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Abstract

Herein, a modified weighting for combined forecasting methods is established. These weights are used to
adjust the correlation coefficient between the actual and predicted values from five individual forecasting models
based on their correlation coefficient values and ranking. Time-series datasets with three patterns (stationary, trend,
or both trend and seasonal) were analyzed by using the five individual forecasting models and three combined
forecasting methods: simple-average, Bates-Granger, and the proposed approach. The MAPE and RMSE results
indicate that the proposed method outperformed the others, especially when the time-series pattern was stationary
and improved the forecasting accuracy of the worst and best individual forecasting models by %37-35and %10-7,
respectively. Moreover, the proposed method showed improvements in MAPE and RMSE of around %20-18and

%11-9compared to the simple-average and Bates-Granger methods, respectively. In addition, the combined
forecasting methods outperformed the individual forecasting models when analyzing non-stationary data.
Remarkably, the performances of the proposed and Bates-Granger methods were almost the same, with
improvements in MAPE and RMSE in the range of %2—-10n average. Therefore, the proposed method for creating
weights based on the correlation coefficients of the individual forecasting models greatly improves combined
forecasting methods.

Key Words: Forecasting model, Combined forecasting method, Correlation coefficient, Model weighting

1. Introduction

In the past decades, many statisticians have risen to the challenge of improving forecasting accuracy, and yet
all these research efforts have merely led to the conclusion that no single forecasting method outperforms all of the
others in all situations (Li et al. 2005). One approach for improving forecast accuracy is combining forecasts from two
or more different forecasting models starting with the benchmark work of Bates and Granger (1969), who introduced
combinations of forecasts as a ubiquitous way of improving forecasting accuracy. Moreover, combining forecasts is
a very useful approach when selecting the most accurate forecasting method is difficult. For instance, Bunn (1989)
noted that this improves forecasting accuracy by utilizing multiple sources of information and computing resources
and defined this approach as “data-intensive forecasting”. Furthermore, many authors have indicated that combining
linear forecasts is generally more accurate than individual forecasts (Makridakis and Hibon 2000; Stock and Watson
2004; Patton and Sheppard 2009; Costantini and Pappalardo 2010; Martins and Werner 2012; Thaithanan and
Wongoutong 2020). According to Clemen (1989), many techniques have been developed to perform combining
forecasts. Nevertheless, until now, the results have been unanimous: combining forecasts leads to increased accuracy.
Likewise, Makridakis and Hibon (2000) conducted the M3-competition that involved forecasting 3003 time-series
datasets and concluded that the accuracy of the combined forecasts by using various methods outperforms the
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individual forecasting models being combined. Therefore, the combination of forecasting methods has become an
essential strategy that has been used in many applications (Makridakis et al. 2018).

Combining forecasts is associated with the performance consistency of their individual forecasting models,
and combining at least three individual forecasting models results in more accurate forecasting Armstrong (2001).
According to Yang (2004), the two main directions for combining forecasts are for adaptation and improvement: the
first targets the best individual performance among the pool of forecasting candidates while the aim of the second is
to significantly outperform each forecasting candidate. When combining the forecasts generated by two or more
individual forecasting models, it is vital to decide the weight assigned to each of them. The most popular among the
combined forecasting methods is the weighted linear combination where the weights assigned to the individual
forecasting models are either equal or decided according to some rigorous mathematical rule. Typical linear combined
forecasting methods are simple-average, trimmed-average, winsorized-average, median, error-based, outperformance,
variance-based pooling, etc. (Jose and Winkler 2008; Lemke and Gabrys 2010). The R package ForecastComb
provides 15 popular simple, regression-based, and eigenvector-based estimation methods for creating combined
forecasts.

Even though linear combination techniques are easy to understand and implement, they ignore the
relationship between the actual and forecasted values. Several researchers have suggested changing each individual
forecasting model's weight in the combination while checking for non-stability in the process (Deutsch et al. 1994;
Chan et al. 2004; Timmermann 2006). Assigning different weights using linear correlation in forecasting combinations
is a possible alternative (Martins and Werner 2012). Many researchers have worked on combining forecasting models
by using correlation. For example, Diebold (1988) considered serial correlation in a least-squares framework by
restricting the sum of the coefficients to 1. Likewise, Coulson and Robins (1993) included a lagged dependent variable
beyond the forecasting candidates by focusing on the specific case of combining two forecasts with the combination
error following a first-order autoregressive (AR(1)) process. They concluded that a parsimonious method for
incorporating the dynamics is achieved by using a lagged dependent variable but not lagged forecasts. Moreover,
Deutsch et al. (1994) created regime switches by using coefficients to weight the models.

However, only limited studies have endeavored to clarify the perspective of using correlation in forecasting
combinations, so there is a strong need for further developments in this area. To realize the current study, a literature
review was systematically performed with the goal being to list the methods for combining predictions and identify
existing methods using linear correlation coefficients in their structures. Hence, the focus of this study is on developing
weights by using linear combination techniques on five individual forecasting models (average, decomposition, Box-
Jenkins, artificial neural network, and support vector machine). In the proposed combined forecasting method, the
weighted linear combination of the individual forecasts is achieved by using a function of the correlation coefficient
and the rank order of the correlation coefficients between the forecasted and actual values as weights. Finally, the
performance of the proposed method was compared with the five individual forecasting models and the traditional
combined simple-average and Bates-Granger methods.

The rest of this paper is organized as follows. In Section 2, the data used in the study are presented, while
Section 3 provides the individual forecasting models, combination forecasting methods, and the proposed method
used in the study. The experimental study to compare the methods is described in Section 4. The results of the
experimental study and a discussion are given in Section 5. Finally, conclusions on the study are included in Section
6.

