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Abstract 

 

Herein, a modified weighting for combined forecasting methods is established. These weights are used to 

adjust the correlation coefficient between the actual and predicted values from five individual forecasting models 

based on their correlation coefficient values and ranking. Time-series datasets with three patterns (stationary, trend, 

or both trend and seasonal) were analyzed by using the five individual forecasting models and three combined 

forecasting methods: simple-average, Bates-Granger, and the proposed approach. The MAPE and RMSE results 

indicate that the proposed method outperformed the others, especially when the time-series pattern was stationary 
and improved the forecasting accuracy of the worst and best individual forecasting models by 35–37  % and 7–10 % , 

respectively. Moreover, the proposed method showed improvements in MAPE and RMSE of around 18–20 % and 

9–11  % compared to the simple-average and Bates-Granger methods, respectively. In addition, the combined 

forecasting methods outperformed the individual forecasting models when analyzing non-stationary data. 

Remarkably, the performances of the proposed and Bates-Granger methods were almost the same, with 

improvements in MAPE and RMSE in the range of 1–2  % on average. Therefore, the proposed method for creating 

weights based on the correlation coefficients of the individual forecasting models greatly improves combined 

forecasting methods. 

 

Key Words: Forecasting model, Combined forecasting method, Correlation coefficient, Model weighting 

 

1. Introduction 

In the past decades, many statisticians have risen to the challenge of improving forecasting accuracy, and yet 

all these research efforts have merely led to the conclusion that no single forecasting method outperforms all of the 

others in all situations (Li et al. 2005). One approach for improving forecast accuracy is combining forecasts from two 

or more different forecasting models starting with the benchmark work of Bates and Granger (1969), who introduced 

combinations of forecasts as a ubiquitous way of improving forecasting accuracy. Moreover, combining forecasts is 

a very useful approach when selecting the most accurate forecasting method is difficult. For instance, Bunn (1989) 

noted that this improves forecasting accuracy by utilizing multiple sources of information and computing resources 

and defined this approach as “data-intensive forecasting”. Furthermore, many authors have indicated that combining 

linear forecasts is generally more accurate than individual forecasts (Makridakis and Hibon 2000; Stock and Watson 

2004; Patton and Sheppard 2009; Costantini and Pappalardo 2010; Martins and Werner 2012; Thaithanan and 

Wongoutong 2020). According to Clemen (1989), many techniques have been developed to perform combining 

forecasts. Nevertheless, until now, the results have been unanimous: combining forecasts leads to increased accuracy. 

Likewise, Makridakis and Hibon (2000) conducted the M3-competition that involved forecasting 3003 time-series 

datasets and concluded that the accuracy of the combined forecasts by using various methods outperforms the 
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individual forecasting models being combined. Therefore, the combination of forecasting methods has become an 

essential strategy that has been used in many applications (Makridakis et al. 2018). 

Combining forecasts is associated with the performance consistency of their individual forecasting models, 

and combining at least three individual forecasting models results in more accurate forecasting Armstrong (2001). 

According to Yang (2004), the two main directions for combining forecasts are for adaptation and improvement: the 

first targets the best individual performance among the pool of forecasting candidates while the aim of the second is 

to significantly outperform each forecasting candidate. When combining the forecasts generated by two or more 

individual forecasting models, it is vital to decide the weight assigned to each of them. The most popular among the 

combined forecasting methods is the weighted linear combination where the weights assigned to the individual 

forecasting models are either equal or decided according to some rigorous mathematical rule. Typical linear combined 

forecasting methods are simple-average, trimmed-average, winsorized-average, median, error-based, outperformance, 

variance-based pooling, etc. (Jose and Winkler 2008; Lemke and Gabrys 2010). The R package ForecastComb 

provides 15 popular simple, regression-based, and eigenvector-based estimation methods for creating combined 

forecasts. 

Even though linear combination techniques are easy to understand and implement, they ignore the 

relationship between the actual and forecasted values. Several researchers have suggested changing each individual 

forecasting model's weight in the combination while checking for non-stability in the process (Deutsch et al. 1994; 

Chan et al. 2004; Timmermann 2006). Assigning different weights using linear correlation in forecasting combinations 

is a possible alternative (Martins and Werner 2012). Many researchers have worked on combining forecasting models 

by using correlation. For example, Diebold (1988) considered serial correlation in a least-squares framework by 

restricting the sum of the coefficients to 1. Likewise, Coulson and Robins (1993) included a lagged dependent variable 

beyond the forecasting candidates by focusing on the specific case of combining two forecasts with the combination 

error following a first-order autoregressive (AR(1)) process. They concluded that a parsimonious method for 

incorporating the dynamics is achieved by using a lagged dependent variable but not lagged forecasts. Moreover, 

Deutsch et al. (1994) created regime switches by using coefficients to weight the models. 

However, only limited studies have endeavored to clarify the perspective of using correlation in forecasting 

combinations, so there is a strong need for further developments in this area. To realize the current study, a literature 

review was systematically performed with the goal being to list the methods for combining predictions and identify 

existing methods using linear correlation coefficients in their structures. Hence, the focus of this study is on developing 

weights by using linear combination techniques on five individual forecasting models (average, decomposition, Box-

Jenkins, artificial neural network, and support vector machine). In the proposed combined forecasting method, the 

weighted linear combination of the individual forecasts is achieved by using a function of the correlation coefficient 

and the rank order of the correlation coefficients between the forecasted and actual values as weights. Finally, the 

performance of the proposed method was compared with the five individual forecasting models and the traditional 

combined simple-average and Bates-Granger methods. 

The rest of this paper is organized as follows. In Section 2, the data used in the study are presented, while 

Section 3 provides the individual forecasting models, combination forecasting methods, and the proposed method 

used in the study. The experimental study to compare the methods is described in Section 4. The results of the 

experimental study and a discussion are given in Section 5. Finally, conclusions on the study are included in Section 

6. 

2. The data used in the study 

Thirty real time-series datasets were used in this study to determine the performance of the proposed method. 

