Since the SBC criterion
imposes a greater penalty for the number of parameters than does the AIC criterion, use
of minimum SBC for model selection will result in a model whose number of parameters
in no greater than that chosen by AIC. Often, the two criteria produce the same result. We
select the model which has minimum of AIC and SBC values. (Akaike, 1974; Schwartz,
1978).

Model Selection using Friedman Statistic

Friedman’s test is used to compare the multiple forecasting models with respect to
squared errors or absolute errors and trying to infer whether there are significant general
differences in performance of the models. Friedman’s test is a nonparametric test which
is designed to detect differences among two or more groups. Friedman’s test, operating
on the sum of the ranks jR , considers the null hypothesis that all models are equivalent in

performance (have similar mean ranks). Under the null hypothesis, the following statistic:
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is approximately distributed as 2 with k-1 degrees of freedom and where k= number of
models, n= number of observations in each model. Null hypothesis of equal prediction
accuracy of the models is tested using Friedman test. If there is a significant difference
among the models, we select the model which has first rank. To discover the great winner
of all the competing models, the above procedure should be repeated by eliminating the
weakest model, to which the largest rank mostly assigned (AdilKorkmaz and Burak
Onemli, 2011).
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Model Selection using Principle of Parsimony

All things being equal, simple models are preferred to complex models. This is known as
the “principle of parsimony” with a limited amount of data; it is relatively easy to find a
model with a large number of parameters that fits the data well. However forecasts from
such a model are likely to be poor because much of the variation in the data due to
random error is modeled. The goal is to develop the simplest model that provides an
adequate description of the major features of the data. The principle of parsimony refers
to the preference for simple models over complex ones. (Chatfield, 1991).

3. A Graphical Method for Model Selection

In this section, we propose a graphical procedure using bootstrap method for the selection
of a good model among the several competitive models. The bootstrap has been the
object of much research in statistics since its introduction by Efron (1979). The bootstrap
is a method for estimating the distribution of an estimator or test statistic by resampling
one's data. It amounts to treating the data as if they were the population for the purpose of
evaluating the distribution of interest. Under mild regularity conditions, the bootstrap
yields an approximation to the distribution of an estimator or test statistic that is at least
as accurate as the approximation obtained from first-order asymptotic theory. (Efron and
Tibshirani, 1993).

Let the forecasting error ttt yye ˆ and let   mtkiegd itit ,,2,1;,,2,1,  
represent the tth error generated by the ith model, where m is the number of forecasts
generated by the ith model and  .g being some specified loss function, for example,
  eeg  or   2eeg  or   eeg  . And the mean of the error function of the ith model is
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4. The lower decision line (LDL) and the upper decision line (UDL) for the
comparison of each of the 2

is are given by:
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2md are the thm1 and thm2 order statistics respectively from the bootstrap
estimates *

bd , b=1, 2, …,B and [x] represents the integer part.

5. Plot id against the decision lines. If any one of the points plotted lies outside the

respective decision lines, null hypothesis of equal prediction performance of the
models is rejected at  level and we may conclude that the prediction
performance of the models is not same.

6. If any one of the points plotted above the UDL, then the corresponding models
are considered to be inefficient models and may be eliminated from the analysis.
If the points plotted below the LDL, then the corresponding models can be
considered as efficient models for prediction and we select the model which is
very close to the x-axis or zero. If the points falling in between the UDL and LDL
then the corresponding models can be treated as equally efficient in their
prediction accuracy.

This method not only tests the significant difference among the models but also identify
the source of heterogeneity of models. The proposed method depends only on the
supplied information and does not require any distributional assumptions.

4. Empirical Study

The following table presents the out-of-sample of size 28 and the forecasts generated
from the three adequate models A, B and C each having with estimated parameters p=2
(source: Naveen Kumar Boiroju, 2011). The following table presents the forecasts and
errors generated from the three models.
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Table 1: Out-of-sample data, forecasts and errors