2. The data used in the study
Thirty real time-series datasets were used in this study to determine the performance of the proposed method.
This consisted of 10 datasets for each of three types of time-series patterns: stationary, trend, and trend and seasonality.
All of the datasets were obtained from the M3 competition conducted by Makridakis and Hibon (2000); they are freely
available and any researcher can use the data without requiring permission. Brief details of these datasets are reported
in Table 1, and time-series plots and autocorrelation plots for some of them are presented in Figure 1.
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Table 1. Details of the datasets used in the study.

Data M3 . . . Datas M3 . . .
Type set Competition Time Period Size ot Competition Time Period Size
Code Code
S1 N1449 (Q) 1990Q1-2007Q1 69 S6 N234 (Y) 1950-1993 44
> | S2 | N2126(M) | 1978M1-1998M12 | 144 | g7 N235 (Y) 1947-1993 47
é S3 N1453 (Q) 1990Q1-2007Q1 69 S8 N1426 (Q) 1990Q1-2007Q1 69
% S4 N1442 (Q) 1990Q1-2007Q1 69 S9 N1447 (Q) 1990Q1-2007Q1 69
S5 | N1472 (Q) 1990Q1-2007Q1 69 | S10 | N1987 (M) | 1979MI1-1990MIZ | 144
T1 N239 (Y) 1950-1993 44 T6 N1944 (M) | 1982M1-1993M12 | 144
T2 | N1882 (M) | 1981M12-1998M11 | 144 | T7 N1946 (M) | 1982M1-1993M12 | 144
S T3 N972 (Q) 1980Q1-1992Q4 52 T8 N1232 (Q) 1980Q1-1993Q1 | 53
" T4 N198 (Y) 1947-1993 47 T9 N2014 (M) | 1979M1-1990M12 | 144
T5 N993 Q) 1980Q1-1992Q4 52 | T10 N210 (Y) 1947-1987 41
TS1 N2789 (Q) 1890Q1-2003Q4 96 TS6 N756 (Q) 1984Q1-1994Q4 44
o 2| TS2 | N2784(Q) 1857Q1-1880Q4 96 | TS7 | N1890 (M) | 1982M1-1993M12 | 144
% é TS3 | N829(Q) 1984Q1-1994Q4 44 | TS8 | N2012 (M) | 1979M1-1990M12 | 144
—&| TS4 | N863(Q) 1977Q1-1992Q4 64 | TS9 | N2013 (M) | 1979M1-1990M12 | 144
TS5 | N93L(Q) 1966Q1-1977Q1 45 | TS10 | N2015(M) | 1979M1-1990M12 | 144

Note. The letter in parentheses in the M3 competition code indicates quarterly (Q), monthly (M), or yearly (YY) data
collection.

Time Series Plot of S1 Time Series Plot of T1 Time Series Plot of TS1
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Figure 1. Time-series plots (above) and the autocorrelation plots (below) of datasets (a) S1 (stationary), (b) T1
(trend), and (c) TS1 (trend and seasonality).
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3. Forecasting models

Finding a model that represents reality and predicts efficaciously is the main objective of forecasters, and
several forecasting methods have been developed using various approaches to achieve this. Assembling several
individual forecasting models to improve prediction is known as combined forecasting, which has been shown to
outperform forecasting by using the individual approaches in the majority of cases (De Menezes et al. 2000).
Armstrong (2001) claimed that the number of individual forecasting models to optimize combinatorial efficacy is five.
Therefore, in this study, three combined forecasting methods (including the proposed method) were created by using
five individual time-series forecasting models. The individual forecasting models and combined forecasting methods
briefly described in this section are available in the R statistical package.

3.1 Individual forecasting models
3.1.1 Averaging models
1) Simple moving average

The simplest model, the simple moving average, is effective when the time-series data are assumed to be
stable over time with no trend or seasonality (Svetunkov and Petropoulos 2018). Thus, the simple moving average
model can be used to forecast the next value(s) in a time series depending on the average over specified k periods of
the previous values for which each point is assigned an equal weight (1/k). The formula for this is

N R
Yo = E Z Yeois @)
i=1

where y; is an actual value, 9t is the forecast for period t, and k is the length of the simple moving average.

2) Double moving average

This approach is better for when there is a trend in a time-series dataset. A trend in the data means that the
observation values tend to either increase or decrease over time. The double moving average model requires
calculating the moving average and then calculating the second moving average using the first moving average values
as observations (Khairina et al. 2021). The formula used for forecasting in the period t+m of the double moving
average method is

Yoo =2 +HM.. )

1 K
- Z Y. is the first average value in period

The term @, = 2|\/|t —Mt' is the interception in period t, where M, = K
i=L

1 2
K 21: M,_; is the second average value in period t. The term b, = 1 (M, -M))
i=

denotes the trend value in period t.

3.1.2 Exponential smoothing models

Exponential smoothing is a class of time-series forecasting methods for univariate data in which current
values are given relatively more weight in forecasting than older observations. Exponentially decreasing weights are
explicitly used in exponential smoothing models (Brown 1956; and Holt 2004).