This consisted of 10 datasets for each of three types of time-series patterns: stationary, trend, and trend and seasonality. 

All of the datasets were obtained from the M3 competition conducted by Makridakis and Hibon (2000); they are freely 

available and any researcher can use the data without requiring permission. Brief details of these datasets are reported 

in Table 1, and time-series plots and autocorrelation plots for some of them are presented in Figure 1. 
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Table 1. Details of the datasets used in the study. 

Type 
Data

set 

M3 

Competition 

Code 

Time Period Size 
Datas

et 

M3 

Competition 

Code 

Time Period Size 

S
ta

ti
o
n
ar

y
 

S1 N1449 (Q) 1990Q1-2007Q1 69 S6 N234 (Y) 1950-1993 44 

S2 N2126 (M) 1978M1-1998M12 

 

 

 

144 S7 N235 (Y) 1947-1993 

 

 

47 

S3 N1453 (Q) 1990Q1-2007Q1 69 S8 N1426 (Q) 1990Q1-2007Q1 69 

S4 N1442 (Q) 1990Q1-2007Q1 69 S9 N1447 (Q) 1990Q1-2007Q1 69 

S5 N1472 (Q) 1990Q1-2007Q1 69 S10 N1987 (M) 1979M1-1990M12 

 
144 

T
re

n
d
 

T1 N239 (Y) 1950-1993 44 T6 N1944 (M) 1982M1-1993M12 144 

T2 N1882 (M) 1981M12-1998M11 144 T7 N1946 (M) 1982M1-1993M12 144 

T3 N972 (Q) 1980Q1-1992Q4 52 T8 N1232 (Q) 1980Q1-1993Q1 53 

T4 N198 (Y) 1947-1993 47 T9 N2014 (M) 1979M1-1990M12 144 

T5 N993 Q) 1980Q1-1992Q4 52 T10 N210 (Y) 1947-1987 41 

T
re

n
d

 a
n

d
 

S
ea

so
n

al
it

y
 

TS1 N2789 (Q) 1890Q1-2003Q4 96 TS6 N756 (Q) 1984Q1-1994Q4 44 

TS2 N2784 (Q) 1857Q1-1880Q4 96 TS7 N1890 (M) 1982M1-1993M12 144 

TS3 N829 (Q) 1984Q1-1994Q4 44 TS8 N2012 (M) 1979M1-1990M12 144 

TS4 N863 (Q) 1977Q1-1992Q4 64 TS9 N2013 (M) 1979M1-1990M12 144 

TS5 N931 (Q) 1966Q1-1977Q1 45 TS10 N2015 (M) 1979M1-1990M12 144 
 

 

Note. The letter in parentheses in the M3 competition code indicates quarterly (Q), monthly (M), or yearly (Y) data 

collection. 

   

   

(a) (b) (c) 

 

Figure 1. Time-series plots (above) and the autocorrelation plots (below) of datasets (a) S1 (stationary), (b) T1 

(trend), and (c) TS1 (trend and seasonality). 
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3. Forecasting models 

Finding a model that represents reality and predicts efficaciously is the main objective of forecasters, and 

several forecasting methods have been developed using various approaches to achieve this. Assembling several 

individual forecasting models to improve prediction is known as combined forecasting, which has been shown to 

outperform forecasting by using the individual approaches in the majority of cases (De Menezes et al. 2000). 

Armstrong (2001) claimed that the number of individual forecasting models to optimize combinatorial efficacy is five. 

Therefore, in this study, three combined forecasting methods (including the proposed method) were created by using 

five individual time-series forecasting models. The individual forecasting models and combined forecasting methods 

briefly described in this section are available in the R statistical package. 

3.1 Individual forecasting models 

3.1.1 Averaging models 

1) Simple moving average 

The simplest model, the simple moving average, is effective when the time-series data are assumed to be 

stable over time with no trend or seasonality (Svetunkov and Petropoulos 2018). Thus, the simple moving average 

model can be used to forecast the next value(s) in a time series depending on the average over specified k periods of 

the previous values for which each point is assigned an equal weight (1/k). The formula for this is 

1

1
ˆ ,

k

t t i

i

y y
k

−

=

=   (1) 

where yt is an actual value, ˆ
ty is the forecast for period t, and k is the length of the simple moving average. 

2) Double moving average 

This approach is better for when there is a trend in a time-series dataset. A trend in the data means that the 

observation values tend to either increase or decrease over time. The double moving average model requires 

calculating the moving average and then calculating the second moving average using the first moving average values 

as observations (Khairina et al. 2021). The formula used for forecasting in the period t+m of the double moving 

average method is 

ˆ .t m t ty a b m+ = + . (2) 

The term 2t t ta M M = −  is the interception in period t, where 
1

1 k

t t i

i

M y
k

−

=

=  is the first average value in period 

t, k is the order, and 
1

1 k

t t i

i

M M
k

−

=

 =   is the second average value in period t. The term 
2

( )
1

t t tb M M
k

= −
−

 

denotes the trend value in period t. 

3.1.2 Exponential smoothing models 

Exponential smoothing is a class of time-series forecasting methods for univariate data in which current 

values are given relatively more weight in forecasting than older observations. Exponentially decreasing weights are 

explicitly used in exponential smoothing models (Brown 1956; and Holt 2004).  

1) Single exponential smoothing 

 

The simplest approach is single exponential smoothing for data that is stable over time without seasonality 

or trends. The forecasting method in period t is formulated as 

1
ˆ ˆ(1 )

t t t
y y y 

+
= + − , (3) 
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where, 1
ˆ

ty +  is the forecast in period t+1, ˆ
ty  is the forecast in period t, ty is the actual value in period t, and   is 

a smoothing parameter between 0 and 1. 

