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Abstract

This study considers classical and Bayesian inference approaches for the coefficient of variation under normality for
the data, especially on the determination of the sample size of a random sample needed in the second stage of an
experiment. This topic has been explored by many authors in the last decades. The first goal of the study is to
present simple formulations to get the inferences of interest for the coefficient of variation under normality and the
usual frequentist approach based on the asymptotic normality of the maximum likelihood estimators for the mean
and standard deviation of the normal distribution and using the delta method to get the inferences of interest for
the coefficient of variation. Simple hypothesis tests and determination of the sample size are discussed under the
frequentist approach.The second goal of the study is to present a sample size determination under a Bayesian approach,
where it is assumed a Jeffreys non-informative prior distribution of the parameters of the normal distribution assumed
for the data and using standard Markov Chain Monte Carlo (MCMC) methods to get the posterior summaries of
interest.

Key Words: coefficient of variation; normal distribution; sample determination; delta method; Bayesian approach;
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1. Introduction

The coefficient of variation (CV) defined by CV = σ/µ, where σ is the standard deviation and µ is the mean, is a
statistical measure of the dispersion of data around the mean also known as relative standard deviation (RSD). The
coefficient of variation provides a relatively simple tool to compare different data series which is an advantage for
the use of standard deviation which is measured in the context of the mean of the data. In some areas of application,
as finance for example, the CV is used in investment selection where the CV is linked to the risk-to-reward ratio of
investment. Other areas of applications of the CV are given in engineering or physics linked to quality assurance
studies and in neuroscience.
An advantage for the use the CV in applications is that the actual value of the CV is independent of the unit in which
the measurement has been taken, so it is a dimensionless number. A disadvantages for the use of the CV is observed
when the mean value is close to zero. In this situation, the coefficient of variation will approach infinity and is therefore
sensitive to small changes in the mean.
Assuming a random sample of size n given by the vector X = (X1, X2, · · · , Xn) of a normal distribution N(µ, σ2),
a bised estimator of CV is given by (̂CV ) = s/X where s2 is the sample variance defined by (n − 1)s2 =
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and X is the sample mean given by nX =
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Xj . An unbiased estimator (Sokal and Rohlf, 1995) is

given by ĈV
∗
= (1 + 1/4n)ĈV .

The sampling distribution of the CV was introduced by Hendricks and Robey (1936) which could be useful in the
construction of hypothesis tests or confidence intervals is given by the probability density function,
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where y denotes the CV.
Statistical inference for the coefficient of variation in normally distributed data is often based on McKay’s chi-square
approximation for the coefficient of variation ((Iglewicz and Myers, 1970); (Bennett, 1976); (Vangel, 1996); (Feltz
and Miller, 1996); (Forkman, 2009); (Krishnamoorthy and Lee, 2014)).
In clinical trials applications, Connett and Lee (1990) introduced the estimation of the coefficient of variation from
laboratory analysis of split specimens for quality control where an explicit statistical model was proposed for the
coefficient of variation for laboratory analyses of constituents of blood, serum, saliva, or other specimens.
(Lehmann and Lehmann, (1986)) also assuming a random sample of size n of a normal distribution N(µ, σ2), derived
the sample distribution of the CV to get an exact method for the construction of a confidence interval for CV based on
a non-central t-distribution for X

√
n/s with n-1 degrees of freedom and non-centrality parameter µ

√
n/σ.

