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Abstract 

  

Classical survival models assume homogeneity among the population of individuals who are susceptible to the 

event of interest. However, in many practical circumstances, there is a certain amount of unobserved heterogeneity 

that can be caused by a variety of sources, such as environmental or genetic factors. If the heterogeneity is ignored, 

many issues could arise, including an overestimation of the hazard rate and inaccurate estimates of the regression 

coefficients. Frailty models are usually used to model the heterogeneity among individuals. In this paper, we 

propose a novel univariate frailty model. The frailty variable is assumed to follow the Two Parameter Lindley 

distribution. The maximum likelihood method is used to estimate the model parameters. The baseline hazard 

functions are assumed to follow Weibull, Exponential, Gompertz, and Pareto distributions, and a simulation study 

is performed under this assumption. We examine the characteristics of the distribution and assess its performance 

compared to other distributions that are frequently applied in frailty modeling by using both Nikulin-Rao-Robson 

and Bagdonavicius-Nikulin goodness-of-fit tests to determine the adequacy of the model. We analyze a fresh 

medical dataset collected from an emergency hospital in Algeria to evaluate the effectiveness and applicability of 

the proposed model.   
 

Key Words: Bagdonavicius-Nikulin goodness-of-fit; Frailty models; Goodness of fit test; Hazard function; 

Laplace transform; Maximum likelihood; Time-to-event data. 
 

Mathematical Subject Classification: 62N01, 62N02, 62E10. 

 
1.Introduction 

Survival analysis is a fundamental statistical method for analyzing time-to-event data, such as the time between the 

diagnosis of a disease and the occurrence of an important event, such as death or recurrence. Survival analysis is 

frequently used in many fields, including the social sciences, health, biology, and economics. A crucial assumption 

in survival analysis is the independent and identical (IID) distribution of the time-to-event data. The data are subject 

to unobserved heterogeneity or frailty, which could affect a person’s chance of survival, hence this assumption is not 

always accurate. The results of ignoring frailty have been the subject of many research. These studies found that 

regression parameters’ estimations were biased which is not supposed to be used Struthers and Kalbfleisch(1986); 

Henderson and Oman(1999); Bretagnolle and Huber-Carol(1988). Frailty is usually described by a distribution known 
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as the frailty distribution (Duchateau and Janssen (2007)). Although a non-parametric specification of the frailty 

distribution can be obtained. Almeida et al. (2020); Horowitz (1999), Wienke (2010) pointed out that the parametric 

approach is frequently used due to mathematical simplicity. 

 

Frailty models can be divided into two categories: shared frailty models and univariate frailty models. Univariate 

frailty models imply that everyone has a different frailty, whereas shared frailty models assume that each member in a 

group shares a common frailty. When individuals in a cluster are related, such as twins or family members, shared 

frailty models are frequently used. When individuals are unrelated, such as patients in a clinical trial, univariate frailty 

models are usually applied. The hazard function, which measures the probability that an event will occur at a 

specific time, can be estimated using fragility models. An individual’s or a group of individuals’ probability of 

survival can be predicted using the hazard function. Frailty models can also be used to find factors related to either 

an increased or decreased risk of an occurrence. (Vaupel et al.(1979)). Frailty modeling’s fundamental concept is that 

the observed data are the result of the interaction of independent, identically distributed random variables (IIDRVs) 

and a random frailty variable that captures the unobserved heterogeneity. Frailty modeling has been proven to be 

a useful method for analyzing survival data in a variety of contexts, including cancer research, clinical trials, and 

epidemiology (Aalen and Tretli (1999)). Several distributions have been proposed to explain the frailty term in the 

statistical and reliability literature, including the gamma distribution (Clayton(1978) and Vaupel et al. (1979)); the 

compound Poisson distribution (Aalen(1988) and Aalen(1992)); and the log-normal distribution (McGilchrist and 

Aisbett (1991)). However, there are limitations on how well these distributions can capture the heterogeneity present 

in the data.  

 

In this work, a novel two-parameter frailty (TPF) model is proved to be an appropriate alternative for the gamma frailty 

model, compound Poisson frailty model, and log-normal frailty model. It is important to note that the new frailty 

model was developed based on the two parameter Lindley (TPL) model suggested by Shanker and Mishra (2013).The 

proposed distribution has been fitted to a number of data sets relating to survival times. We extend the TPL model to 

include a frailty element and demonstrate that the resulting distribution has advantageous properties including positive 

support, skewness, and kurtosis. The proposed approach can integrate unobserved variability and improve the fit of 

the frailty model. 