2) Double exponential smoothing 

This is similar to the single exponential smoothing method except that additional weighting is used to detect 

trends in the data (Shastri et al. 2018). The forecasting method in period t+p is derived as follows: 

ˆ ,t p t ty L pT+ = +  (4) 

where smoothing parameters   and   are between 0 and 1. Meanwhile, level smoothing factor 

trend smoothing factor and  trepresents the estimated forecast value at time  ( )( )1 11t t t tL Y L T  − −= + − +

t.represents the value of the slope at time  ( ) ( )1 11t t t tT L L T − −= − + −  

3) Triple exponential smoothing (Holt-Winters) 

This method can handle a univariate time series with seasonality by simply finding the central value and 

adding the effects of slope and seasonality (Brown 1956; Holt 2004; Winters 1960). There are two variations of the 

Holt-Winters method depending on the nature of the seasonal component: additive or multiplicative (Montgomery et 

al. 2008; Wongoutong 2021). Applying the additive Holt-Winters model when forecasting for period t+p can be 

obtained as follows: 

ˆ ( ) ,t p t t t S py L T p S+ − += + +  (5) 

where level smoothing factor 1 1( ) (1 )( ),t t t S t tL y S L T − − −= − + − +  trend smoothing factor 

1 1
( ) (1 ) ,

t t t t
T L L T 

− −
= − + −  and seasonality smoothing factor ( ) (1 ) .t t t t SS y L S  −= − + −  

The multiplicative Holt-Winters model for forecasting in period t+p can be obtained as follows: 

ˆ ( ) ,t p t t t S py L T p S+ − += +  (6) 

where level smoothing factor 1 1(1 )( ),t

t t t

t S

y
L L T

S
  − −

−

= + − +  trend smoothing factor 

1 1
( ) (1 ) ,

t t t t
T L L T 

− −
= − + −  and seasonality smoothing factor (1 ) .t

t t L

t

y
S S

L
  −= + − In both models, S is the 

seasonality length , ty  refers to the actual value in time period t, and the values of smoothing parameters 𝛼, 𝛽, and 

𝛾 are set to between 0 and 1. 

3.1.3 Decomposition model 

The decomposition model is a popular forecasting method for time-series data containing trend and seasonal 

patterns (Zhang et al. 2014). The main idea of this method is to analyze the four possible individual components in a 

time series: trend, cycle, seasonality, and irregular (Montgomery et al. 2015). In the decomposition model, each 
component’s strength is estimated separately and then substituted into the model to explain the behavior of the time 

series in a straightforward manner as ( , , , ),
t t t t t

y f T S C I=  where Yt, Tt, St, Ct, and It are the time-series values (actual 

data) and the trend, seasonal, cycle, and irregular components for time period t, respectively. In general, the 

decomposition model depends on whether the nature of the seasonal component is additive or multiplicative. The 
respective mathematical expressions for the additive and multiplicative decomposition approaches are 

t t t t t
y T S C I= + + + and .

t t t t t
y T S C I=     (7) 
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3.1.4 The Box-Jenkins model 

The strategy used in the Box-Jenkins model is to predict a time series by using past values. This method 

begins with the assumption that the process that generated the time series can be approximated by using an 

autoregressive moving average (ARMA) model if it is stationary or an autoregressive integrated moving average 

(ARIMA) model if it is non-stationary (Box et al. 2015). The general ARIMA model is expressed as follows: 

,(B)Φ (B )(1 B) (1 B ) (B) (B )s d s D s
p t q tP Qy  − − =    (8) 

where d is the order of differencing, D is the order of seasonal differencing, and s is the number of seasons per year. 

The operator polynomials are 

p
1 p(B) = (1 B ... B ),p  − − − q

1 q(B) = (1 B ... B ),q  − − −
s s Ps

1 PΦ (B ) (1 Φ B ... Φ B ),P = − − −

s s Qs
1 Q(B ) (1 B ... B ),Q = − − − 1(1 B) t t ty y y −− = − , (1 B )s

t t t sy y y −− = − , and
2

tε (0, )N  . 

The maximum values of d, D, p, q, P, and Q should be 2 (Box et al. 2015), and so these operator polynomials are 

usually simple expressions. 

The Box-Jenkins methodology consists of a four-step iterative procedure as follows: 

1.  Model identification: tentatively identify the appropriate Box-Jenkins model by using historical data by 

analyzing plots of the autocorrelation function and partial autocorrelation function, and then determine the 

appropriate model type for a specific situation by matching the observed correlations to the theoretical 

correlations. 

2. Parameter estimation: estimate their values based on the maximum likelihood or minimum least-squares 

methods. 

3. Diagnostic checking: use plots and statistical tests of the residual errors to determine the adequacy of the 

model fitting, and if need be, consider alternative models. 

4. Forecasting: use the appropriate model for forecasting. 

3.1.5 The artificial neural network (ANN) model 

In recent years, time-series models using machine learning based on ANN have become vital alternatives due 

to their nonlinear modeling capability for data time-series forecasting (Lin and Lee 2013). The most popular ANN 

architecture in the forecasting domain are the multilayer perceptron (MLP), a class of feedforward ANN, which is a 

nonlinear autoregressive model. The nnetar function from the R package (2015) was used for fitting the ANN model 

for the time-series data. This function creates feedforward neural networks with a single hidden layer using lagged 

inputs for forecasting a univariate time series. A single layer of hidden units is enough to provide the desired accuracy 

in most forecasting situations. The nodes are connected to those in the immediate next layer in each layer by acyclic 

links (Zhang et al. 1998). The structure of a typical ANN with MLP architecture is shown in Figure 2, including a 

feedforward structure of an input layer, one or more hidden layers, and an output layer. 

 

Figure 2. A typical ANN structure. 
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In a fully connected ANN model with p input, h hidden, and a single output node, the relationship between 

the inputs t iy − (i=1, 2, …, p) and the output ty is given by 

0 0 1
1 1

,
ph

j j j
j i

t i ty G F y    −
= =

  = + +   
  

  (9) 

where j  and ij  ( 1,2,..., ; 1,2,...,i p j h= = ) are the connection weights, 0  and 0 j  are the bias terms, F

andG   are the network activation functions. 

