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Abstract 

 

Higher-order kernel estimation and kernel density derivative estimation are techniques for reducing the asymptotic 

mean integrated squared error in nonparametric kernel density estimation. A reduction in the error criterion is an 

indication of better performance. The estimation of kernel function relies greatly on bandwidth and the identified 
reduction methods in the literature are bandwidths reliant for their implementation. This study examines the 

performance of higher order kernel estimation and kernel density derivatives estimation techniques with reference 

to the Gaussian kernel estimator owing to its wide applicability in real-life-settings. The explicit expressions for 

the bandwidth selectors of the two techniques in relation to the Gaussian kernel and the bandwidths were accurately 

obtained. Empirical results using two data sets obviously revealed that kernel density derivative estimation 

outperformed the higher order kernel estimation excellently well with the asymptotic mean integrated squared error 

as the criterion function. 
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1. Introduction. 

The Gaussian kernel estimator is of numerous applications in many fields of study. The extensive applicability of the 

Gaussian distribution is attributed to its ability to define the probability of any given data set and the smoothness of 

its estimates using mathematical tools. In probability theory, the Gaussian distribution explains one hundred percent 

of the values of observations to be investigated in a given probability space with the symmetric property. The Gaussian 

function is very important in image production owing to the fact that it can be easily extended to any desired dimension 

of interest. In density estimation, the Gaussian distribution is fundamental in probability estimation, especially in 

statistics and other related fields (Nan and Ji, 2020; Siloko et al., 2020a; Johnson et al., 2021).  

Density estimation is the production of probability estimates from a set of observations and it is of great significance 
in statistical fields of studies. Generally, the probability density estimate may either be constructed from a known 

probability distribution which is regarded as parametric estimation or from unknown distribution which is 

nonparametric estimation. There is usually a predetermined structure in parametric estimation but structure pre-

determination does not exist in nonparametric estimation because they are pliable. However; the pliability of 

nonparametric techniques is associated with a high computational cost which constricted their utilizations before the 

advent of fast computing systems. The cost of computational analysis of manifold observations is often connected 

with nonparametric estimation particularly with composite statistical designs. There is no imposition of distribution 

in nonparametric estimation because the data reveals the statistical composition which accounted for their extensive 

uses since information about some pre-historical data may not be readily available (Green et al., 2015; Scott, 2015). 
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One of the most studied nonparametric density estimation techniques is the kernel method and the prominence of the 

method is accredited to the clarity of its results and graphical presentation of observations in a comprehensible form 

for the purpose of visualization (Stanislaw, 2018). The kernel estimator is a probability function with several uses in 

many fields of study particular in this information age where series of big data are been analyzed for better decision 

making by individuals and organizations. The popularity of the kernel estimator is also attributed to its reckoning cost-
effectiveness and clarity of presentation of data in a distinctive manner. As an exploratory and visualization tool, the 

kernel estimator has been used indirectly in many areas (see Raykar et al., 2015; King et al., 2016; Helu et al., 2017; 

Rojas, 2017; Spencer, 2017; Bonnier et al., 2019; Siloko et al., 2019; Li et al., 2019; Siloko et al., 2021). Despite the 

relevance of the kernel estimator in numerous fields and its wide applicability in density estimation, the complexity 

connected with the appropriate selection of the bandwidth or smoothing parameter which determines the level of 

smoothness of the estimate is a serious setback to its implementation. The smoothing parameter influences the 

performance of the kernel estimator but applying diverse kernel estimators like the Epanechnikov against Triweight 

kernel will definitely produce dissimilar outcomes due to variation in the derivatives of the function. 

Nonetheless, the performance of kernel method in data analysis can be enhanced by utilizing higher order kernel and 

kernel density derivatives because of their bias and variance reduction property. Regarding higher order kernels, the 

performance typically rely on the magnitude of the bandwidth with its order due to the fact that they converge at faster 

rates than lower order kernels. The justification for higher order kernel is occasioned by their convergence rates but 
often constrained by the production of estimates that are with negative components hence, they are oftentimes not 

probability density estimate and this situation is always complex to be analyzed by data scientists. Irrespective of the 

negative estimates of higher order kernel, the estimation of massive data with higher order kernel has shown their 

superiority over the corresponding lower kernel. The improvement in performance of higher order kernel is regularly 

characterized by a large bandwidth contrary to the usual bandwidth in the estimation of lower order kernels (Marron 

and Wand, 1992; Jones, 1992; Marron, 1994; Wand and Jones, 1995). 