1) Single exponential smoothing

t, k is the order, and Mt' =

The simplest approach is single exponential smoothing for data that is stable over time without seasonality
or trends. The forecasting method in period t is formulated as

9t+1 = ayt + (1_ a) y’[ ) (3)
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where, yt 4+1 Is the forecast in period t+1, 9t is the forecast in period t, Y, is the actual value in period t, and & is

a smoothing parameter between 0 and 1.
2) Double exponential smoothing
This is similar to the single exponential smoothing method except that additional weighting is used to detect
trends in the data (Shastri et al. 2018). The forecasting method in period t+p is derived as follows:

Yep =L+ PT, @
where smoothing parameters « and [ are between 0 and 1. Meanwhile, level smoothing factor

trend smoothing factor and ~trepresents the estimated forecast value at time L, =aY, +(1-a)(L +T.,)

t.represents the value of the slope at time T, = ,B( L - LH) + (1_:8)th1

3) Triple exponential smoothing (Holt-Winters)

This method can handle a univariate time series with seasonality by simply finding the central value and
adding the effects of slope and seasonality (Brown 1956; Holt 2004; Winters 1960). There are two variations of the
Holt-Winters method depending on the nature of the seasonal component: additive or multiplicative (Montgomery et
al. 2008; Wongoutong 2021). Applying the additive Holt-Winters model when forecasting for period t+p can be
obtained as follows:

pr :(Ll +Ttp)+st—5+p’ ®)
where level smoothing factor L, = a(y, —S, ) + @—a)(L_; +T,,). trend smoothing factor

T =p(L -L ) +1-B)T.,, and seasonality smoothing factor S, = (¥, — L) + (1 =7)S.s.
The multiplicative Holt-Winters model for forecasting in period t+p can be obtained as follows:

yt+p = (L[ +Tt p)st—5+p' (6)
Yi

t-S

where level smoothing factor Lk =& +(1- 05)('—[_1 +Tt—l)’ trend smoothing factor

Y,
T = ﬁ('-‘ - L‘l) +(1—ﬁ)T1_1, and seasonality smoothing factor S = 7ﬁ+ @=7)S_L- In both models, S is the

seasonality length , Y refers to the actual value in time period t, and the values of smoothing parameters a, 8, and
y are set to between O and 1.

3.1.3 Decomposition model

The decomposition model is a popular forecasting method for time-series data containing trend and seasonal
patterns (Zhang et al. 2014). The main idea of this method is to analyze the four possible individual components in a
time series: trend, cycle, seasonality, and irregular (Montgomery et al. 2015). In the decomposition model, each
component’s strength is estimated separately and then substituted into the model to explain the behavior of the time

), where Yy, T, St, Ci, and I, are the time-series values (actual

series in a straightforward manneras Yy, = f(T,,S,,C,, I,

data) and the trend, seasonal, cycle, and irregular components for time period t, respectively. In general, the
decomposition model depends on whether the nature of the seasonal component is additive or multiplicative. The
respective mathematical expressions for the additive and multiplicative decomposition approaches are

y, =T +S +C +1l and y, =T xS xC x1 . @)
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3.1.4 The Box-Jenkins model

The strategy used in the Box-Jenkins model is to predict a time series by using past values. This method
begins with the assumption that the process that generated the time series can be approximated by using an
autoregressive moving average (ARMA) model if it is stationary or an autoregressive integrated moving average
(ARIMA) model if it is non-stationary (Box et al. 2015). The general ARIMA model is expressed as follows:

#p(B)0p(B*)(1-B)? (1-B*)Py; = 6,(B)O, (B, @®)

where d is the order of differencing, D is the order of seasonal differencing, and s is the number of seasons per year.
The operator polynomials are

#,(B) = (1-4B—...—4,BP), 6,(B) = (1-6B—...—6,B7), ®p(B°) =(1-®,B° —..— ®,B"),

Oq (B°) = (1-0,B° —..—0uB%), (1-B)y; = ¥; — Yr1.L-B*)¥; = % — Vs, and &, L N(0,5%).
The maximum values of d, D, p, g, P, and Q should be 2 (Box et al. 2015), and so these operator polynomials are
usually simple expressions.

The Box-Jenkins methodology consists of a four-step iterative procedure as follows:

1. Model identification: tentatively identify the appropriate Box-Jenkins model by using historical data by
analyzing plots of the autocorrelation function and partial autocorrelation function, and then determine the
appropriate model type for a specific situation by matching the observed correlations to the theoretical
correlations.

2. Parameter estimation: estimate their values based on the maximum likelihood or minimum least-squares
methods.
3. Diagnostic checking: use plots and statistical tests of the residual errors to determine the adequacy of the
model fitting, and if need be, consider alternative models.
4. Forecasting: use the appropriate model for forecasting.
3.1.5 The artificial neural network (ANN) model
In recent years, time-series models using machine learning based on ANN have become vital alternatives due
to their nonlinear modeling capability for data time-series forecasting (Lin and Lee 2013). The most popular ANN
architecture in the forecasting domain are the multilayer perceptron (MLP), a class of feedforward ANN, which is a
nonlinear autoregressive model. The nnetar function from the R package (2015) was used for fitting the ANN model
for the time-series data. This function creates feedforward neural networks with a single hidden layer using lagged
inputs for forecasting a univariate time series. A single layer of hidden units is enough to provide the desired accuracy
in most forecasting situations. The nodes are connected to those in the immediate next layer in each layer by acyclic
links (Zhang et al. 1998). The structure of a typical ANN with MLP architecture is shown in Figure 2, including a

feedforward structure of an input layer, one or more hidden layers, and an output layer.
Input Layer Hidden Layer Output Layer

Ve i :
v, Qutput
(D

Inputs to the network
- -
T | 8
u

Figure 2. A typical ANN structure.
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In a fully connected ANN model with p input, h hidden, and a single output node, the relationship between

the inputs Y,_; (i=1, 2, ..., p) and the output Y, is given by

h p
yt:G(ao-l-_ZlajF(ﬂoj-I-Ziﬂijyt_l)j, (9)
j= i=

where @; and ﬁij (1=12,...,p; j=12,...,h) are the connection weights, &, and ﬂoj are the bias terms, F
andG are the network activation functions.