3.1.6 The support vector machine (SVM) model 

Cortes and Vapnik (1995) first suggested the SVM method, which has been used in many fields such as data 

mining, classification, regression, and time-series forecasting. Okasha (2014) and Guo et al. (2011) also proposed 

using SVM to forecast time-series data. The main objective of the SVM model is to deduce specific decision rules 

with satisfactory generalization ability (support vectors) by choosing some specific subset of training data. In the SVM 

model, nonlinear mapping of the input space into a higher dimensional feature space is deployed, after which an 

optimally separating hyperplane is extracted. A set of mathematical functions defined as the kernel are used in SVM 

algorithms. The kernel function involves taking data as input and transforming them into the required form. Different 

SVM algorithms use different types of kernel functions: linear, nonlinear, polynomial, radial basis function (RBF), 

and sigmoid. RBF is the most appropriate type of kernel function for time series (Karatzoglou et al. 2004), and so it 

was used in the present study. 

The SVM regression algorithm can be applied to time-series forecasting by adopting a sliding time window 

defined by the set of time lags {k1,k2,...,kI} used to build the forecast. For given time period t, the model inputs are

( )2 1

 ,..., ,
I

t k t k t ky y y− − −=y  and the desired output is ty . In SVM regression, the input 

( )2 1

 ,..., ,
I

t k t k t ky y y− − −=y is transformed into a high m-dimensional feature space by using nonlinear mapping (

) that depends on the kernel function. Subsequently, the SVM algorithm finds the best linear separating hyperplane in 

the feature space while tolerating a small error when fitting the data as follows: 

0
1

( ).
m

i i
i

ty w w
=

= + y   (10) 

 

Figure 3 shows SVM regression with the ε -insensitive loss function adapted from Karatzoglou et al. (2004).  

 

Figure 3. Linear SVM regression and the ε -insensitive loss function. 
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3.2 Combined forecasting methods 

Improving forecasting accuracy by combining forecasts is a well-established procedure (Winkler and 

Makridakis 1983; Armstrong 2001; Thaithanan and Wongoutong 2020). Armstrong (2001) claimed that combining 

five individual forecasting models provides optimal efficacy. The combined forecasting method is associated with the 

performance consistency of each individual forecasting model and assigning combinatory weights. We consider 

T

1 2[y , y ,..., y ]N=Y  as the actual time series to be forecasted using n different individual forecasting models, 

( ) ( ) ( ) ( ) T

1 2
ˆ ˆ ˆ ˆ[y , y ,..., y ]i i i i

N=Y as its forecast obtained from the ith model ( ) ,1,2, ,i n=   and 

( ) ( ) ( ) ( ) T

1 2
ˆ ˆ ˆ ˆ[y , y ,..., y ]c c c c

N=Y  as the combined forecasted series of the original time series. In the present study, 

three combined forecasting methods were used to improve forecasting accuracy: simple-average, Bates-Granger, and 

the proposed method. 

3.2.1 The simple-average method 

This method assigns equal weights to all of the individual forecasting models. Although the simple-average 

method may appear to be a naïve approach for combining forecasts, more complex methods for combining forecasts 

do not often improve upon its accuracy (Clemen, 1989  .) It is well-documented that the simple-average is a robust 

combination method that is difficult to beat (Stock and Watson 2004; Timmermann, 2006  .) Assigning equal weights 

( 1/
i

w n= ) to each of the individual forecasting models can be written as 

( ) (1) (2) ( ) ( )

1 2
1

ˆ ˆ ˆ ˆ ˆ... : 1/ ,
n

SA n i

k k k n k i k i
i

y w y w y w y w y w n
=

= + + + = =   (11) 

where
( )ˆ ( 1, 2,..., ; 1, 2,..., )
i

k
y i n k N= = and 

( )ˆ ( 1, 2,..., ; 1, 2,..., )
c

k
y i n k N= = denote the individual 

forecasts and the simple-average combination forecast, respectively. 

3.2.2 The Bates-Granger method 

Bates and Granger (1969) introduce the idea of combining forecasts in their seminal paper. They use the 

diagonal elements of the estimated mean-squared prediction error matrix to compute combination weights 
2

( )

2

(j)
1

ˆ

ˆ
,

i

i n

j

w




−

−

=

=


  where 

2

( )
ˆ

i −
 is the estimated mean-squared prediction error of the ith model. The combined forecast 

is then obtained as 

2

( )

2

(j)
1

( ) (1) (2) ( ) ( )

1 2
1

ˆ

ˆ

ˆ ˆ ˆ ˆ ˆ... : ,
i

i n

j

n
BG n i

k k k n k i k
i

wy w y w y w y w y




−

−

=

=

=



= + + + =    (12) 

wher
( )ˆ ( 1, 2,..., ; 1, 2,..., )
i

k
y i n k N= = and 

( )ˆ ( 1, 2,..., ; 1, 2,..., )
c

k
y i n k N= =  denote the individual 

forecasting models and Bates-Granger forecasting combination method, respectively. 

3.2.3 The proposed method 

When combining the forecasts produced by two or more models, it is vital to decide the weights assigned to 

each of them. The weights can be assigned by using linear correlation (Martins and Werner 2012). Therefore, in the 

present study, the proposed method for combining forecasts comprises five individual forecasting models whereby 

weights are assigned to each by using the correlation coefficient between the actual and forecasted values followed by 
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ranking them. The steps to perform the weights assigned to each participating model in the proposed method are as 

follows: 

1. Compute the correlation coefficient between the actual and the forecasted values for each model: 

N

ik ik

k 1
i

N N
2 2

ik ik

k 1 k 1

ˆ ˆ(y y)(y y)

; 1,2,3,4,5

ˆ ˆ(y y) (y y)

r i=

= =

− −

= =

− −



 

 and 1,2,3,..., ,k N=  

where ir  is the correlation coefficient value between the actual and forecasted values for the ith model and 

iky  and ikŷ  refer to the actual and forecasted values for the ith model. 