Other likelihood inference procedures were also proposed in the literature to construct confidence intervals for the CV
(see Barndorff-Nielsen, (1986); Barndorff-Nielsen, (1991); Pierce and Peters, (1992); Reid, (1995)).
The coefficient of variation is also often used as a measure of precision and reproducibility of data in medical and
biological sciences. (Tian, 2005) considers the problem of making inference about the common population coefficient
of variation when it is a priori suspected that several independent samples are from populations with a common
coefficient of variation.
Many other studies were also introduced in the literature. (Ahmed, (1995); Ahmed, (2002)) introduced a pooling
methodology for the coefficient of variation. (Bennett, (1978)) introduced likelihood ratio (LR) tests for homogeneity
of coefficients of variation in repeated samples. (Doornbos and Dijkstra, (1983)) introduced a multisample test for
the equality of coefficients of variation in normal populations. (Forkman and Verrill, (2008)) derived the distribution
of McKay’s approximation for the coefficient of variation. (Fung and Tsang, (1998)) introduced a simulation study
comparing tests for the equality of coefficients of variation. (Jafari and Kazemi, (2013)) considered a parametric boot-
strap approach for the equality of coefficients of variation. (Jafari, (2015)) introduced inferences on the coefficients of
variation in a multivariate normal population. (Gupta and Ma, (1996)) considered testing the equality of coefficients of
variation in k normal populations. (Mahmoudvand and Hassani, (2009)) introduced two new confidence intervals for
the coefficient of variation in a normal distribution. (Edward Miller, (1991)) studied asymptotic test statistics for co-
efficients of variation. (Subrahmanya Nairy and Aruna Rao, (2003)) derived tests of coefficient of variation of normal
populations. (Pardo and Pardo, (2000)) used Renyi’s divergence to test for the equality of the coefficient of variation.
(Verrill, (2003)) derived confidence bounds for normal and lognormal distribution coefficients of variation.(Verrill and
Johnson, (2007)) presented confidence bounds and hypothesis tests for normal distribution coefficients of variation.
(Wong and Wu, (2002)) studied small sample asymptotic inference for the coefficient of variation considering normal
and nonnormal models.

2. Inference under a classical approach

Let us assume a random sample of size n given by the vector X = (X1, X2, · · · , Xn) of a normal N(µ, σ2). The
likelihood function for µ and σ is given by,

L(µ, σ) =

n∏
i=1

1√
2πσ2

exp

{
− 1

2σ2
(Xi − µ)

2

}
(2)

That is,
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}
The logarithm of the likelihood function is given by,

l(µ, σ) ∝ n log(σ)− 1

2σ2

n∑
i=1

(Xi − µ)
2 (3)

From the equations ∂l/∂σ = 0 and ∂l/∂µ = 0, we get the maximum likelihood estimators (MLE) for µ and σ given

respectively, by, µ̂ =

n∑
j=1

Xj/n (a unbiased estimator) and σ̂2 =

n∑
j=1

(
Xj −X

)2
(a biased estimator). The MLE

estimator of σ is the positive square root of σ̂2. From the invariance property of MLE we also get the MLE for the CV,
θ = σ/µ given by θ̂ = σ̂/µ̂. It is important to point out that when the transformation of the parameters is one-to-one,
the invariance property of maximum lilelihood estimators is a standard inference result. The invariance property is
also extended to arbitrary transformations of the parameters (see Casella and Berger, (2021)).
The second derivatives of the log-likelihood function l(µ, σ) with respect to µ and σ are given by,

∂2l

∂σ2
=

n
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− 3

σ4
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∂2l

∂µ2
= − n

σ2
(4)

∂2l

∂σ∂µ
= − 3

σ3

n∑
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(Xi − µ)2

The Fisher information matrix I(µ, σ) is obtained from E[−∂2l/∂µ2] = n/σ2, E[−∂2l/∂σ2] = 2n/σ2 and E[−∂2l/∂µ∂σ] =
0.That is,

I(µ, σ) =

 n

σ2
0

0
2n

σ2

 (5)

The MLE µ̂ and σ̂ have a asymptotic bivariate normal distribution for large values of n given by, N(v, I−1(v̂)), where
v = (µ, σ2), where, I−1(v) is given by,

I(µ, σ) =

σ2

n
0

0
σ2

2n

 (6)

Considering that the coefficient of variation CV = σ/µ is the parameter of interest, we could consider a reparametriza-
tion θ = σ/µ and τ = σ. With these parameter trasformations, the likelihood function for θ and τ is given by,