3.1.6 The support vector machine (SVM) model

Cortes and Vapnik (1995) first suggested the SVM method, which has been used in many fields such as data
mining, classification, regression, and time-series forecasting. Okasha (2014) and Guo et al. (2011) also proposed
using SVM to forecast time-series data. The main objective of the SVM model is to deduce specific decision rules
with satisfactory generalization ability (support vectors) by choosing some specific subset of training data. In the SVM
model, nonlinear mapping of the input space into a higher dimensional feature space is deployed, after which an
optimally separating hyperplane is extracted. A set of mathematical functions defined as the kernel are used in SVM
algorithms. The kernel function involves taking data as input and transforming them into the required form. Different
SVM algorithms use different types of kernel functions: linear, nonlinear, polynomial, radial basis function (RBF),
and sigmoid. RBF is the most appropriate type of kernel function for time series (Karatzoglou et al. 2004), and so it
was used in the present study.

The SVM regression algorithm can be applied to time-series forecasting by adopting a sliding time window
defined by the set of time lags {ki,k»,...,ki} used to build the forecast. For given time period t, the model inputs are

y= (yt_kl,...,yt_kz,yt_kl) and the desired output isY,. In SVM regression, the input

y= (yt_kI veoes Yiky yt—kl ) is transformed into a high m-dimensional feature space by using nonlinear mapping (¢

) that depends on the kernel function. Subsequently, the SVM algorithm finds the best linear separating hyperplane in
the feature space while tolerating a small error when fitting the data as follows:

Yi =W, + §W|¢| - (10)
Figure 3 shows SVM regression with the € -insensitive loss function adapted from Karatzoglou et al. (2004).

A support: - .f\
\.recl(_)r's .

—-£ 0 +¢&

Figure 3. Linear SVM regression and the -insensitive loss function.
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3.2 Combined forecasting methods

Improving forecasting accuracy by combining forecasts is a well-established procedure (Winkler and
Makridakis 1983; Armstrong 2001; Thaithanan and Wongoutong 2020). Armstrong (2001) claimed that combining
five individual forecasting models provides optimal efficacy. The combined forecasting method is associated with the
performance consistency of each individual forecasting model and assigning combinatory weights. We consider

Y = , yeany T as the actual time series to be forecasted using n different individual forecasting models,
1 Y2 N

YO =90, 99 ., 9D as its forecast obtained from the i model (i=12,...,n), and

Y© = [y(") ) (C) yor (C)] as the combined forecasted series of the original time series. In the present study,

three combined forecasting methods were used to improve forecasting accuracy: simple-average, Bates-Granger, and
the proposed method.

3.2.1 The simple-average method

This method assigns equal weights to all of the individual forecasting models. Although the simple-average
method may appear to be a naive approach for combining forecasts, more complex methods for combining forecasts
do not often improve upon its accuracy (Clemen, .(1989It is well-documented that the simple-average is a robust
combination method that is difficult to beat (Stock and Watson 2004; Timmermann, .(2006Assigning equal weights

(W, =1/n) to each of the individual forecasting models can be written as

(7(SA)

n .
I =w ¥ + W, 2 w9 =S we gl tw =171, (12)
i=1

where f/,ﬁi)(i =1,2,..,n;k=12,...,N) and §/|E°)(i =1,2,...,n;k=12,...,N) denote the individual
forecasts and the simple-average combination forecast, respectively.
3.2.2 The Bates-Granger method

Bates and Granger (1969) introduce the idea of combining forecasts in their seminal paper. They use the
diagonal elements of the estimated mean-squared prediction error matrix to compute combination weights

)
O,
) R
W, = Zn: Ny where O'(_i';' is the estimated mean-squared prediction error of the i'" model. The combined forecast
O..
o (0)
is then obtained as
A2
O..
(y(BG) (1) 7(2) ) _ (I) 0)
Yo =WY T AW, Y A WY ZWy Wi = ! 12)
]Z:: @

wher JP (i =1,2,...,mk=12,..,N)and 9@ =12,..,nmk=212,..,N) denote the individual

forecasting models and Bates-Granger forecasting combination method, respectively.

3.2.3 The proposed method

When combining the forecasts produced by two or more models, it is vital to decide the weights assigned to
each of them. The weights can be assigned by using linear correlation (Martins and Werner 2012). Therefore, in the
present study, the proposed method for combining forecasts comprises five individual forecasting models whereby
weights are assigned to each by using the correlation coefficient between the actual and forecasted values followed by
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ranking them. The steps to perform the weights assigned to each participating model in the proposed method are as
follows:

1. Compute the correlation coefficient between the actual and the forecasted values for each model:

N _
> V=N Giw—9)
k=1

\/Z (yik_y)ZZ(yik_)T/)z
] ]

ri=

1i1=12,3,4,5and k=1,2,3,...,,N,

where I; is the correlation coefficient value between the actual and forecasted values for the i"" model and

Yik and 9ik refer to the actual and forecasted values for the i™ model.

2. Rankthe I; values from smallest to largest and order themas I} <, <I3 <T, <I.

r)(i
3. Assign a weight to each forecasting model calculated as W, =%, where i = 1,2,3,45 and
Y63
5
> w, =1
i=1
4. Compute the forecasted values by applying
5 .
~ ( proposed ~ (L ~(2 ~(3 ~(4 ~(5 ~
§ProPoeD) = w9+ wo 912 + wa i +w, 910 + w9 = Y wigd. (13)
i=1

4. The experimental study
The steps in the experimental study

Thirty real-world time-series datasets were used in this study, 10 each with stationary, trend, or both trend
and seasonal characteristics. These datasets were used to assess the effectiveness of the individual forecasting models
and the combined forecasting methods. Here are the overall steps used in this study, which are also illustrated as a
flow chart in Figure 4.