2. Rank the ir  values from smallest to largest and order them as 1 2 3 4 5.r r r r r     

3. Assign a weight to each forecasting model calculated as 
5

1

( )( )

( )( )

i
i

ii

r i
w

r i
=

=


,  where i = 1,2,3,4,5 and 

5

1

1.i

i

w
=

=  

4. Compute the forecasted values by applying 

5
( ) (1) (2) (3) (4) (5) ( )

1 2 3 4 5
1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ .
proposed i

ik k k k k k k
i

y w y w y w y w y w y w y
=

= + + + + =   (13) 

 

4. The experimental study 

The steps in the experimental study 

Thirty real-world time-series datasets were used in this study, 10 each with stationary, trend, or both trend 

and seasonal characteristics. These datasets were used to assess the effectiveness of the individual forecasting models 

and the combined forecasting methods. Here are the overall steps used in this study, which are also illustrated as a 

flow chart in Figure 4. 

Step 1. Plot each time-series dataset to detect the type of autocorrelation pattern: stationary, trend, or both trend and 

seasonal. 

Step 2. Create the forecasting values for each time-series dataset with the five individual forecasting models 

according to the autocorrelation pattern (10 each for the stationary, trend, and both trend and seasonal patterns). 

Step 3. Compute the accuracy as mean absolute percentage error (MAPE) and root-mean-squared error (RMSE) 

values for each time-series dataset by using the following models according to the autocorrelation pattern. 

1. The simple moving average, single exponential smoothing, Box-Jenkins, ANN, and SVM models for the 

stationary pattern datasets. 

2. The double moving average, double exponential smoothing, Box-Jenkins, ANN, and SVM models for the 

trend pattern datasets. 

3. The Holt-Winters, decomposition, Box-Jenkins, ANN, and SVM models for the datasets with both trend and 

seasonal patterns. 
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Step 4. Apply the three combined forecasting methods: simple-average, Bates-Granger, and the proposed method to 

the forecasted values from five individual forecasting models according to the autocorrelation pattern. 

Step 5. Compute the accuracy as the MAPE and RMSE values for each method for each time-series dataset. 

Step 6. Compare the performances of the individual forecasting models and the combined forecasting methods for 

each autocorrelation pattern in terms of the MAPE and RMSE values. 

 

 
Figure 4 A flow chart of the experimental study of 30 time-series datasets with stationary, trend, or trend and 

seasonal patterns analyzed with five individual forecasting models and three combined forecasting methods. SMA, 

simple moving average; DMA, double moving average; SES, single exponential smoothing; DES, double 

exponential smoothing; HW, Holt-Winters; BJ, Box-Jenkins; DC, decomposition; SVM, support vector machine; 

ANN, artificial neural network; SA, simple-average; BG, Bates-Granger. 

The measures for forecasting accuracy 

The most frequently used measures to identify the most accurate methods for time-series forecasting are 

MAPE and RMSE (Wongoutong 2020). These two error indices were used to verify the accuracy of time-series 

forecasting in this study. MAPE is a relative error measure using absolute values that can be used to compare the 

forecasting accuracy when using differently scaled time-series data. RMSE is an absolute error measure by using the 

square of the deviation that can prevent positive and negative deviation values from canceling each other out. MAPE 

and RMSE are respectively defined as  

t=1

100%
MAPE = 

ˆ
( ),

n
t t

t

y y

n y

−


2

=1
,RMSE

(y )

=

ˆ
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n
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where ty  and ˆ
ty  are the true and predicted values at time t and n is the number of data points. 
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5. Results and discussion 

The MAPE and RMSE values for the forecasting analysis of the time-series datasets are reported in Tables 2 

and 3 for the stationary pattern, Tables 4 and 5 for the trend pattern, and Tables 6 and 7 for the trend and seasonal data 

pattern respectively. For all 10 real-world datasets of the stationary pattern (S1–S10), the simple moving average, 

single exponential smoothing, Box-Jenkins, ANN, and SVM forecasting models and the combined forecasting simple-

average, Bates-Granger, and proposed methods produced average MAPE values of 15.336%, 15.100%, 14.216%, 

11.325%, 12.782%, 12.141%, 11.130%, and 9.908% (Table 2) and average RMSE values of 922.61, 871.61, 862.84, 

674.70, 814.71, 726.03, 669.07, and 609.35 (Table 3), respectively. These results indicated that the three combined 

forecasting methods outperformed the individual forecasting models. Especially, the proposed method achieved the 

lowest values for both accuracy measures, and it is evident that it quite considerably outperformed the other methods. 

For the time-series datasets with the trend pattern (T1–T10), the double moving average, double exponential 

smoothing, Box-Jenkins, ANN, and SVM forecasting models and the combined forecasting simple-average, Bates-

Granger, and proposed methods produced average MAPE values of 8.065%, 7.767%, 6.196%, 5.754%, 5.474%, 

5.472%, 5.135%, and 5.041% (Table 4) and average RMSE values of 403.791, 336.345, 292.311, 275.590, 281.235, 

274.570, 261.926, and 254.418 (Table 5), respectively. Once again, the three combined forecasting methods 

outperformed the individual forecasting models, and the proposed method provided lower values than the other 

combined forecasting methods. 

For the time-series datasets with both the trend and seasonal patterns (TS1–TS10), the decomposition, Holt-

Winters, Box-Jenkins, ANN, and SVM forecasting models and the combined forecasting simple-average, Bates-

Granger, and proposed methods produced average MAPE values of 6.494%, 7.866%, 6.144%, 6.335%, 5.877%, 

5.001%, 4.791%, and 4.696% (Table 6) and average RMSE values of 343.284, 437.498, 334.068, 331.952, 355.457, 

277.649, 265.118, and 258.454 (Table 7), respectively. Once again, the three combined forecasting methods 

outperformed the individual forecasting models, and the proposed method provided lower values than the other 

combined forecasting methods. Thus, the proposed method demonstrated its superiority over the individual forecasting 

models as well as the other combined forecasting methods in all three autocorrelation pattern scenarios. 