L(θ, τ) ∝ (τ2)−n/2 exp

{
− 1

2τ2

n∑
i=1

(
Xi −

τ

θ

)2
}

(7)

Assuming this reparameterization, we could get the MLE for θ and τ , using numerical methods to solve the equations
∂l/∂θ = 0 and ∂l/∂τ = 0, and from the Fisher information matrix for θ and τ , we could get the asymptotic bivariate
normal distribution for θ̂ and τ̂ . From the asymptotic bivariate normal distribution for θ̂ and τ̂ , we could obtain the
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asymptotic univariate distribution for the MLE for the CV = θ = σ/µ (a laborious solution) to obtain a sample
distribution to be used to get confidence intervals and hypothesis tests for θ. Alternatively, we propose in this study,
the use of the “delta method” to get the asymptotic univariate sample distribution for θ̂ = σ̂/µ̂.

The delta method is a well known probability/statistics result concerning the approximate probability distribution for a
function of an asymptotically normal statistical estimator from the knowledge of the limiting variance of that estimator
(Doob, (1935); Ver Hoef, (2012)). The accuracy of the inference results could be not be the better compared to other
existing approaches introduced in the literature but it is simple to be used in practical work as we show in this study.

2.1. Delta method for the bivariate case

Let us assume a random variable X with a probability distribution with density f(x; θ) where θ = (θ1, θ2) are the
parameters of the distribution, and θ̂1 and θ̂2 are the MLE of θ1 and θ2. Thus, for large values of n, θ̂= (θ̂1, θ̂2) has an
asymptotic bivariate normal distribution N2(θ1, θ2), I−1(θ), where I(θ) is the Fisher information matrix.

Let us assume a function of θ1 and θ2, given by g(θ1, θ2). Also assume that the usual standard regularity conditions
are satisfied. Thus,

g(θ̂1, θ̂2) ∼ N(g(θ1, θ2), σ
2
12) (8)

where,

σ2
12 = σ2

1(∂g/∂θ1)
2 + 2σ12(∂g/∂θ1)(∂g/∂θ2) + σ2

2(∂g/∂θ2) (9)

and the derivatives are calculated in the maximum likelihood estimators (θ̂1, θ̂2) and,

I(θ̂) =

(
σ2
1 σ12

σ12 σ2
2

)
(10)

(See Lehmann and Lehmann, (1986)).

2.2. Hypothesis tests

Assuming that the data (X1, X2, · · · , Xn) is a random sample of a normal distribution N(µ, σ2), we have the vector
parameter θ = (θ1, θ2) where θ1 = µ and θ2 = σ. For large sample sizes, the maximum likelihood estimator for θ has
an asymptotic normal distribution θ̂ ∼ N(θ, I−1(θ)), where I−1(θ) is given by (6), that is, σ2

1 = σ2
µ = σ2/n, σ2

2 =
σ2
σ = σ2/2n and σ12 = 0 in (10). From, (9) we have σ2

µσ = σ2
µ(∂g/∂µ)

2 + σ2
σ(∂g/∂σ)

2 where g(µ, σ) = σ/µ. The
first partial derivatives of g with respect to µ and σ are given, respectively, by ∂g/∂µ = −σ/µ2 and ∂g/∂σ = 1/µ .
Thus,

g(µ̂, σ̂) =
σ̂

µ̂
∼ N

(
σ

µ
, σ2

µσ

)
(11)

where σ2
µσ = (σ2/n)(−σ/µ2)2 + (σ2/2n)(1/µ)2 = (σ2/nµ2)(σ2/µ2 + 1/2).