Step 1. Plot each time-series dataset to detect the type of autocorrelation pattern: stationary, trend, or both trend and
seasonal.
Step 2. Create the forecasting values for each time-series dataset with the five individual forecasting models
according to the autocorrelation pattern (10 each for the stationary, trend, and both trend and seasonal patterns).
Step 3. Compute the accuracy as mean absolute percentage error (MAPE) and root-mean-squared error (RMSE)
values for each time-series dataset by using the following models according to the autocorrelation pattern.
1. The simple moving average, single exponential smoothing, Box-Jenkins, ANN, and SVM models for the
stationary pattern datasets.
2. The double moving average, double exponential smoothing, Box-Jenkins, ANN, and SVM maodels for the
trend pattern datasets.
3. The Holt-Winters, decomposition, Box-Jenkins, ANN, and SVM models for the datasets with both trend and
seasonal patterns.
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Step 4. Apply the three combined forecasting methods: simple-average, Bates-Granger, and the proposed method to
the forecasted values from five individual forecasting models according to the autocorrelation pattern.

Step 5. Compute the accuracy as the MAPE and RMSE values for each method for each time-series dataset.

Step 6. Compare the performances of the individual forecasting models and the combined forecasting methods for
each autocorrelation pattern in terms of the MAPE and RMSE values.

Classify the time-series data autocorrelation

patterns
Stationary Trend Trend and seasonal
! ! I
Apply the five indrvidual Apply the five individual Apply the five individual
forecasting models forecasting models forecasting models
| SMA | ‘ SES ‘ | BJ | ‘ DMA ‘ [ DES | ‘ BJ ‘ | HW DC ‘ ‘ BI |

v r v

Apply the three combined Apply the three combined Apply the three combined
methods methods methods

| SA H BG || Proposed| SA BG Proposed | SA H BG ” Proposedl

Calculate the MAPE and Calculate the MAPE and Calculate the MAPE and
RMSE values of each RMSE vales of each RMSE values of each
individual model and individual model and individual model and

combined method combined method combined method

Figure 4 A flow chart of the experimental study of 30 time-series datasets with stationary, trend, or trend and
seasonal patterns analyzed with five individual forecasting models and three combined forecasting methods. SMA,
simple moving average; DMA, double moving average; SES, single exponential smoothing; DES, double
exponential smoothing; HW, Holt-Winters; BJ, Box-Jenkins; DC, decomposition; SVM, support vector machine;
ANN, artificial neural network; SA, simple-average; BG, Bates-Granger.

The measures for forecasting accuracy

The most frequently used measures to identify the most accurate methods for time-series forecasting are
MAPE and RMSE (Wongoutong 2020). These two error indices were used to verify the accuracy of time-series
forecasting in this study. MAPE is a relative error measure using absolute values that can be used to compare the
forecasting accuracy when using differently scaled time-series data. RMSE is an absolute error measure by using the
square of the deviation that can prevent positive and negative deviation values from canceling each other out. MAPE

and RMSE are respectively defined as

~

100% ( Y, — Y,
n t=1 yt

MAPE =

)
|

where Y; and 9t are the true and predicted values at time t and n is the number of data points.
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5. Results and discussion

The MAPE and RMSE values for the forecasting analysis of the time-series datasets are reported in Tables 2
and 3 for the stationary pattern, Tables 4 and 5 for the trend pattern, and Tables 6 and 7 for the trend and seasonal data
pattern respectively. For all 10 real-world datasets of the stationary pattern (S1-S10), the simple moving average,
single exponential smoothing, Box-Jenkins, ANN, and SVM forecasting models and the combined forecasting simple-
average, Bates-Granger, and proposed methods produced average MAPE values of 15.336%, 15.100%, 14.216%,
11.325%, 12.782%, 12.141%, 11.130%, and 9.908% (Table 2) and average RMSE values of 922.61, 871.61, 862.84,
674.70, 814.71, 726.03, 669.07, and 609.35 (Table 3), respectively. These results indicated that the three combined
forecasting methods outperformed the individual forecasting models. Especially, the proposed method achieved the
lowest values for both accuracy measures, and it is evident that it quite considerably outperformed the other methods.

For the time-series datasets with the trend pattern (T1-T10), the double moving average, double exponential
smoothing, Box-Jenkins, ANN, and SVM forecasting models and the combined forecasting simple-average, Bates-
Granger, and proposed methods produced average MAPE values of 8.065%, 7.767%, 6.196%, 5.754%, 5.474%,
5.472%, 5.135%, and 5.041% (Table 4) and average RMSE values of 403.791, 336.345, 292.311, 275.590, 281.235,
274.570, 261.926, and 254.418 (Table 5), respectively. Once again, the three combined forecasting methods
outperformed the individual forecasting models, and the proposed method provided lower values than the other
combined forecasting methods.

For the time-series datasets with both the trend and seasonal patterns (TS1-TS10), the decomposition, Holt-
Winters, Box-Jenkins, ANN, and SVM forecasting models and the combined forecasting simple-average, Bates-
Granger, and proposed methods produced average MAPE values of 6.494%, 7.866%, 6.144%, 6.335%, 5.877%,
5.001%, 4.791%, and 4.696% (Table 6) and average RMSE values of 343.284, 437.498, 334.068, 331.952, 355.457,
277.649, 265.118, and 258.454 (Table 7), respectively. Once again, the three combined forecasting methods
outperformed the individual forecasting models, and the proposed method provided lower values than the other
combined forecasting methods. Thus, the proposed method demonstrated its superiority over the individual forecasting
models as well as the other combined forecasting methods in all three autocorrelation pattern scenarios.

Table 2. MAPE values of the individual forecasting models and combined forecasting methods for the time-series
datasets with the stationary autocorrelation pattern.