Original Forecasts Errors

Yt AŶ BŶ CŶ Ae Be Ce

44.300 44.433 44.429 44.438 -0.133 -0.129 -0.138

44.340 44.360 44.360 44.369 -0.020 -0.020 -0.029

44.590 44.397 44.495 44.403 0.193 0.095 0.187

44.565 44.627 44.616 44.621 -0.062 -0.051 -0.056

44.780 44.604 44.693 44.599 0.176 0.087 0.181

44.690 44.805 44.790 44.791 -0.115 -0.100 -0.101

44.750 44.721 44.707 44.710 0.029 0.043 0.040

44.685 44.777 44.762 44.764 -0.092 -0.077 -0.079

44.800 44.716 44.702 44.706 0.084 0.098 0.094

44.910 44.824 44.839 44.809 0.086 0.071 0.101

45.075 44.928 44.981 44.910 0.147 0.094 0.165

45.085 45.085 45.068 45.063 0.000 0.017 0.022

44.980 45.094 45.077 45.072 -0.114 -0.097 -0.092

44.935 44.994 44.978 44.974 -0.059 -0.043 -0.039

45.265 44.951 45.135 45.033 0.314 0.130 0.232

45.255 45.267 45.251 45.242 -0.012 0.004 0.013

45.375 45.258 45.241 45.233 0.117 0.134 0.142

45.285 45.374 45.358 45.347 -0.089 -0.073 -0.062

45.210 45.287 45.270 45.261 -0.077 -0.060 -0.051

45.095 45.214 45.138 45.190 -0.119 -0.043 -0.095

45.025 45.104 45.087 45.082 -0.079 -0.062 -0.057

44.885 45.037 45.020 45.016 -0.152 -0.135 -0.131

44.945 44.904 44.888 44.887 0.041 0.057 0.058

44.855 44.961 44.944 44.942 -0.106 -0.089 -0.087

44.715 44.876 44.760 44.860 -0.161 -0.045 -0.145

44.740 44.744 44.730 44.733 -0.004 0.010 0.007

44.610 44.767 44.653 44.755 -0.157 -0.043 -0.145

44.730 44.646 44.734 44.639 0.084 -0.004 0.091
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We compute the error statistics for the three models and the results are presented below.

Table 2: Measures of Errors

Statistics
Model

A B C
R2 1.000 1.000 1.000
Adjusted R2 1.000 1.000 1.000
Index of agreement (d) 0.947 0.977 0.955
MAE 0.101 0.068 0.094
MSE 0.014 0.006 0.012
RMSE 0.120 0.078 0.110
MAPE 0.225 0.152 0.210
AIC -4.163 -5.021 -4.349
SBC -4.115 -4.974 -4.301

From the above table it is clear that the model B has maximum index of agreement and
minimum MAE, MSE, RMSE, MAPE, AIC and SBC values. Hence the model B is
selected among the models.

The results of percentage better statistics for the selected models are presented in the
following table.

Table 3: Percentage Better Performance of the Models

PB (%) Base Method
Model A B C

A - 21.43 46.43
B 78.57 - 64.29
C 53.57 35.71 -

From the above table, it is observed that the model A is 21.43% and 46.43% better than
the B and C models respectively. Model B is 78.57% and 64.29% better than the A and C
models respectively. Model C is 53.57% and 35.71% better than the A and B models
respectively.  Therefore the best suitable model for forecasting is model B and which has
maximum percentage better performance comparing to other models.

We apply the Freidman test considering the absolute errors of the models and their mean
ranks are 2.304, 1.589 and 2.107 for the models A, B and C respectively. The following
table shows the Freidman test statistic and its asymptotic significant probability.

Table 4: Friedman Test

Friedman Statistic  2
F Degrees of freedom P-value

7.694 2 0.021
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Since the p-value is less than 05.0 , therefore the null hypothesis of equal prediction
performance of the models is rejected and we may conclude that the prediction
performance of the models is not the same. Thus the model B is selected, since it has first
rank among the models.

We have considered the absolute errors of the three models and the mean values obtained
are 094.0and068.0,101.0  CBA ddd for the models A, B and C respectively. By
applying the bootstrap procedure explained in Section 2, the LDL, CDL and UDL are
obtained as 0.074, 0.088 and 0.102 respectively.  Prepare a chart as in Figure 1, with the
above decision lines and plot the points  CBAid i ,, . From the Figure 1, we observe
that Bd lie outside the decision lines. Hence, H0 may be rejected and it may be concluded
that the mean absolute errors of three forecasting models are not equal. From the same
figure it is observed that CA dd and lies within the LDL and UDL, it indicates that the
prediction performance of the models A and C is same. Since the Bd value lies below the
LDL, therefore the corresponding model B is selected and we may conclude that the
model B is an efficient model among the models.

Figure 1: Comparison of forecasting models

5. Conclusion
The proposed method being a graphical procedure simultaneously demonstrates the
statistical significance and identifies the source of heterogeneity without knowing the
underlying distribution of the errors. The proposed procedure depends on the prediction
performances that can be measured distances on out-of-sample data and this method can
be treated as an alternative test procedure to test the equal prediction accuracy of several
models. This proposed method classifies the available prediction models under three
categories as inefficient models, equally efficient models and efficient models. Finally
the proposed graphical method can be treated as a tool to test the equal prediction
accuracy of the models, to classify the models into inefficient, equally efficient and
efficient model categories and to choose an efficient model among the several models.
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