 

In addition, the adjusted version of the chi-squared goodness-of-fit test suggested by Nikulin(1973b), Nikulin(1973a), 

Nikulin(1973c), and Rao and Robson(1974) (the Nikulin Rao and Robson (N-RR)) for complete data has been used 

to validate the proposed TPLF model. Also, The Bagdonavicius-Nikulin (Bg-N) test, which was developed by 

Bagdonavicius and Nikulin (2011) to be applied with censored data, is another approach by which the suggested 

TPLF model is validated. It is important to note that the Bg-N test statistic and the N-RR test statistic are both 

statistical tests that evaluate how effectively a distribution fits a given set of data. The main distinctions between the 

N-RR test statistic and the Bg-N test statistic are their generality, underlying presumptions, and the method they 

apply to compare the observed data with a reference distribution. For this study, we collected fresh, real data from 

an emergency hospital in Algeria. Applying methods from survival analysis, we modeled the time-to-event for the 

sample’s patients who have a particular medical condition. The new emergency care dataset is analyzed using the 

proposed TPLF model with the baseline hazard functions of Weibull, Gompertz, and Pareto. We demonstrate that the 

proposed TPLF model provides an adequate fit to the new emergency care data. 

 

The main motivation of this paper is to introduce the TPLF model, a new flexible frailty model for survival analysis, 

in order to overcome the limitations of the gamma, compound Poisson, log-normal, and weighted Lindley (Mota 

et al.(2022)) frailty models and other frailty distributions. The inference is presented using the maximum likelihood 

estimation (MXLE) method for estimating the TPLF model’s parameters with Weibull, exponential, Gompertz, and 

Pareto baseline hazard functions. Simulation studies are performed under different proportions of censoring. To 

assess the proposed distribution’s ability to effectively fit a specific set of data, both N-RR and Bg-N are used in 

cases of complete and censored data. To demonstrate the applicability of the proposed model, we analyze a medical 

dataset from an emergency hospital in Algeri. 
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2.Basic concept of frailty models 

Let’s take into account an unknown source of heterogeneity using the Cox proportional hazard (CPH) model (see 

Cox(1972)). In order to demonstrate that the frailties are independent, the univariate frailty model aims to characterize 

unobserved risk factors for independent individuals. The hazard function for the ith subject is if 𝑍 > 0 is an 

unobserved random variable that indicates the fragility of the subject 𝒾, is defined as follows:  

  

 𝜆(𝑡𝒾|𝑧𝒾 , 𝓍𝒾) = 𝑧𝒾𝜆0(𝑡𝒾)exp(𝓍𝒾
⊺ℬ)|  𝒾 = 1,2, . . . , 𝑛,                                    (1) 

where  𝛃 = ℬ(𝑝x1) is the vector of unknown regression coefficients for all 𝑝 < 𝑛 (see Ibrahim et al.(2001)) and 𝜆0(.) 

denotes to the baseline hazard function. A subject 𝒾 has independent frailty defined as 𝑧𝒾, which is an unobserved 

non-negative number. Therefore, if 𝑧𝒾 > 1 or 𝑧𝒾 < 1, respectively, fragility 𝑧𝒾 increases or decreases the risk that the 

event of interest will occur, the CPH model is then established as a particular case in which 𝑧𝒾 = 1 for each 𝒾. The 

conditional survival function for the 𝒾𝑡ℎ subject is calculated using (1) as shown below:  

  

 𝑆(𝑡𝒾|𝑧𝒾 , 𝓍𝒾) = exp[−𝑧𝒾Λ0(𝑡𝒾)exp(𝓍𝒾
⊺ℬ)]|  𝒾 = 1, . . . . . , 𝑛                                     (2) 

where Λ0(𝑡𝒾) = ∫
𝑡𝒾
0
𝜆(𝑠)𝑑𝑠 is the cumulative baseline hazard function. The conditional survival function (2) on 

frailty must be integrated out in order to calculate the marginal survival function, which is not dependent on unknown 

variable. Notice that this is equal to calculating the frailty distribution’s Laplace transform, if 𝑓(𝑧) represents the 

frailty distribution, then we may get the following by integrating 𝑆(𝑡𝒾|𝑧𝒾 , 𝓍𝒾) from (2) on 𝑍 = 𝑧𝒾, where  

  

 𝑆(𝑡𝒾|𝓍𝒾) = ∫
∞

0
exp[−𝑧𝒾Λ0(𝑡𝒾)exp(𝓍𝒾

⊺ℬ)]𝑓(𝑧𝒾)𝑑𝑧𝒾 = 𝐿𝑓[Λ0(𝑡𝒾)exp(𝓍𝒾
⊺ℬ)]                       (3) 

where the Laplace transform of the frailty distribution is denoted by 𝐿𝑓(.). If the Laplace transform has a closed form, 

as a result, (3) may be applied to the following to calculate the marginal hazard function:  

  

 𝜆(𝑡𝒾|𝓍𝒾) = −𝜆0(𝑡𝒾)
exp(𝓍𝒾

⊺ℬ)𝐿𝑓
 ′[Λ0(𝑡𝒾)exp(𝓍𝒾

⊺ℬ)]