Individual Forecasting Model Combined Forecasting Method
pata SMA SES BJ ANN SVM SA BG | Proposed
S1 19.205 22.405 18.628 13.193 16.799 | 16.064 14.683 10.894
S2 17.235 15.787 14.162 16.419 14.666 14.562 14.419 14.020
S3 21432 | 19979 | 18918 | 18811 | 17.637| 17.396 | 17.184 | 16.184
S4 23.464 21.930 24.255 18.763 19.792 | 18.771 18.160 16.002
S5 9.114 8.243 8.149 3.758 6.967 6.533 4.305 3.579
S6 11.073 10.553 10.378 7.782 8.545 8.024 7.138 6.762
S7 13.752 12.803 11.613 7.553 12.287 | 10.103 8.231 7.761
S8 16.196 17.028 14.958 11.128 12.472 | 12.080 10.341 8.637
SO 14.187 14.682 14.598 10.097 12.094 | 11.994 11.243 10.126
S10 7.704 7.585 6.500 5.742 6.557 5.883 5.591 5.116
Average 15.336 15.100 14.216 11.325 12.782 12.141 11.130 9.908

The underlined values infer the best performance. MAPE: mean absolute percentage error; SMA, simple moving
average; SES, single exponential smoothing; BJ, Box-Jenkins; SVM, support vector machine; ANN, artificial neural
network; SA, simple-average; BG, Bates-Granger.
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Table 3. RMSE values of the individual forecasting models and combined forecasting methods for the time-series
datasets with the stationary autocorrelation pattern.

DOI: http://dx.doi.org/10.18187/pjsor.v19i3.4247

Individual Forecasting Model Combined Forecasting Method
pata SMA SES BJ ANN SVM SA BG | Proposed
S1 873.72 865.76 | 1063.67 678.86 782.10 738.06 686.59 604.35
S2 937.00 860.62 793.92 810.95 813.56 756.20 748.42 709.83
S3 1622.55 | 1464.03 1418.21 | 1355.51 | 1445.52 1286.92 1257.94 | 1136.68
S4 1512.19 | 1469.14 145355 | 1235.57 | 1350.38 1229.69 1201.67 | 1111.42
S5 716.15 652.53 650.73 297.81 597.57 523.90 358.73 312.26
S6 921.51 860.18 830.57 605.33 805.07 677.39 608.18 569.94
S7 653.50 611.68 584.82 367.81 612.56 499.68 401.76 375.97
S8 627.67 615.07 607.87 460.27 571.58 514.55 482.67 437.36
S0 890.93 844.91 809.07 575.35 737.99 658.13 585.83 503.31
S10 470.87 472.13 415.95 359.55 430.76 375.81 358.86 332.34
Average 922.61 871.61 862.84 674.70 814.71 726.03 669.07 609.35

The underlined values infer the best performance. RMSE: root-mean-squared error; SMA, simple moving average;
SES, single exponential smoothing; BJ, Box-Jenkins; SVM, support vector machine; ANN, artificial neural network;
SA, simple-average; BG, Bates-Granger.

Table 4. MAPE values of the individual forecasting models and combined forecasting methods for the time-series

datasets with the trend autocorrelation pattern.

Individual Forecasting Model Combined Forecasting Method
pata DMA DES BJ ANN SVM SA BG | Proposed
T1 14,731 11.119 10.665 11.556 8.326 9.056 8.435 8.007
T2 1.148 0.730 0.745 0.827 0.682 0.726 0.698 0.690
T3 1.120 0.926 0.901 0.955 0.769 0.783 0.762 0.744
T4 14.098 22.240 11.447 6.901 8.123 7.910 6.896 6.812
T5 3.734 3.123 3.005 2.772 2.854 2.852 2.805 2.769
T6 17.094 14.900 12.194 9.728 11.930 12.170 | 11.338 11.136
T7 8.466 7.917 7.167 6.373 6.526 6.603 6.501 6.408
T8 2.952 2.695 2.634 3.314 2.145 2.228 2.206 2.207
T9 10.900 8.159 7.111 8.131 6.660 6.935 6.694 6.589
T10 6.403 5.863 6.088 6.987 6.721 5.003 5.013 5.050
Average 8.065 7.767 6.196 5.754 5.474 5.427 5.135 5.041

The underlined values infer the best performance. MAPE: mean absolute percentage error; DMA, double moving

average; DES, double exponential smoothing; BJ, Box-Jenkins; SVM, support vector machine; ANN, artificial
neural network; SA, simple-average; BG, Bates-Granger.
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Table 5. RMSE values of the individual forecasting models and combined forecasting methods for the time-series

datasets with the trend autocorrelation pattern.

DOI: http://dx.doi.org/10.18187/pjsor.v19i3.4247

Individual Forecasting Model Combined Forecasting Method
Data DMA DES BJ ANN SVM SA BG | Proposed
T1 652.476 | 475.337 | 456.317 474166 | 424.244 | 411.119 | 393.039 | 358.372
T2 90.923 | 68.069 65.346 66.940 61.150 63.538 | 61.745 59.807
T3 76.021 | 61.505 58.434 59.154 51.690 52.502 | 51.195 49.902
T4 500.535 | 467.082 | 369.204 249.900 | 335.846 | 298.242 | 268.365 | 265.308
T5 250.034 | 203.020 | 199.696 181.095 | 190.688 | 186.472 | 182.810 | 179.650
T6 1016.762 | 889.997 | 688.674 571.876 | 679.656 | 691.334 | 639.244 | 627.792
T7 498.514 | 469.226 | 410.799 372.069 | 383.647 | 392.091 | 383.633 | 376.839
T8 176.723 | 144.522 142.349 183.565 135.536 126.907 | 126.812 125.007
T9 357.192 | 279.087 236.186 264.352 | 228.268 231.369 | 223.119 214.443
T10 418.734 | 305.605 | 296.107 332.786 | 321.622 | 292.130 | 289.298 | 287.060
Average 403.791 | 336.345 | 292.311 275.590 | 281.235 274.570 | 261.926 254.418

The underlined values infer the best performance. RMSE: root-mean-squared error; DMA, double moving average;

DES, double exponential smoothing; BJ, Box-Jenkins; SVM, support vector machine; ANN, artificial neural
network; SA, simple-average; BG, Bates-Granger.