Kernel density derivative estimation have been of immerse significance in data exploration and visualization. The first 

and second derivatives also known as density gradient and density curvature are of vitally importance because 

auxiliary information not provided by examining the density function can be made available in kernel density 

derivative estimation. The secondary information provided by the estimation of the density derivatives enables the 

data analyst to make accurate decision and future prediction. Critical details about the composition of density function 
are not readily available with the examination of the density function alone but can only be obtained through the 

estimation of its derivatives. As a result of the usefulness of density derivative estimation, serious attention should be 

on the vital cases of density gradient estimation and density Hessian estimation which are the first and second 

derivatives before considering other higher derivative with more complex mathematical formulation (see Charnigo 

and Srinivasan, 2011; Henderson and Parmeter, 2015; Sasaki et al., 2015). 

The application of kernel density estimator is largely hindered in practice by the complexity associated with the 

bandwidth selection procedure because the functionality of the estimator depends on the bandwidth. The problem of 

accurate bandwidth selection is more critical in higher order kernel estimation and kernel density derivative estimation 

because of the intricacy of their mathematical formulation that requires high computational know-how. The 

complication of bandwidth selection is more evident in higher dimensional setting since most application of kernel 

estimation is in multivariate case with different forms of parameterization. A superfluity of bandwidth selectors exists 

in literature for density estimation but little progress has been made in higher order kernel estimation and kernel 
density derivative estimation. In spite of the numerous bandwidth selectors, no particular method has been applied in 

all circumstances due to the variation and structural difference of the estimators. There are several bandwidth selectors 

for higher order kernel estimation and kernel density derivatives estimation in univariate case while the multivariate 

case is neglected due to the variations in their parameterizations which involve complex mathematical manipulation 

(see Härdle et al., 1990; Dobrovidov and Rud’ko, 2010; Chacón and Duong, 2013; Somé and Kokonendji, 2021). 

The aim of this paper is to examine two methods of measuring the performance of kernel density estimator which are 

kernel density derivative estimation and higher order kernel estimation. These two methods are asymptotic mean 

integrated squared error (AMISE) reducing strategies either in the bias or variance components. The performance of 

a kernel method is a major determinant of the usability of the kernel method, hence the examination of these 

techniques. The results of the examination reveal that the kernel density derivative estimation is superior to the higher 

order kernel estimation in performance with the AMISE as the criterion function. The scope of this paper will be 
limited to the sixth order kernel estimator and the density curvature estimator because most benefits of higher order 
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kernels are in fourth order kernel while the density gradient estimator helps in the identification of modes of 

distributions. The paper primarily compares the performance of kernel density derivative and higher order kernel using 

the Gaussian kernel function due to the continuous differentiability of the distribution. The other part of this paper is 

organized as follows. In Section 2, the general form of the kernel estimator and its performance measure is presented 

while Sections 3 presents higher order kernel estimation and kernel density derivative estimation with the performance 
measure. Section 4 is the results and discussion using real data with emphasis on univariate and bivariate cases only. 

Section 5 concludes the paper. 

2. Kernel Density Estimator. 

The kernel estimator proposed by Rosenblatt (1956) and Parzen (1962) is a weighting function with its univariate 

form given as 

𝑓(x) =
1

𝑛ℎx

∑ 𝐾

𝑛

𝑖=1

(
x − 𝑋𝑖

ℎx

),       
 

(2.1) 

where 𝐾(∙) is the kernel function, 𝑛 is the sample size, ℎx > 0 is bandwidth (known as smoothing parameter), x 

represents the range of the observations and 𝑋𝑖 are the observations. The kernel function is symmetric and non-

negative function satisfying the following conditions 

∫ 𝐾(x)𝑑x = 1,   ∫ x𝐾(x)𝑑x = 0  and  ∫ x2𝐾(x)𝑑x = 𝜇2(𝐾) ≠ 0. 
 

(2.2) 

The conditions in (2.2) suggest that the kernel function is a probability density function because the function must 
integrate to one with a zero mean and a variance greater than zero (Scott, 2015). The choice of the kernel function is 

not critical owing to the fact that most kernel functions are probability density function but the choice of the 

bandwidths has been critically investigated with no single universally acceptable rule in all situations. The 

performance of the kernel estimator in (2.1) can be assessed using several error criteria functions but the asymptotic 

mean integrated squared error (AMISE) is consider in this paper due to its inclusion of dimension unlike other error 

criteria that are dimensionless. The inclusion of dimension in kernel density estimation is a characteristic that provides 

significant benefits in practical applications. The AMISE has two components which are the integrated variance and 

integrated squared bias given by 

𝐴𝑀𝐼𝑆𝐸(𝑓(∙)) =
𝑅(𝐾)

𝑛ℎx 
+

1

4
𝜇2(𝐾)2ℎx

4𝑅(𝑓″).  
 