 

Table 2. MAPE values of the individual forecasting models and combined forecasting methods for the time-series 

datasets with the stationary autocorrelation pattern. 

Data 
Individual Forecasting Model Combined Forecasting Method 

SMA SES BJ ANN SVM SA BG Proposed 

S1 19.205 22.405 18.628 13.193 16.799 16.064 14.683 10.894 

S2 17.235 15.787 14.162 16.419 14.666 14.562 14.419 14.020 

S3 

 
21.432 19.979 18.918 18.811 17.637 17.396 17.184 16.184 

S4 23.464 21.930 24.255 18.763 19.792 18.771 18.160 16.002 

S5 9.114 8.243 8.149 3.758 6.967 6.533 4.305 3.579 

S6 11.073 10.553 10.378 7.782 8.545 8.024 7.138 6.762 

S7 13.752 12.803 11.613 7.553 12.287 10.103 8.231 7.761 

S8 16.196 17.028 14.958 11.128 12.472 12.080 10.341 8.637 

S0 14.187 14.682 14.598 10.097 12.094 11.994 11.243 10.126 

S10 7.704 7.585 6.500 5.742 6.557 5.883 5.591 5.116 

Average 15.336 15.100 14.216 11.325 12.782 12.141 11.130 9.908 

The underlined values infer the best performance. MAPE: mean absolute percentage error; SMA, simple moving 

average; SES, single exponential smoothing; BJ, Box-Jenkins; SVM, support vector machine; ANN, artificial neural 

network; SA, simple-average; BG, Bates-Granger. 
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Table 3. RMSE values of the individual forecasting models and combined forecasting methods for the time-series 

datasets with the stationary autocorrelation pattern. 

Data 
Individual Forecasting Model Combined Forecasting Method 

SMA SES BJ ANN SVM SA BG Proposed 

S1 873.72 865.76 1063.67 678.86 782.10 738.06 686.59 604.35 

S2 937.00 860.62 793.92 810.95 813.56 756.20 748.42 709.83 

S3 

 
1622.55 1464.03 1418.21 1355.51 1445.52 1286.92 1257.94 1136.68 

S4 1512.19 1469.14 1453.55 1235.57 1350.38 1229.69 1201.67 1111.42 

S5 716.15 652.53 650.73 297.81 597.57 523.90 358.73 312.26 

S6 921.51 860.18 830.57 605.33 805.07 677.39 608.18 569.94 

S7 653.50 611.68 584.82 367.81 612.56 499.68 401.76 375.97 

S8 627.67 615.07 607.87 460.27 571.58 514.55 482.67 437.36 

S0 890.93 844.91 809.07 575.35 737.99 658.13 585.83 503.31 

S10 470.87 472.13 415.95 359.55 430.76 375.81 358.86 332.34 

Average 922.61 871.61 862.84 674.70 814.71 726.03 669.07 609.35 

The underlined values infer the best performance. RMSE: root-mean-squared error; SMA, simple moving average; 

SES, single exponential smoothing; BJ, Box-Jenkins; SVM, support vector machine; ANN, artificial neural network; 

SA, simple-average; BG, Bates-Granger. 

 

Table 4. MAPE values of the individual forecasting models and combined forecasting methods for the time-series 

datasets with the trend autocorrelation pattern. 

Data 
Individual Forecasting Model Combined Forecasting Method 

DMA DES BJ ANN SVM SA BG Proposed 

T1 14.731 11.119 10.665 11.556 8.326 9.056 8.435 8.007 

T2 1.148 0.730 0.745 0.827 0.682 0.726 0.698 0.690 

T3 1.120 0.926 0.901 0.955 0.769 0.783 0.762 0.744 

T4 14.098 22.240 11.447 6.901 8.123 7.910 6.896 6.812 

T5 3.734 3.123 3.005 2.772 2.854 2.852 2.805 2.769 

T6 17.094 14.900 12.194 9.728 11.930 12.170 11.338 11.136 

T7 8.466 7.917 7.167 6.373 6.526 6.603 6.501 6.408 

T8 2.952 2.695 2.634 3.314 2.145 2.228 2.206 2.207 

T9 10.900 8.159 7.111 8.131 6.660 6.935 6.694 6.589 

T10 6.403 5.863 6.088 6.987 6.721 5.003 5.013 5.050 

Average 8.065 7.767 6.196 5.754 5.474 5.427 5.135 5.041 

The underlined values infer the best performance. MAPE: mean absolute percentage error; DMA, double moving 

average; DES, double exponential smoothing; BJ, Box-Jenkins; SVM, support vector machine; ANN, artificial 

neural network; SA, simple-average; BG, Bates-Granger. 
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Table 5. RMSE values of the individual forecasting models and combined forecasting methods for the time-series 

datasets with the trend autocorrelation pattern. 

Data 
Individual Forecasting Model Combined Forecasting Method 

DMA DES BJ ANN SVM SA BG Proposed 

T1 652.476 475.337 456.317 474.166 424.244 411.119 393.039 358.372 

T2 90.923 68.069 65.346 66.940 61.150 63.538 61.745 59.807 

T3 76.021 61.505 58.434 59.154 51.690 52.502 51.195 49.902 

T4 500.535 467.082 369.204 249.900 335.846 298.242 268.365 265.308 

T5 250.034 203.020 199.696 181.095 190.688 186.472 182.810 179.650 

T6 1016.762 889.997 688.674 571.876 679.656 691.334 639.244 627.792 

T7 498.514 469.226 410.799 372.069 383.647 392.091 383.633 376.839 

T8 176.723 144.522 142.349 183.565 135.536 126.907 126.812 125.007 

T9 357.192 279.087 236.186 264.352 228.268 231.369 223.119 214.443 

T10 418.734 305.605 296.107 332.786 321.622 292.130 289.298 287.060 

Average 403.791 336.345 292.311 275.590 281.235 274.570 261.926 254.418 

The underlined values infer the best performance. RMSE: root-mean-squared error; DMA, double moving average; 

DES, double exponential smoothing; BJ, Box-Jenkins; SVM, support vector machine; ANN, artificial neural 

network; SA, simple-average; BG, Bates-Granger. 