Let us assume the simple hypothesis tests given by, H0 : σ/µ = a0 versus the alternative hypothesis H1 : σ/µ = a1,
where a0 and a1 are known constants (a0 < a1). The rejection region is given: reject H0 : σ/µ = a0 if σ̂/µ̂ > k
where k is found by fixing a significance level α. That is,
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α = P (Type I error)
= P (σ̂/µ̂ ≥ K | H0 : σ/µ = a0)

=
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= P (Z ≥ zα)
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[
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+

1

2

] (13)

Thus, we reject H0 : σ/µ = a0 in a fixed significant level α, if σ̂/µ̂ > k , where,

k = a0 + zα

√
σ̂2

nµ̂2

[
σ̂2

µ̂2
+

1

2

]
(14)

2.3. Sample size determination under a classical inference approach

In many studies (for example clinical trials), the sample sizes are small where at the beginning of an experiment, a
small number n1 of units are put to the test and with the information of this first stage, we are interested in determining
the number of units n2 to estimate the CV parameter with a fixed accuracy. In general, under the classical approach
we use the power function or in the case of a simple null hypothesis versus a simple alternative hypothesis we fix the
probabilities of type I error and type II error to estimate the sample size needed in a second stage. From (12), the
asymptotic sampling distribution to test H0 : σ/µ = a0 versus H1 : σ/µ = a1(a0 < a1) is given by,

Z =

σ̂

µ̂
− a0√

σ̂2

nµ̂2

[
σ̂2

µ̂2
+

1

2

] (15)

With the α significance level fixed (a small value), we have from (12) and (13):

Zα =
k − a0√

σ̂2

nµ̂2

[
σ̂2

µ̂2
+

1

2

] (16)

where P (Z ≥ zα) = α and Z has the standard normal distribution, Z ∼ N(0, 1).

Under the alternative hypothesis H1 : σ/µ = a1 , assuming a fixed value for β (a small value) for the probability of
type II error, we have,

Sample when the parameter of interest is the coefficient of variation under normality for the data 161



Pak.j.stat.oper.res. Vol.20 No.2 2024 pp 157-170 DOI: http://dx.doi.org/10.18187/pjsor.v20i2.4240

β = P (Type II error)
= P (σ̂/µ̂ < k | H1 : σ/µ = a1)

=
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− a1√
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= P (Z < −zβ)

That is,
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From (16) and (18), we get (elimination of k) the equation,

a0 + zα

√
σ̂2

nµ̂2

[
σ̂2

µ̂2
+

1

2

]
= a1 − zβ

√
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2

]
(19)

Solving the equation (19) for n, we get the needed sample size for the second stage,

n =

(zα + zβ)
2
σ̂2

[
σ̂2

µ̂2
+

1

2

]
(a1 − a0)

2
µ̂2

(20)

where zα , zβ , a0 and a1 are known constants and σ̂ and µ̂ are MLE of σ and µ̂ obtained in the first stage.

3. Inference under a Bayesian approach

If the parameter of interest is the CV given by θ = σ/µ, assuming a random sample of size n of a normal distribution
N(µ, σ2), we assume a joint Jeffreys non-informative prior distribution (Jeffreys, (1946) Kass and Wasserman; (1996);
Lee, (2012)) for the parameters µ and σ given by,

π(µ, σ) ∝
√

det [I(µ, σ)] (21)

where I(µ, σ) is the Fisher information matrix (4).
That is,

π(µ, σ) ∝ 1

σ2
(22)

for −∞ < µ < ∞ and σ > 0.
The joint posterior distribution for µ and σ is obtained using the Bayes formula (Box and Tiao, (1973)) by combining
the prior distribution 22) with the likelihood function (2), that is,
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π(µ, σ | data) ∝ σ−(n+2) exp

{
− 1

2σ2

n∑
i=1

(Xi − µ)2

}
(23)

for −∞ < µ < ∞ and σ > 0.
The posterior summaries of interest are obtained using Markov Chain Monte Carlo (MCMC) simulation methods as
the popular Gibbs sampling algorithm or the Metropolis-Hastings algorithm (Gelfand and Smith, (1990); Chib and
Greenberg, (1995)) using the free existing OpenBUGS software (Lunn et al., (2000)). Since the OpenBUGS software
only requires the likelihood function and the prior distributions for each parameter of the model, we do not present
here all conditional posterior distributions p(θj/θ(j), data), where θ(j) denotes the vector of all k parameters of the
model except θj , j = 1, 2, · · · , k needed for the Gibbs sampling or Metropolis-Hastings algorithms (see for example,
Bernardo and Smith, (1994)).
In our case we get Monte Carlo estimates for the posterior means for µ and σ assuming a quadratic loss function. With
the same generated Gibbs samples for µ and σ, we also get simultaneously Monte Carlo estimates for the CV given
by θ = σ/µ (point estimate and 95% credible interval for θ).
Observe that the joint posterior distribution for µ and σ (23) could be given by,