Table 6. MAPE values of the individual forecasting models and combined forecasting methods for the time-series

datasets with both trend and seasonal autocorrelation patterns.

Individual Forecasting Model Combined Forecasting Method
pate DC HW BJ ANN SVM SA BG | Propose
TS1 10.024 15.327 11.548 15.690 9.930 9.546 9.428 9.097
TS2 11.755 15.158 12.437 9.403 11.740 9.864 8.944 8.574
TS3 7.448 9.095 8.869 6.580 6.610 5.690 5.498 5.326
TS4 7.225 7.190 4,354 6.927 4,492 4.321 4.165 4.165
TS5 3.676 3.860 3.549 3.247 3.789 2.878 2.680 2.601
TS6 6.683 6.379 3.478 5.631 4.333 3.141 2.985 3.138
TS7 4.650 4,789 3.974 3.405 4.509 3.377 3.260 3.163
TS8 3.829 4.847 3.705 3.562 3.896 3.141 3.082 3.078
TS9 4.597 6.408 4.646 4.479 4.265 3.791 3.674 3.668
TS10 5.053 5.608 4.877 4.426 5.203 4.263 4.194 4.148

Average | 6.494 7.866 6.144 6.335 5.877 5.001 4.791 4.696

The underlined values infer the best performance. MAPE: mean absolute percentage error; HW, Holt-Winters; BJ,

Box-Jenkins; DC, decomposition; SVM, support vector machine; ANN, artificial neural network; SA, simple-

average; BG, Bates-Granger.
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Table 7. RMSE values of the individual forecasting models and combined forecasting methods for the time-series
datasets with both trend and seasonal autocorrelation patterns.

Individual Forecasting Model Combined Forecasting Method
DC HW BJ ANN SVM SA BG | Proposed
T31 615.312 | 965.849 | 665.456 896.985 | 635.966 | 572.952 | 562.499 | 552.666
TS3 643.688 | 925.782 | 671.660 571.478 | 704.502 | 558.030 | 508.313 | 486.110
TS6 355.444 | 389.245 | 442.585 305.482 | 379.185 | 319.955 | 308.858 | 299.939
TS2 272.295 | 311.588 | 179.902 219.255 | 203.944 | 153.698 | 153.018 | 152.666
TS5 379.939 | 406.573 | 341.290 312,902 | 474918 | 299.245| 275.880 | 264.713
TS6 271.404 | 259.857 | 184.195 249.815 | 213.097 | 149.592 | 147.863 | 152.765
TS7 345.054 | 381.626 | 309.808 279.540 | 362.976 | 262.884 | 251.815 | 242.338
TS8 168.647 | 233.362 | 169.674 155.386 192.658 | 148.672 | 143.757 | 141.169
TS9 185.170 | 287.126 | 182.558 165.705 163.034 | 146.256 | 138.895 | 135.791

TS10 | 195.887 | 213.974 | 193.547 162.970 | 224.290 | 165.210 | 160.285 | 156.387
Average | 343.284 | 437.498 | 334.068 331.952 | 355.457 | 277.649 | 265.118 | 258.454
The underlined values infer the best performance. RMSE: root-mean-squared error; HW, Holt-Winters; BJ, Box-
Jenkins; DC, decomposition; SVM, support vector machine; ANN, artificial neural network; SA, simple-average;
BG, Bates-Granger.

Data

As examples, bar charts of the MAPE values of stationary, trend, and trend and seasonal datasets S1, T1, and
TS1 are shown in Figure 5 (a)—(c), respectively. These offer a clear visual demonstration of the superiority of the
proposed method over the five individual forecasting models and the other two combined forecasting methods.

MAPE of S1 MAPE of T1 MAPE of TS1
30 - 16 - 20 ~
< =12 - < 16
ga0- S 1
L w 8 1 = E 8
% 10 - % = < i
= IREMN = | | = 4 =
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Individual | Combine | Individual | Combine | Individual | Combine |
(a) (b) (c)

Figure 5. Bar charts of MAPE values for the forecasting analyses of the S1 stationary pattern dataset (a), the T1
trend pattern dataset (b) and the TS1 dataset with both trend and seasonal patterns. SMA, simple moving average;
DMA, double moving average; SES, single exponential smoothing; DES, double exponential smoothing; HW, Holt-
Winters; BJ, Box-Jenkins; DC, decomposition; SVM, support vector machine; ANN, artificial neural network; SA,
simple-average; BG, Bates-Granger.

Classification clusters of the performances of the forecasting models and combined forecasting methods for
time-series datasets with stationary, trend, or both trend and seasonal patterns are presented as a heatmap of their
MAPE values in Figure 6 (a)—(c), respectively. In this study, clustering was achieved by using Euclidean distance and
the complete linkage method from the hclust function in the R statistics package version 4.0.3 to find similar groups
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in each pattern. Next, the dendrograms clustering the algorithm branches were rotated so that the blocks of high and
low expression values were near to in the expression matrix. Finally, visualization was realized by applying a color
scheme to display the expression matrix. The tree branches were rotated to create blocks in which the individual values
were the closest in both directions. These are color-coded as expression values.

For the stationary pattern datasets (S1-S10), the heatmaps in Figure 6 (a) clearly show the patterns picked
out by the clustering algorithm as three clustering groups for the MAPE values (worst to best). The first group contains
the Box-Jenkins, simple moving average, single exponential smoothing models, the second group contains the SVM
model and simple-average method, and the third group contains the ANN model and the Bates-Granger and proposed
methods.

For the trend pattern datasets (T1-T10), the heatmaps in Figure 6 (b) once again show three clustering groups;
the first contains the double moving average and double exponential smoothing models, the second contains the B ox-
Jenkins and ANN models, and the third contains the SVM model and the simple-average, Bates-Granger, and proposed
methods.