(2.3) 

In Equation (2.3), 𝑅(𝐾) = ∫ 𝐾(x)2𝑑x  is usually known as roughness of the kernel while 𝜇2(𝐾)2
 
 represents the kernel 

variance. The quantity 𝑅(𝑓″) = ∫ 𝑓″(x)2𝑑x is the roughness of the unknown probability distribution for the 

estimation. The two components of the AMISE depend on the bandwidth which regulates their contributions to the 

AMISE respectively. The bandwidth with the minimum AMISE called the optimal bandwidth is of the form  

ℎx−AMISE = [
𝑅(𝐾)

𝜇2(𝐾)2𝑅(𝑓″) 

]

1 (𝑑+4)⁄

× 𝑛−1 (𝑑+4)⁄ ,  
 

(2.4) 

where 𝑑 is known as the dimension of the kernel estimator. The kernel estimator is mostly applied in the multivariate 

setting especially the two-dimensional kernel estimator that bridges the univariate and other higher dimensional kernel 

estimator. The bivariate kernel density estimation deals with two random variables jointly and the estimator is 

𝑓(x , y) =
1

𝑛ℎxℎy

∑ 𝐾

𝑛

𝑖=1

(
x − X𝑖

ℎx

,
y − Y𝑖

ℎy

),  
 

(2.5) 

where  ℎx > 0 and  ℎy > 0 are bandwidths for X and Y respectively while x and y are the ranges of the observations. 

The bivariate kernel estimator is an effective analytical tool for data analysis and visualization either as a wireframe 

or contour plot that usually reveal hidden information in the observations (Silverman, 2018; Siloko and Siloko, 2019). 

The product form of the bivariate kernel involves the multiplication of different univariate estimators given as 

𝑓(x, y) =
1

𝑛ℎxℎy

∑  𝐾

𝑛

𝑖=1

(
x − X𝑖

ℎx

) 𝐾 (
y − Y𝑖

ℎy

). 
 

(2.6) 

The product kernel estimator is commonly employed in density estimation and mostly beneficial when there are 

differences in the various axes of the data to be analyzed. Kernel estimation is reasonably practicable within low and 

moderate dimension since at higher dimension, data seems to be sparse and that will generate unstable estimate. Hence, 
the bivariate estimator is of wide applicability in density estimation due to easy accessibility of bivariate data (Scott, 

2015). The AMISE of the bivariate product kernel estimator under the regular assumptions is given as  
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𝐴𝑀𝐼𝑆𝐸 (𝑓(x, y)) =
𝑅(𝐾)

𝑛ℎxℎy

+
ℎx

4

4
𝜇2(𝐾)2 ∫ ∫ (

𝜕2𝑓

𝜕x2
)

2

𝑑x𝑑y +
ℎy

4

4
𝜇2(𝐾)2 ∫ ∫ (

𝜕2𝑓

𝜕y2
)

2

𝑑x𝑑y  
 

(2.7) 

The AMISE of the bivariate kernel estimator also require higher derivatives of the function to be estimated which 

needs approximation as in the univariate kernel estimator.  

3. Higher Order Kernel and Kernel Density Derivative of Gaussian Estimator. 

Higher-order kernel estimation and kernel density derivative estimation are AMISE reduction techniques that use 

large bandwidths. The Gaussian kernel function is our focus because the function is continuously differentiable and 

with the established evidence of its extensive applicability in data mining and other related statistical fields.  

3.1 Higher Order Kernel. 

The rationale behind the application of higher order kernels is mainly due to their fast convergence rates with their 

bias reduction property as against the lower order kernel estimators whose rates of convergence is slow, hence the 

application of higher order kernel estimators (Jones and Foster, 1993; Marron, 1994; Jones and Signorini, 1997; 

Ishiekwene and Osemwenkhae, 2006; Siloko et al., 2019a). A kernel function is usually of higher-order when the 

order denoted by 𝑝 is greater than two, that is  𝑝 > 2. Higher order kernels are usually constructed from their 

corresponding lower order kernels using several techniques such as the additive and multiplicative methods. Higher 

order kernels must satisfy the following conditions 

∫ 𝐾(x)𝑑x = 1, ∫ x𝑖𝐾(x)𝑑x = 0, 𝑖 = 1,3, … , 𝑝 − 1 and ∫ x𝑝𝐾(x)𝑑x ≠ 0, 
 

(3.1.1) 

where 𝑝 is the order of the kernel which is the nonzero moment whereas the odd moments of any kernels are zero. 