π(µ, σ | data) ∝ σ−(n+2) exp

{
− 1

2σ2

[
(n− 1)s2 + n(X − µ)2

]}
(24)

where X =

n∑
j=1

Xj/n and s2 =

n∑
j=1

(Xj −X)2/(n− 1) (sample mean and sample variance).

Thus the joint posterior distribution π(µ, σ | data) is given by a product of an inverse gamma distribution IG[(n −
1)/2, (n− 1)s2/2] and a normal distribution N(X,σ2/n).

3.1. Sample size determination under a Bayesian inference approach

Usually under a Bayesian approach we consider credible intervals to get the inferences of interest. In this way, we
could obtain the joint posterior distribution for a transformation of variables given by θ = σ/µ and τ = σ from
the joint posterior distribution π(µ, σ | data). From the joint posterior distribution π(θ, τ | data) we could get the
marginal posterior distribution π(θ | data) integrating out τ in the joint distribution π(θ, τ | data). The sample size
in a second stage of the study is obtained considering a fixed length of the (1 − α)% credible interval for the CV
parameter θ = σ/µ.
A great simplification is obtanined using MCMC methods. In this way, we could consider the joint posterior distribu-
tion for µ and σ(23) as a prior distribution in a second stage of the experiment given by,

µ |σ ∼ N(X,σ2/n) (25)

σ ∼ IG[(n− 1)/2, (n− 1)s2/2]

The Bayesian procedure introduced in this study to estimate the sample size n2 needed to have the lenght of a (1−α)%
credibility interval for θ, equal to a fixed value L, is given as follows:

• Simulate a random sample of fixed size n2 from a normal distribution N(b, c2) where b is the Monte Carlo
Bayesian estimate for the posterior mean for µ obtained in the first stage and c is the Monte Carlo Bayesian
estimate for the posterior mean for σ obtained in the first stage.

• With the obtained simulated random sample for the second stage, assume as informative prior distributions for µ
and σ, the posterior distributions given by (25). Use MCMC methods to get the posterior summaries of interest
for the parameters µ, σ and θ = σ/µ.
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• Calculate the length of the credibility interval for θ = σ/µ. If the length is close to the fixed L value, use the n2

value as the estimated sample size needed for the second stage.

• If the obtained lenght of a (1−α)% credible interval for θ obtained above is larger than L, simulate other random
sample with a larger value for n2 from the normal distribution N(b, c2), and repeat the above procedure. If the
lenght of the (1 − α)% credible interval for θ is close to the fixed L value, use the assumed n2 value as the
estimated sample size needed for the second stage.

• Do this procedure until we get the lenght of a (1 − α)% credible interval for θ close (or small) to the fixed L
value and use the final n2 value as the sample size needed for the second stage.

4. Applications

4.1. A simulated data set with 50 observations

Table 1 shows 50 observations simulated from a normal distribution with mean µ = 2.8 and standard deviation σ = 1.8
(sample mean X = 2.764 and sample standard deviation s = 1.801).