For the datasets with both trend and seasonal patterns (TS1-TS10), the heatmaps in Figure 6 (c) once again
shows three clustering groups; the first contains the Holt-Winters and ANN models, the second contains the
decomposition, Box-Jenkins, and SVM models, and the third contains the simple-average, Bates-Granger, and
proposed methods. Thus, the proposed method was categorized into the same groups as Bates-Granger and the best
individual forecasting models.

The performances of the forecasting models and combined forecasting methods in terms of their MAPE
values when analyzing time-series data with stationary, trend, or both trend and seasonal patterns are presented as
boxplots in Figure 7 (a)—(c), respectively. These show that the median of the MAPE of most of the individual
forecasting models was above the grand median (except for the ANN model with the stationary pattern datasets), while
the three combined forecasting methods provided MAPE medians below the grand median. Especially, the proposed
method achieved the lowest MAPE median for all autocorrelation patterns.
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Figure 6. Heatmaps of the MAPE values for (a) stationary pattern datasets S1-S10, (b) trend pattern datasets T1-
T10, and (c) datasets with both trend and seasonal patterns TS1-TS10. SMA, simple moving average; DMA, double
moving average; SES, single exponential smoothing; DES, double exponential smoothing; HW, Holt-Winters; BJ,
Box-Jenkins; DC, decomposition; SVM, support vector machine; ANN, artificial neural network; SA, simple-
average; BG, Bates-Granger.
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Figure 7. Boxplots of the MAPE values for (a) stationary pattern datasets S1-S10, (b) trend pattern datasets T1-
T10, and (c) datasets with both trend and seasonal patterns TS1-TS10. SMA, simple moving average; DMA, double
moving average; SES, single exponential smoothing; DES, double exponential smoothing; HW, Holt-Winters; BJ,
Box-Jenkins; DC, decomposition; SVM, support vector machine; ANN, artificial neural network; SA, simple-
average; BG, Bates-Granger.

The proposed method's overall improvement in MAPE and RMSE was calculated relative to the five
individual forecasting models and the two other combined forecasting methods for the three autocorrelation patterns
(stationary, trend, and both trend and seasonality) (Table 8). For the stationary data, the improvement in MAPE by
the proposed method was 37.03%, 35.33%, 30.93%, 10.88%, and 24.23% over the simple moving average, single
exponential smoothing, Box-Jenkins, ANN, and SVM models, respectively, and 19.89% and 10.90% over the simple-
average and Bates-Granger methods, respectively. Similarly, the improvement in RMSE by the proposed method was
35.18%, 31.78%, 30.22%, and 7.35% over the simple moving average, single exponential smoothing, Box-Jenkins,
ANN, and SVM models, respectively, and 17.67% and 9.08% over the simple-average and Bates-Granger,
respectively. The results for the datasets with the trend pattern or with both the trend and seasonal patterns exhibited
the same trend. It is once again evident that the proposed method outperformed the five individual forecasting models
and the other two combined forecasting methods for all three autocorrelation patterns, particularly so for the stationary
pattern. For the other two patterns, although the proposed method was better than the individual forecasting models,
the Bates-Granger method was almost as effective as the proposed method.

Table 8. The percentage improvement in MAPE and RMSE by the proposed method over the five individual
forecasting models and two combined forecasting methods.

Stationary Trend ‘ Trend and Seasonal
Improvement by the Proposed Method (%)

Type

Method MAPE RMSE | Method MAPE RMSE | Method MAPE RMSE
SMA 37.03 35.18 DMA 3417 3521 DC 39.03 39.59
SES 35.33 31.78 DES 2294  20.22 HW 27.92 26.11

Individual BJ 30.93 30.22 BJ 1579 1243 BJ 20.64 21.48

ANN 10.88 7.35 ANN 13.58 9.88 ANN 21.9 18.43

SVM 24.23 26.82 SVM 5.65 8.20 SVM 20.61 26.97
SA 19.89 17.67 SA 5.48 6.20 SA 5.18 5.81
BG 10.9 9.08 BG 1.51 2.70 BG 1.3 2.02

SMA, simple moving average; DMA, double moving average; SES, single exponential smoothing; DES, double

exponential smoothing; HW, Holt-Winters; BJ, Box-Jenkins; DC, decomposition; SVM, support vector machine;

ANN, artificial neural network; SA, simple-average; BG, Bates-Granger.

Combined

6. Conclusions

In practice, it is quite common for one forecasting model to perform well in certain periods while other
models perform better in other periods. Thus, it is a challenge to find a forecasting model that outperforms all other
ones under all circumstances. One approach to improving the accuracy of forecasting to combine forecasts from two
or more different forecasting models. Herein, we propose a new weighting system for combined forecasting methods
by obtaining the correlation coefficients between the actual and predicted values from the individual forecasting
models and ranking them.

In this study, time-series datasets with three autocorrelation patterns (stationary, trend, or both trend and
seasonal) were used to evaluate the forecasting performance of the proposed method. As well as outperforming the
individual forecasting models, it obviously outperformed the other combined forecasting methods, especially when
the autocorrelation pattern was stationary. For this pattern, the improvement in MAPE and RMSE values was 35-37%
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for the worst-performing individual forecasting model and 7-10% RMSE for the best-performing individual
forecasting model, and for the combined forecasting methods, the improvement in MAPE and RMSE was 18-20%
over the simple-average method and 9-11% over the Bates-Granger method. For the time-series datasets with either
trend or both trend and seasonal patterns, the performances of the proposed and Bates-Granger methods were almost
(an improvement in MAPE and RMSE of 1-2%). However, the Bates-Granger method is complex due to using the
diagonal elements in the estimated mean-squared prediction error matrix to compute the combination weights, whereas
the technique in the proposed method for computing these is much simpler. Therefore, the proposed method is a
plausible alternative for creating weights for the individual forecasting models in combined forecasting methods.
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