The AMISE of the 𝑝th order kernel density function is given by 

𝐴𝑀𝐼𝑆𝐸∗(𝑓(∙))  =
𝑅(𝐾)

𝑛ℎx 
+

1

(𝑝!)2
𝜇𝑝(𝐾)2ℎx

2𝑝
𝑅(𝑓(𝑝)),  

 

(3.1.2) 

where 𝜇𝑝(𝐾)2is the 𝑝th moment of the kernel. The bandwidth that minimizes the AMISE is 

ℎx−AMISE
∗ = [

(𝑝!)2𝑅(𝐾)

2𝑝𝜇2(𝐾)2𝑅(𝑓(𝑝)) 

]

1 (2𝑝+1)⁄

× 𝑛−1 (2𝑝+1)⁄ .  
 

(3.1.3) 

Assuming in the bandwidth that minimizes the AMISE of higher-order kernel estimation, the unknown probability 

density function is the Normal distribution and the Gaussian kernel is employed, then the roughness of the Gaussian 

kernel function which is denoted by 𝑅(𝑓(𝑝)) is given by 

𝑅(𝑓(𝑝)) = ∫{𝑓(𝑝)(x)} 𝑑x =
1

2𝜋𝜎(2𝑝+1)
Γ (

2𝑝 + 1

2
), 

 

(3.1.4) 

where Γ(∙) is the gamma function and 𝑝 = 2, 4, 6, … , ∞ is the order of the kernel function. The optimal bandwidth that 

produces the least AMISE value is given by 

𝐴𝑀𝐼𝑆𝐸∗(𝑓(∙))  = [
𝑅(𝐾)2𝑝𝑅(𝑓(𝑝))

𝜇𝑝(𝐾)−2
]

1/(2𝑝+1)

× 𝑛−2𝑝/(2𝑝+1).  
 

(3.1.5) 

The optimal bandwidth of higher order kernel estimation is of order 𝑂(𝑛−1 (2𝑝+1)⁄ ) while the order of its AMISE 

is 𝑂(𝑛−2𝑝 (2𝑝+1)⁄ ). The large bandwidths necessary for the implementation of higher-order kernels is occasioned by 

the order of the bandwidth. Higher-order kernel estimation also require considerable large sample size in harnessing 

their potential benefits (Siloko et al., 2019b). 

3.2 Kernel Density Derivative Estimation. 

The derivative of a kernel function can be obtained by differentiating the kernel estimator. Given a kernel function 𝐾 

that is sufficiently differentiable 𝑟 times, then the 𝑟𝑡ℎ kernel derivative of Equation (2.1) is of the form 

𝑓(𝑟)(x) =
1

𝑛ℎx
𝑟+1

∑ 𝐾(𝑟)

𝑛

𝑖=1

(
x − X𝑖

ℎx

),  
 

(3.2.1) 

where 𝐾(𝑟) is the 𝑟𝑡ℎ derivative of 𝐾 which is usually a symmetric probability density function. Again, the AMISE 

of the derivative of the kernel estimator if 𝐾 is continuously differentiable is 
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𝐴𝑀𝐼𝑆𝐸(𝑓(𝑟)(∙))  =
𝑅(𝐾(𝑟))

𝑛ℎx
2𝑟+1 

+
1

4
ℎx

4𝜇2(𝐾)2𝑅(𝑓(𝑟+2)),  
 

(3.2.2) 

where 𝑅(𝐾(𝑟)) is roughness of the 𝑟𝑡ℎ kernel derivative estimator, 𝜇2(𝐾)2 is variance and 𝑅(𝑓(𝑟+2)) is roughness of 

𝑟𝑡ℎ unknown probability density function. Every derivative order in kernel density derivative estimation attracts two 

supplemental powers in the asymptotic variance of the AMISE while the order of the asymptotic squared bias is 
constant (Scott, 2015). The bandwidth with minimum AMISE value in (3.2.2) is  

ℎx−AMISE
𝑟 = [

(2𝑟 + 1)𝑅(𝐾(𝑟))

𝜇2(𝐾)2𝑅(𝑓(𝑟+2)) 

]

1 (2𝑟+5)⁄

× 𝑛−1 (2𝑟+5)⁄ . 
 

(3.2.3) 

Again, the 𝑟𝑡ℎ roughness of the Gaussian kernel denoted by 𝑅(𝐾∅
(𝑟)) is given as 

𝑅(𝐾∅
(𝑟)

) =
(2𝑟 − 1)‼

2𝑟+1√𝜋
. 