 

Table 6. MAPE values of the individual forecasting models and combined forecasting methods for the time-series 

datasets with both trend and seasonal autocorrelation patterns. 

Data 
Individual Forecasting Model Combined Forecasting Method 

DC HW BJ ANN SVM SA BG Propose
d 

TS1 10.024 15.327 11.548 15.690 9.930 9.546 9.428 9.097 

TS2 11.755 15.158 12.437 9.403 11.740 9.864 8.944 8.574 

TS3 7.448 9.095 8.869 6.580 6.610 5.690 5.498 5.326 

TS4 7.225 7.190 4.354 6.927 4.492 4.321 4.165 4.165 

TS5 3.676 3.860 3.549 3.247 3.789 2.878 2.680 2.601 

TS6 6.683 6.379 3.478 5.631 4.333 3.141 2.985 3.138 

TS7 4.650 4.789 3.974 3.405 4.509 3.377 3.260 3.163 

TS8 3.829 4.847 3.705 3.562 3.896 3.141 3.082 3.078 

TS9 4.597 6.408 4.646 4.479 4.265 3.791 3.674 3.668 

TS10 5.053 5.608 4.877 4.426 5.203 4.263 4.194 4.148 

Average 6.494 7.866 6.144 6.335 5.877 5.001 4.791 4.696 

The underlined values infer the best performance. MAPE: mean absolute percentage error; HW, Holt-Winters; BJ, 

Box-Jenkins; DC, decomposition; SVM, support vector machine; ANN, artificial neural network; SA, simple-

average; BG, Bates-Granger. 
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Table 7. RMSE values of the individual forecasting models and combined forecasting methods for the time-series 

datasets with both trend and seasonal autocorrelation patterns. 

Data 
Individual Forecasting Model Combined Forecasting Method 

DC HW BJ ANN SVM SA BG Proposed 

TS1 615.312 965.849 665.456 896.985 635.966 572.952 562.499 552.666 

TS3 643.688 925.782 671.660 571.478 704.502 558.030 508.313 486.110 

TS6 355.444 389.245 442.585 305.482 379.185 319.955 308.858 299.939 

TS2 272.295 311.588 179.902 219.255 203.944 153.698 153.018 152.666 

TS5 379.939 406.573 341.290 312.902 474.918 299.245 275.880 264.713 

TS6 271.404 259.857 184.195 249.815 213.097 149.592 147.863 152.765 

TS7 345.054 381.626 309.808 279.540 362.976 262.884 251.815 242.338 

TS8 168.647 233.362 169.674 155.386 192.658 148.672 143.757 141.169 

TS9 185.170 287.126 182.558 165.705 163.034 146.256 138.895 135.791 

TS10 195.887 213.974 193.547 162.970 224.290 165.210 160.285 156.387 

Average 343.284 437.498 334.068 331.952 355.457 277.649 265.118 258.454 

The underlined values infer the best performance. RMSE: root-mean-squared error; HW, Holt-Winters; BJ, Box-

Jenkins; DC, decomposition; SVM, support vector machine; ANN, artificial neural network; SA, simple-average; 

BG, Bates-Granger. 

As examples, bar charts of the MAPE values of stationary, trend, and trend and seasonal datasets S1, T1, and 

TS1 are shown in Figure 5 (a)–(c), respectively. These offer a clear visual demonstration of the superiority of the 

proposed method over the five individual forecasting models and the other two combined forecasting methods. 

 
 

 

(a) 

 

 

(b) 

 

 

(c) 

Figure 5. Bar charts of MAPE values for the forecasting analyses of the S1 stationary pattern dataset (a), the T1 

trend pattern dataset (b) and the TS1 dataset with both trend and seasonal patterns. SMA, simple moving average; 

DMA, double moving average; SES, single exponential smoothing; DES, double exponential smoothing; HW, Holt-

Winters; BJ, Box-Jenkins; DC, decomposition; SVM, support vector machine; ANN, artificial neural network; SA, 

simple-average; BG, Bates-Granger. 

 

Classification clusters of the performances of the forecasting models and combined forecasting methods for 

time-series datasets with stationary, trend, or both trend and seasonal patterns are presented as a heatmap of their 

MAPE values in Figure 6 (a)–(c), respectively. In this study, clustering was achieved by using Euclidean distance and 

the complete linkage method from the hclust function in the R statistics package version 4.0.3 to find similar groups 
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in each pattern. Next, the dendrograms clustering the algorithm branches were rotated so that the blocks of high and 

low expression values were near to in the expression matrix. Finally, visualization was realized by applying a color 

scheme to display the expression matrix. The tree branches were rotated to create blocks in which the individual values 

were the closest in both directions. These are color-coded as expression values. 

For the stationary pattern datasets (S1–S10), the heatmaps in Figure 6 (a) clearly show the patterns picked 

out by the clustering algorithm as three clustering groups for the MAPE values (worst to best). The first group contains 

the Box-Jenkins, simple moving average, single exponential smoothing models, the second group contains the SVM 

model and simple-average method, and the third group contains the ANN model and the Bates-Granger and proposed 

methods. 

For the trend pattern datasets (T1–T10), the heatmaps in Figure 6 (b) once again show three clustering groups; 

the first contains the double moving average and double exponential smoothing models, the second contains the Box-

Jenkins and ANN models, and the third contains the SVM model and the simple-average, Bates-Granger, and proposed 

methods. 

For the datasets with both trend and seasonal patterns (TS1–TS10), the heatmaps in Figure 6 (c) once again 

shows three clustering groups; the first contains the Holt-Winters and ANN models, the second contains the 

decomposition, Box-Jenkins, and SVM models, and the third contains the simple-average, Bates-Granger, and 

proposed methods. Thus, the proposed method was categorized into the same groups as Bates-Granger and the best 

individual forecasting models. 