Table 1: Simulated data (n=50)

4.95207 4.80491 1.23403 4.36515 3.30947 2.71657 3.11351 0.29848

-0.56406 1.09614 2.20693 4.42328 3.81848 1.30984 1.46244 3.31177

1.21853 1.83959 3.09909 2.19130 2.54555 6.41784 3.91336 4.58615

3.50832 4.10011 5.64794 0.98992 7.00364 1.83242 2.44093 4.83615

1.85789 0.89509 4.68334 5.52501 1.86927 -0.85424 2.74159 2.62888

3.21413 2.71115 1.71850 1.45538 -0.01146 3.63528 -0.31207 4.45551

1.78194 2.75154

The MLE for µ and σ are given respectively by µ̂ = 2.76359 and σ̂ = 1.78247. Let us assume the simple hypothesis
tests given by, H0 : σ/µ = 0.5 versus the alternative hypothesis H1 : σ/µ = 1 assuming a significant level α =
0.5, that is, z0.5 = 1.645. We reject H0 : σ/µ = 0.5 , if σ̂/µ̂ > k , where, k is given in (14). That is, k =
0.5 + 1.645(0.0872996) = 0.643608. Since σ̂/µ̂ = 1.78247/2.764 = 0.644984 > 0.643608, we should reject
H0 : σ/µ = 0.5.

• Determination of sample size under a frequentist approach

Under the null hypothesis, H0 : σ/µ = 0.5 we want to estimate the sample size under the alternative hypothesis
H1 : σ/µ = a1 for different values of a1, assuming α = 0.5 and β = 0.025, that is, zα = z0.05 = 1.645 and
zβ = z0.025 = 1.96 (see section 2.3). From (20) we get the estimated sample size n for the second stage of the
experiment. If a1 = 0.7, we get from (20),

n =

(1.645 + 1.96)2(1.78247)2

[(
1.78247

2.764

)2

+ 0.5

]
(0.7− 0.5)2(2.764)2

= 123.754

Thus, n ≈ 124. Table 2 shows the estimated sample sizes for different values of a1 in the alternative hypothesis.
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Table 2: Sample sizes for different values of a1

a1 n

0.6 495.0.14 ≈ 495

0.7 123.754 ≈ 124

0.8 55.016 ≈ 55

1 19.8006 ≈ 20

• Determination of sample size under a Bayesian approach

Under a Bayesian approach we get the posterior summaries for the joint posterior distribution (23) considering the 50
simulated observations of a normal distribution with mean 2.7 and standard-deviation 1.8 given in Table 1, assuming
a non-informative prior for the mean µ and the standard deviation σ from 1000 generated Gibbs samples (burn in of
size 10000 samples discarded to eliminate the effect of the initial values in the iterative procedure and taking 1000
additional samples) using the OpenBUGS software. Table 3 shows the Monte Carlo estimates of the posterior means,
posterior standard deviations and 95% credible interval for each parameter.

Table 3: Posterior summaries (first stage)

mean sd
Lower Upper

95% ci 95% ci

µ 2.7530 0.2591 2.2710 3.2840

σ 1.8240 0.1910 1.4920 2.2480

θ = σ/µ 0.6686 0.0969 0.5116 0.8987

From the results of Table 3, the length of the 95% credibility interval for the CV , denoted by θ is given by L =
0.8987− 0.5116 = 0.3871.
To find the estimated sample size for a second stage with a fixed value for the length L of the 95% credibility interval
for θ, we simulate from a normal distribution with mean 2.753 and standard-deviation 1.824 (information of the first
stage) samples with different sample sizes until to get approximately the specified fixed length of interest.In the second
stage we assume the informative prior distributions (25) for the parameters µ and σ (information of the first stage).
Let us assume that our objective is to find the sample size n2 for an additional sample having a length L for the 95%
credibility interval for θ given by L = 0.2.
Considering n2 = 50 we generate 50 new observations from a normal distribution with mean 2.753 and standard-
deviation 1.824 (information of the first stage). Assuming the prior distribution (25) for the parameters µ and σ and
the same MCMC scheme used in the first stage using the OpenBUGS software, Table 4 shows the posterior summaries
of interest.