 

(3.2.4) 

If the unknown distribution is the Gaussian distribution with mean (𝜇) is zero and variance is 𝜎2, then the 𝑟𝑡ℎ 

roughness with respect to the derivative of the distribution is given as 

𝑅(𝑓(𝑟+2)) = {
2(2𝑟+5)(𝑟 + 2)! √𝜋

(2𝑟 + 4)! 𝜎−(2𝑟+5)
}

−1

 
 

(3.2.5) 

Substituting Equation (3.2.5) into Equation (3.2.3) and expressing it in terms of dimension, we have the bandwidth 

with the minimum AMISE of the kernel density derivative estimator as 

ℎx−AMISE
𝑟 = [

2(𝑑+2𝑟+4)(𝑟 + 2)! √𝜋(2𝑟 + 1)𝑅(𝐾(𝑟))

(2𝑟 + 4)! 𝜇2(𝐾)2𝜎−(𝑑+2𝑟+4)
 

]

1 (𝑑+2𝑟+4)⁄

× 𝑛−1 (𝑑+2𝑟+4)⁄ , 
 

(3.2.6) 

where 𝜎 is usually the standard deviation of the observations. The bandwidth for kernel density derivative estimation 

must be appropriately chosen because quality density estimator often times does not give rise to superior kernel density 

derivatives especially as the order of the derivative increases (Sasaki, 2015). The least AMISE value of the optimal 

bandwidth in (3.2.6) is 

𝐴𝑀𝐼𝑆𝐸(𝑓(𝑟)(∙)) = (
2𝑟 + 5

4  
) 𝑅(𝐾(𝑟))

4 (2𝑟+5)⁄
[
𝜇2(𝐾)2

 
𝑅(𝑓(𝑟+2))

2𝑟 + 1
]

2𝑟+1 (2𝑟+5⁄ )

𝑛−4 2𝑟+5⁄ .  
 

(3.2.7) 

The derivative of a function is more boisterous than the function itself, hence large bandwidths are usually required 

for kernel density derivative estimation. In the first and second derivatives, the bandwidths with the minimal AMISE 

values are of orders 𝑂(𝑛−1 7⁄ ) and 𝑂(𝑛−1 9⁄ ) with the AMISE having orders 𝑂(𝑛−4 7⁄ ) and 𝑂(𝑛−4 9⁄ ) respectively.  

3.3 The Gaussian Kernel Estimator. 

The Gaussian kernel is one of the popular kernel estimators because of its production of smooth density estimates and 

possession of derivatives of all orders which promoted its extensive application in kernel density derivative estimation. 

The classical second order Gaussian kernel estimator is the limiting case of the beta polynomial kernel family whose 

univariate form is given by 

𝐾2,∅(x) =
1

√2𝜋
𝑒xp − (

x2

2
). 

 

(3.3.1) 

The corresponding bivariate form of the Gaussian kernel estimator is given as 

𝐾2,∅(x, y) =
1

2𝜋
𝑒xp − (

x2 + y2

2
).  

 

(3.3.2) 

The fourth and sixth order kernel functions of the Gaussian kernel estimator are 

𝐾4,∅(x) =
1

2√2𝜋
(3 − x2)𝑒xp − (

x2

2
).  

 

(3.3.3) 
 

𝐾6,∅(x) =
1

8√2𝜋
(15 − 10x2 + x4)𝑒xp − (

x2

2
). 

 

(3.3.4) 

The derivatives of the Gaussian kernel are usually deduced from the Hermite polynomial family. The Gaussian kernel 

derivative is denoted by 𝐾(𝑟)(x) = (−1)𝑟𝐻𝑟(x)𝐾(x) where 𝑟 = 0, 1, 2, …  is the derivative order and 𝐻𝑟(x) is the 𝑟𝑡ℎ 

Hermite polynomial. The Hermite polynomials have the following values for its first six members:  𝐻0(x) = 1 ,
𝐻1(x) = x , 𝐻2(x) = x2 − 1, 𝐻3(x) = x3 − 3x, 𝐻4(x) = x4 − 6x2 + 3, and 𝐻5(x) = x5 − 10x3 + 15x. The usual 

estimator of the Gaussian kernel density derivative is of the form 
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𝑓(𝑟)(x) =
(−1)𝑟

√2𝜋𝑛ℎx
𝑟+1

∑ 𝐻𝑟

𝑛

𝑖=1

(x)𝑒x𝑝
−

1
2

(
x−X𝑖

ℎx
)

2

.  
 

(3.3.5) 

The estimator in Equation (3.3.5) is the generalized form of estimating the 𝑟𝑡ℎ kernel density derivative of the popular 

Gaussian distribution. If 𝑟 = 0, the resulting kernel estimator is the traditional second order kernel estimator in 

Equation (2.1). Another widely used kernel function of the beta polynomial family is the Epanechnikov kernel also 

known as the optimal kernel with respect to the asymptotic mean integrated squared error (Siloko et al., 2019b). 