The performances of the forecasting models and combined forecasting methods in terms of their MAPE 

values when analyzing time-series data with stationary, trend, or both trend and seasonal patterns are presented as 

boxplots in Figure 7 (a)–(c), respectively. These show that the median of the MAPE of most of the individual 

forecasting models was above the grand median (except for the ANN model with the stationary pattern datasets), while 

the three combined forecasting methods provided MAPE medians below the grand median. Especially, the proposed 

method achieved the lowest MAPE median for all autocorrelation patterns. 

 

   

(a) (b) (c) 

Figure 6. Heatmaps of the MAPE values for (a) stationary pattern datasets S1–S10, (b) trend pattern datasets T1–

T10, and (c) datasets with both trend and seasonal patterns TS1–TS10. SMA, simple moving average; DMA, double 

moving average; SES, single exponential smoothing; DES, double exponential smoothing; HW, Holt-Winters; BJ, 

Box-Jenkins; DC, decomposition; SVM, support vector machine; ANN, artificial neural network; SA, simple-

average; BG, Bates-Granger. 
 

 
(a) 

 
(b) 

 
(c) 

Grand Median =12.38 Grand Median =6.46 Grand Median =4.56 
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Figure 7. Boxplots of the MAPE values for (a) stationary pattern datasets S1–S10, (b) trend pattern datasets T1–

T10, and (c) datasets with both trend and seasonal patterns TS1–TS10. SMA, simple moving average; DMA, double 

moving average; SES, single exponential smoothing; DES, double exponential smoothing; HW, Holt-Winters; BJ, 

Box-Jenkins; DC, decomposition; SVM, support vector machine; ANN, artificial neural network; SA, simple-

average; BG, Bates-Granger. 

The proposed method's overall improvement in MAPE and RMSE was calculated relative to the five 

individual forecasting models and the two other combined forecasting methods for the three autocorrelation patterns 

(stationary, trend, and both trend and seasonality) (Table 8). For the stationary data, the improvement in MAPE by 

the proposed method was 37.03%, 35.33%, 30.93%, 10.88%, and 24.23% over the simple moving average, single 

exponential smoothing, Box-Jenkins, ANN, and SVM models, respectively, and 19.89% and 10.90% over the simple-

average and Bates-Granger methods, respectively. Similarly, the improvement in RMSE by the proposed method was 

35.18%, 31.78%, 30.22%, and 7.35% over the simple moving average, single exponential smoothing, Box-Jenkins, 

ANN, and SVM models, respectively, and 17.67% and 9.08% over the simple-average and Bates-Granger, 

respectively. The results for the datasets with the trend pattern or with both the trend and seasonal patterns exhibited 

the same trend. It is once again evident that the proposed method outperformed the five individual forecasting models 

and the other two combined forecasting methods for all three autocorrelation patterns, particularly so for the stationary 

pattern. For the other two patterns, although the proposed method was better than the individual forecasting models, 

the Bates-Granger method was almost as effective as the proposed method. 

Table 8. The percentage improvement in MAPE and RMSE by the proposed method over the five individual 

forecasting models and two combined forecasting methods. 

Type 

Stationary  Trend Trend and Seasonal 

Improvement by the Proposed Method (%) 

 

 
Method MAPE RMSE  Method MAPE RMSE  Method MAPE  RMSE  

Individual 

SMA 37.03 35.18 DMA 34.17 35.21 DC 39.03 39.59 

SES 35.33 31.78 DES 22.94 20.22 HW 27.92 26.11 

BJ 30.93 30.22 BJ 15.79 12.43 BJ 20.64 21.48 

ANN 10.88 7.35 ANN 13.58 9.88 ANN 21.9 18.43 

SVM 24.23 26.82 SVM 5.65 8.20 SVM 20.61 26.97 

Combined 
SA 19.89 17.67 SA 5.48 6.20 SA 5.18 5.81 

BG 10.9 9.08 BG 1.51 2.70 BG 1.3 2.02 

SMA, simple moving average; DMA, double moving average; SES, single exponential smoothing; DES, double 

exponential smoothing; HW, Holt-Winters; BJ, Box-Jenkins; DC, decomposition; SVM, support vector machine; 

ANN, artificial neural network; SA, simple-average; BG, Bates-Granger. 

6. Conclusions 

In practice, it is quite common for one forecasting model to perform well in certain periods while other 

models perform better in other periods. Thus, it is a challenge to find a forecasting model that outperforms all other 

ones under all circumstances. One approach to improving the accuracy of forecasting to combine forecasts from two 

or more different forecasting models. Herein, we propose a new weighting system for combined forecasting methods 

by obtaining the correlation coefficients between the actual and predicted values from the individual forecasting 

models and ranking them. 

In this study, time-series datasets with three autocorrelation patterns (stationary, trend, or both trend and 

seasonal) were used to evaluate the forecasting performance of the proposed method. As well as outperforming the 

individual forecasting models, it obviously outperformed the other combined forecasting methods, especially when 

the autocorrelation pattern was stationary. For this pattern, the improvement in MAPE and RMSE values was 35–37% 
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for the worst-performing individual forecasting model and 7–10% RMSE for the best-performing individual 

forecasting model, and for the combined forecasting methods, the improvement in MAPE and RMSE was 18–20% 

over the simple-average method and 9–11% over the Bates-Granger method. For the time-series datasets with either 

trend or both trend and seasonal patterns, the performances of the proposed and Bates-Granger methods were almost 

(an improvement in MAPE and RMSE of 1–2%). However, the Bates-Granger method is complex due to using the 

diagonal elements in the estimated mean-squared prediction error matrix to compute the combination weights, whereas 

the technique in the proposed method for computing these is much simpler. Therefore, the proposed method is a 

plausible alternative for creating weights for the individual forecasting models in combined forecasting methods. 
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