Table 4: Posterior summaries (second stage with n2 = 50)

mean sd
Lower Upper

95% ci 95% ci

µ 2.8090 0.2391 2.3340 3.2430

σ 1.7650 0.1766 1.4580 2.1580

θ = σ/µ 0.6334 0.0865 0.4938 0.8234
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From the results of Table 4, the length of the 95% credibility interval for the CV , denoted by θ is given by L =
0.8234 − 0.4938 = 0.3296.We follow this approach until we get the value n2 to have the length L for the 95%
credibility interval for θ close to L = 0.2.
Table 5 shows the obtained lengths L for the 95% credibility interval for θ assuming different values of n2.

Table 5: Lengths L for the 95% credibility interval for θ assuming different values of n2

n2 L

50 0.3296

120 0.2607

150 0.2567

200 0.1997

From the results of Table 5, we need n2 = 200 additional observations to have a 95% credible interval forθ close to
0.2.

4.2. A simulated data set with 20 observations

Table 1 shows 20 observations simulated from a normal distribution with mean µ = 5.0 and standard deviation σ = 3
(sample mean X = 5.457 and sample standard deviation s = 3.132).

Table 6: Simulated data (n=20)

9.6457 4.2293 3.8995 7.7238 9.7525 6.5453

5.1468 0.3453 9.1116 6.3097 4.6842 -1.1669

6.4149 2.3411 4.2487 10.6894 5.0358 3.5913

2.8369 7.7601

The MLE for µ and σ are given respectively by µ̂ = 5.45724 and σ̂ = 3.05226. Considering the simple hypothesis
tests given by, H0 : θ = σ/µ = 0.6 versus the alternative hypothesis H1 : σ/µ = 0.7 assuming a significant
level α = 0.5, that is, z0.5 = 1.645. We reject H0 : σ/µ = 0.5, if σ̂/µ̂ > k, where k is given in (14). That
is, k = 0.6 + 1.645(0.181752) = 0.898983. Since σ̂/µ̂ = 3.05226/5.45724 = 0.559305 < k, we do not reject
H0 : θ = 0.6 assuming the significance level α = 0.5.

• Determination of sample size under a frequentist approach

Under the null hypothesis, H0 : σ/µ = 0.60 we want to estimate the sample size under the alternative hypothesis
H1 : σ/µ = a1 for different values of a1, assuming α = 0.5 and β = 0.025, that is, zα = z0.05 = 1.645 and
zβ = z0.025 = 1.96 (see section 2.3). From (20) we get the estimated sample size n for the second stage of the
experiment. If a1 = 0.61, we get from (20),

n =

(1.645 + 1.96)2(3.05226)2

[(
3.05226

5.45724

)2

+ 0.5

]
(0.61− 0.60)2(5.45724)2

= 330.448

Thus, n ≈ 331. Table 7 shows the estimated sample sizes for different values of a1 in the alternative hypothesis.
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Table 7: Sample sizes for different values of a1
a1 n

0.61 330.448 ≈ 331

0.62 165.224 ≈ 165

0.63 110.149 ≈ 110

0.64 82.6119 ≈ 83

0.65 66.0895 ≈ 66

0.70 33.0448 ≈ 33

• Determination of a sample size under a Bayesian approach

Under a Bayesian approach we get the posterior summaries for the joint posterior distribution (23) assuming a non-
informative prior for the mean µ and the standard deviation σ from 1000 generated Gibbs samples (burn in of size
10000 samples discarded to eliminate the effect of the initial values in the iterative procedure and taking 1000 ad-
ditional samples) using the OpenBUGS software. Table 8 shows the Monte Carlo estimates of the posterior means,
posterior standard deviations and 95% credible interval for each parameter.