4. Result and Discussions. 

The performance of higher-order kernel estimation and kernel density derivative estimation is investigated with the 

AMISE as the criterion function owing to its mathematical tractability. The graphical analysis and computational 

results obtained from the two methods were with the aid of Mathematica version 12.3 software (Wolfram Research, 

Inc.). Higher-order kernel estimation and kernel density derivative estimation usually employ large bandwidths in 

their implementation as the order increases and that accounted for their bias and variance reduction property that often 

translates to AMISE reduction. A sample size of 1000 and two real data sets were analyzed using the Gaussian kernel 

estimator for the higher-order kernel estimation and kernel density derivative estimation. 

The results in Table 1 are that of a randomly generated data of sample size of 1000 with standard deviation of 23.2069.  

The standard deviation is one of the statistical parameters required in the computation of bandwidths for higher order 

kernel estimation and kernel density derivative estimation. The performance of higher order kernel and kernel density 

derivative estimations depend on the size of the bandwidth and both methods require large bandwidth for their 
implementation with increase in the kernel order and derivative order respectively. The bandwidths of higher order 

kernel estimation are larger than the bandwidths of kernel density derivative estimation but the AMISE values of 

kernel density derivative estimation are smaller which is an indication of better performance. Again, as seen in Table 

1, the benefit of higher order kernel estimation is mainly in the fourth order and reduction in the AMISE value in 

subsequent orders tend to be minimal (Ishiekwene and Osemwenkhae, 2006). In kernel density derivative estimation, 

the benefits are mainly in the first and second derivative estimations and graphical visualization of data beyond the 

second derivative order oftentimes may be difficult especially with higher dimensions. Although, the bandwidths of 

higher order kernel estimation are larger than the bandwidths of kernel density derivative estimation but with smaller 

AMISE values and this is occasioned by the two-extra power of the bandwidth in the variance component.  

Table 1. Kernel Order, Derivative Order, Bandwidths and AMISE of Simulated Data of Size n=1000 

Kernel Order 

(p) 

Bandwidth  AMISE Derivative 

Order (r) 

Bandwidth AMISE 

2 6.174541 0.00005710845058  0 6.174541 0.00005710845058  

4 14.05622 0.00002257767253 1 8.379175 0.00000041956514  

6 20.95916 0.00001458086719  2 10.12230 0.00000000447963 

8 26.96567 0.00001111508580  3 11.50464 0.00000000005453  

10 32.29093 0.00000917284105  4 12.61981 0.00000000000074 

The first data set is the Annual Snowfall in Buffalo with a sample size of 63 observations (Scott, 2015). Buffalo is one 

of the largest cities in the state of New York with a record of an annual snowfall of 84.8 inches which implies that the 

city is snowier than other areas in the state. The kernel estimates of the snowfall data show that the data are unimodal 

which is within the region of the annual snowfall. Figure 1 is the kernel estimate of the second order kernel and fourth 

order kernel while Figure 2 is the estimate of the sixth order kernel with the second order kernel to sixth order kernel 

estimates. The kernel estimates of the zeroth derivative and first derivative is in Figure 3 while Figure 4 is the kernel 

estimate of the second derivative with the zeroth to second derivative estimates. The kernel estimates of the snowfall 

data with the higher order kernel displayed unimodality but with the first derivative estimation, the data are presented 
to be bimodal and this is attributed to the fact that obscured features in the data set in kernel density estimation can be 

clearly revealed with the kernel density derivative estimation particularly the density gradient. 
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The results in Table 2 and Table 3 are for the two AMISE reduction techniques using the univariate Gaussian kernel 

function. Generally, both techniques require large bandwidths for their effective implementation but the size of the 

bandwidths of higher order kernel estimation is larger in comparison with the size of bandwidths of kernel density 

derivative estimation. Again, the AMISE of kernel density derivative estimation is smaller than the AMISE of higher 

order kernel estimation and that authenticates the fact that kernel density derivative estimation outperform higher order 
kernel estimation. The estimate of the second order kernel and the zeroth derivative estimate are the same hence; the 

same bandwidths and AMISE values as seen in Table 2 and Table 3. The estimates of the second, fourth and the sixth 

order kernels in Figure 2(b) displayed similarity graphically; however, there is great variation in performance with 

reference to their AMISE values. As order of kernel increases, there is a reduction in the AMISE which is occasioned 

by the size of the bandwidths and the order of the kernel but there is the tendency of smoothening away some beneficial 

statistical features in the observations being estimated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Order, Bandwidths, Bias2, Variance and AMISE of Higher Order Kernel Estimation for First Data. 

Kernel Order Bandwidth (ℎx) Bias2 Variance AMISE 

2 10.733387  0.000104293624  0.000417174496  0.000521468120  

4 19.110631  0.000029287986  0.000234303886  0.000263591872  

6 25.925804  0.000014392659  0.000172711907  0.000187104566  

8 31.727672  0.000008820563  0.000141129013  0.000149949576  

10 36.834498  0.000006078127  0.000121562538  0.000127640665  

 

 

  
a. Second order estimate 

Figure 1: Second order kernel estimate and fourth order kernel estimate of the snowfall data. 

b. Fourth order estimate 

  

 p=2 

 p=4 

 p=6 

a. Sixth order estimate 

Figure 2: Sixth order kernel estimate and second order to sixth order kernel estimates of the snowfall data. 
b. Second to sixth order estimates 
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Table 3. Order, Bandwidths, Bias2, Variance and AMISE of Kernel Density Derivation Estimation for First Data. 

Derivative Order Bandwidth (ℎx) Bias2 Variance AMISE 

0 10.733387 0.000104293624  0.000417174496  0.000521468120  

1 12.437245 0.000000872797  0.000001163729  0.000002036526  

2 13.762146 0.000000008503  0.000000006803  0.000000015306  

3 14.791899 0.000000000095 0.000000000054 0.000000000149 

Generally, data that exhibits multimodality when estimated with large bandwidths in kernel estimation may tend to 

display unimodality but with a reduction in the value of the AMISE in terms of performance. Despite the fact that the 
error criterion is the determinant of the acceptability of a method in kernel density estimation, efforts had been tailored 

statistically towards the retention of inherent characteristics of the data for prediction and decision making. The 

determination of vital statistical features in kernel estimation depends greatly on the magnitude of the bandwidth. The 

results in Table 2 and Table 3 are the performances of the methods considered and from the results; the reduction in 

AMISE value is more noticeable with the kernel density derivative estimation owing to the fact that its variance 

component requires two additional powers in the bandwidths. Hence, there are reductions in the variance and bias 

terms that translate to reduction in the AMISE unlike the higher order kernel estimation whose reduction is mainly in 

the bias term of the AMISE. Theoretically, in kernel density derivatives estimation, any order of interest can be 

estimated but the benefits are mainly in the gradient and hessian estimation with little or no benefits in other higher 

derivatives order. Regarding higher-order kernel estimation with similar estimates, the benefit is mainly in the fourth 

order kernel and reductions in further higher order may be minimal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second data investigated is the old faithful data which comprises of the duration of eruption and waiting time 

betwixt eruptions of the geyser situated in Yellowstone National Park in United States of America (Azzalini and 

Bowman, 1990). The old faithful data are made up of 272 data points for the two axes respectively and the bivariate 

  

Figure 3: Zeroth derivative estimate and first derivative estimate of the snowfall data. 
a. Zeroth derivative estimate b. First derivative estimate 

  

 r=0 

 r=1 

 r=2 

Figure 4: Second derivative estimate and zeroth to second derivative estimates of the snowfall data. 
a. Second derivative estimate b. Zeroth to second derivative estimates 
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kernel estimates are bimodal indicating that eruption times and the time before the immediate next eruption often 

demonstrates a distribution that is usually bimodal. The bivariate kernel estimates of the second, fourth and sixth order 

kernels are in Figure 5, Figure 6 and Figure 7 with the bimodality been obviously displayed. The fundamental role of 

kernel density estimation is data exploratory analysis and visualization due to its ability of highlighting significant 

features in the data unlike other data visualization tools like the scatterplots where the observer is only drawn to the 
data cloud while inherent features of the data are hidden. Again, the contour plots of the bivariate fourth order kernel 

estimate and sixth order kernel estimate in Figure 6 and Figure 7 revealed the data point that are regarded as outliers 

while maintaining the bimodal nature of the data set. 

The bimodality of the bivariate kernel estimates has evidenced that eruption times and time intermission prior to the 

next eruption is distinctly correlated. The bivariate kernel estimates of the density gradient estimation and density 

curvature estimation are in Figure 8 and Figure 9 with all the estimates depicting the bimodal nature of the data. The 

bivariate estimate of the zeroth derivative estimation is same as the bivariate estimate of the second order kernel 

because the zeroth derivative estimation is same as the second order kernel estimation. Again, the bivariate bandwidths 

of the kernel density derivative estimation are smaller than the higher order kernel estimation but with smaller AMISE 

values as in the univariate case. 