Table 8: Posterior summaries (first stage with n2 = 50)

mean sd
Lower Upper

95% ci 95% ci

µ 5.4520 0.7345 3.9680 6.9500

σ 3.2560 0.5373 2.4310 4.4900

θ = σ/µ 0.6091 0.1390 0.4162 0.9694

From the results of Table 8, the length of the 95% credibility interval for the CV , denoted by θ is given by L =
0.9694 − 0.4162 = 0.5532. To find the estimated sample size for a second stage with a fixed value for the length L
of the 95% credibility interval for θ, we simulate from a normal distribution with mean 5.452 and standard-deviation
3.256 (information of the first stage) samples with different sample sizes until to get approximately the specified fixed
length of interest.In the second stage we assume the informative prior distributions (25) for the parameters µ and σ
(information of the first stage).
Let us assume that our objective is to find the sample size n2 for an additional sample have a length L for the 95%
credible interval for θ given by L = 0.2.
Considering n2 = 50, we generate 50 new observations from a normal distribution with mean 5.452 and standard-
deviation 3.256. Assuming the prior distribution (25) for the parameters µ and σ and the same MCMC scheme used
in the first stage using the OpenBUGS software, Table 9 shows the posterior summaries of interest.

Table 9: Posterior summaries (second stage with n2 = 50)

mean sd
Lower Upper

95% ci 95% ci

µ 2.8430 0.3171 2.2100 3.4860

σ 2.2540 0.2668 1.7960 2.8400

θ = σ/µ 0.8028 0.1340 0.5928 1.1100
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From the results of Table 9, the length of the 95% credibility interval for the CV , denoted by θ is given by L =
1.1100 − 0.5928 = 0.5172. We follow this approach until to get the value n2 to have the length L for the 95%
credibility interval for θ close to L = 0.2.
Table 10 shows the obtained lengths L for the 95% credibility interval for θ assuming different values of n2.

Table 10: Lengths L for the 95% credibility interval for θ (CV) assuming different values of n2

n2 L

50 0.5172

80 0.2546

100 0.2261

110 0.1996

From the results of Table 10 we observe that it is needed n2 = 110 additional observations to have a 95% credible
interval for θ close to 0.2.

5. Conclusions

This study presented simple inference formulations to get classical or Bayesian inference results for the coefficient of
variation assuming data from a normal distribution with mean µ and standard deviation σ. We observe from a review
of the literature on this subject, that there is a very large number of studies to find sample sizes in a second stage of an
experiment assuming as the parameter of interest, the coefficient of variation θ = σ/µ. Many of these studies have as
their main goal, theoretical formulations to get better accurate inference results for the coefficient of variation (CV).
Sometimes the proposed methodology presented in the literature is not simple to be use in applications. In our study,
the main goal was to introduce simple sample size formulas to be used in applications.
In the first part of the study, we presented simple formulations to get the inferences of interest for the coefficient of
variation under normality for the data and using a standard frequentist approach based on the asymptotic normality of
the maximum likelihood estimators for the mean µ and standard deviation σ of the normal distribution and using the
delta method to get the inferences of interest for the coefficient of variation. Simple hypothesis tests and determination
of the sample size are discussed under the frequentist approach. These results also could be generalized for compound
hypotheses.
In the second part of the study we introduced a procedure for sample size determination under a Bayesian approach,
where it is assumed a Jeffreys non-informative prior distribution of the parameters of the normal distribution assumed
for the data and using standard Markov Chain Monte Carlo (MCMC) methods to get the Monte Carlo estimates for
the coefficient of variation θ = σ/µ in a first stage of a experiment. Assuming the obtained posterior distribution
in the first stage as an informative prior in the second stage of an experiment we proposed a simple way to get a
sample size to get a fixed accuracy (fixed length of a credible interval for the parameter θ = σ/µ) of the posterior
distribution. The use of MCMC methods under a Bayesian approach leads to great simplification in obtaining Monte
Carlo estimators for the parameters of the data distribution and also for functions of the original parameters, such as the
coefficient of variation. Thus, point estimators or credible interval estimators with a specified probability are obtained
in a simple way without the need to use a sampling distribution of the estimator of θ = σ/µ (CV ). Thus, the sample
size determination under a Bayesian approach to have a fixed length for de credible interval for the CV is obtained in
a trivial way as observed in this study. These results could be of great interest in different areas of application when
the parameter of interest is the coefficient of variation.
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