The application of kernel density derivative estimation and higher-order kernel estimation becomes very complex with 

increase in the dimensions of the observations. The complexity of estimation of higher dimensions is more noticeable 
in the graphical presentation of the observation because for higher dimensions above four-dimensional forms, 

visualization of observations which is very important in kernel density estimation becomes practically difficult. This 

difficulty connected with higher dimension in nonparametric estimation is known as the curse of dimensionality effects 

and that has limited kernel density estimation to the bivariate case; although numerical computation can be extended 

to higher dimensions (Scott, 2015; Siloko et al., 2020b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Surface and contour plots of bivariate second order estimates of the old faithful data. 

 

 

Figure 6: Surface and contour plots of bivariate fourth order estimates of the old faithful data. 



Pak.j.stat.oper.res.  Vol.19  No. 2 2023 pp 299-311  DOI: http://dx.doi.org/10.18187/pjsor.v19i2.4233 

 
A Comparative Study of Higher Order Kernel and Kernel Density Derivative of the Gaussian Kernel Estimator with Data Application 308 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7: Surface and contour plots of bivariate sixth order estimates of the old faithful data. 

 

 

Figure 8: Surface and contour plots of bivariate first derivative estimate of the old faithful data. 

  

Figure 9: Surface and contour plots of bivariate second derivative estimate of the old faithful data. 
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Table 4. Order, Bandwidths, Bias2, Variance and AMISE of Higher Order Kernel Estimation for Second Data. 

Kernel 

Order 

Bandwidth 

(ℎx) 

Bandwidth 

(ℎy) 

Bias2 Variance AMISE 

2 0.44851327  5.34093014  0.000483333604  0.000122131879  0.000605465481  

4 0.64816082  6.02476642  0.000052025594  0.000074920081  0.000126945675  

6 0.76027763  7.58521646  0.000005034085  0.000050731890  0.000055765975  

 

Table 5. Order, Bandwidths, Bias2, Variance and AMISE of Kernel Density Derivation Estimation for Second Data. 
Derivative 

Order 

Bandwidth 

(ℎx) 

Bandwidth 

(ℎy) 

Bias2 Variance AMISE 

0 0.44851327  5.34093014  0.000483333604  0.000122131879  0.000605465481  

1 0.53852301  6.41277291  0.000000191643  0.000001775869  0.000001967512  

2 0.60810265  7.24133253  0.000000070265  0.000000099396  0.000000169661  

The bias and variance reduction property of the univariate kernel density derivative estimation is also demonstrated 

in the bivariate estimation with smaller AMISE values as presented in Table 5 in comparison with Table 4. Again, 
with kernel density derivative estimation after the second derivative order, there is usually little or no gain regarding 

reduction in the AMISE since the values will be too minimal because of the concurrent reduction in the components 

of the AMISE. Kernel density derivative estimation and higher-order kernel estimation have demonstrated the 

potential of reducing the AMISE either in the bias component or both variance and bias terms concurrently depending 

mainly on the magnitude of the bandwidths and other parameters of interest such as the roughness of the kernel 

function and roughness of the distribution.  

Generally, in kernel density estimation, the superiority or dominance of one method over other existing methods can 

be ascertained by the value of a known performance measure such as the AMISE or other criteria functions (Jarnicka, 

2009). In spite of the establishment of both methods using large bandwidths in their implementations, the inherent 

statistical features of the observations investigated with these methods were retained as seen in the kernel estimates. 

Retention of statistical characteristics of observations is the central point of kernel density estimation especially in 
data visualization. However; the results vividly demonstrated numerically and graphically the dominance of the kernel 

density derivative estimation over the higher-order kernel estimation in terms of performance.    

5. Conclusions. 

Higher-order kernel estimation and kernel density derivative estimation are AMISE reduction techniques that employ 

large bandwidths for their implementation as the order increases. Although both methods are AMISE reduction 

techniques; this paper tends to ascertain their AMISE reduction capacities which establishes the superiority of one of 

the techniques over the other. This study undoubtedly revealed that higher-order kernel estimation is a bias reducing 

approach that translates to AMISE reduction while kernel density derivative estimation is a bias and variance reduction 

strategy that resulted in the reduction of AMISE due to the extra-two powers of the bandwidth usually associated with 

the variance term for every derivative order. The requirements of large bandwidths for both methods are hinged on 

the noisy nature connected with higher-order kernel estimation and the kernel density derivative estimation of kernel 

functions in comparison with lower order kernels and the function itself. Numerical evaluation of the performance of 
kernel density derivative estimation and higher-order kernel estimation using the AMISE shows that the former 

outperformed the later. Again, in identification of statistical features in the analyzed data, kernel density derivative 

estimation particularly the density gradient can reveal hidden features that could be of help in prediction and decision-

making process. Hence; kernel density derivative estimation which is a bias and variance reduction technique is highly 

recommended in nonparametric density estimation particularly for analyzing data with unknown information.  
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