𝐿𝑓[Λ0(𝑡𝒾)exp(𝓍𝒾
⊺ℬ)]

,                                         (4) 

 where 𝐿𝑓
 ′(𝑡) =

𝜕

𝜕𝑡
𝐿𝑓(𝑡). As a result, the marginal survival and hazard functions (provided above) both evaluate the 

probability of survival and risk for a subject selected randomly from the research population (Wienke (2010)). As 

pre- viously mentioned, estimating both the marginal survival and hazard functions requires the use of a frailty 

distribution with a Laplace transform on the closed form, which makes parameter estimation simpler. However, 

numerical inte- gration or Markov Chain Monte Carlo techniques need to be used when the frailty distribution doesn’t 

have a Laplace transform on the closed form (see Balakrishnan and Peng(2006); Hougaard(2012); Robert and 

Casella(2013)). When considering frailty distribution in univariate and multivariate survival data modeling, 

computational simplicity must be taken into account (Pickles and Crouchley(1995) and Wienke(2010))..  

 

2.1 Two Parameter Lindley Frailty model 

According to Shanker and Mishra (2013), the TPL model’s probability density function (PDF) can be written as  

  

 𝑓𝛼,𝛳(𝑦) =
1

𝛼𝛳+1
𝛳2(𝛼 + 𝑦)exp(−𝛳𝑦)|𝑦 > 0, 𝛳 > 0, 𝛼𝛳 > −1,                       (5) 

 Let’s consider that the frailty variable 𝑍 in the conditional model in (1) has a TPL distribution (5) with a mean of 

one, or 𝐸[𝑍] = 1. This assumption is essential in order to identify the resulting frailty model (see Elbers and 

Ridder(1982)). As a result, by using the alternative parameterization of the TPL model in terms of mean proposed 

by Mazucheli et al. (2016), the TPLF model’s PDF becomes  

  

 𝑓𝛳(𝑧) =
1

3
𝛳2(1 − 𝛳) [

𝛳+2

𝛳(1−𝛳)
+ 𝑧] exp(−𝛳𝑧)|  𝑧 > 0,                                (6) 

where the unknown shape parameter is denoted by 𝛳 > 0. In general, the variance of the frailty distribution is used 

to quantify the amount of unobserved heterogeneity present in a study’s population. Considering that the PDF (6) is 

a frailty distribution. The variance is expressed by:  
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  𝜮2 =
1

9𝛳2
[(1 − 𝛳)(2𝛳 + 10) + (𝛳 + 2)2],                                     (7) 

Depending on its variance, the frailty PDF (6)’s Laplace transform is given by: 

 𝐿𝑓(𝑠) =
𝜄(𝜮2)−2

3[𝑠(𝜮2)−2]
{
𝒟(𝜮2)

(1+9𝜮2)
+

[𝜄(𝜮2)−2]𝐶(𝜮2)

(1+9𝜮2)[𝑠(𝜮2)−2]
} |𝑠 ∈ ℝ,                                  (8) 

where 𝜄(𝜮2) = 3√2(1 + 7𝜮2), 𝒟(𝜮2) = 18𝜮2 + 𝜄(𝜮2), 𝑠(𝜮2) = 𝑠(1 + 9𝜮2) + 𝜄(𝜮2) and 𝐶(𝜮2) = 3 + 9𝜮2 −

𝜄(𝜮2). For the sake of simplicity, we evaluate equation (8) at 𝑠 = Λ0(𝑡𝒾)𝜉𝒾, where 𝜉𝒾 =exp(𝓍𝒾
⊺ℬ), and determine that 

the marginal survival function (3) under the TPLF model can be obtained by  

  

𝑆(𝑡𝒾|𝓍𝒾) =
𝜄(𝜮2)−2

3Λ0(𝜉𝒾 ,𝜮
2)
{

1

1+9𝜮2
𝒟(𝜮2) +

1

(1+9𝜮2)Λ0(𝜉𝒾 ,𝜮
2)
[𝜄(𝜮2) − 2]𝐶(𝜮2)},                        (9) 

where 

 Λ0(𝜉𝒾 , 𝜮
2) = Λ0(𝑡𝒾)𝜉𝒾(1 + 9𝜮

2) + 𝜄(𝜮2) − 2. 

The resulting marginal hazard function (4) therefore becomes:  

  

 𝜆(𝑡𝒾|𝓍𝒾) = [
𝜆0(𝑡𝒾)𝜉𝒾(1+9𝜮

2)

Λ0(𝑡𝒾)𝜉𝒾(1+9𝜮
2)+𝜄(𝜮2)−2

] {1 +
[𝜄(𝜮2)−2]𝐶(𝜮2)

Λ0(𝜉𝒾 ,𝜮
2)𝒟(𝜮2)+[𝜄(𝜮2)−2]𝐶(𝜮2)

}.                             (10) 

  

The TPLF model is evaluated and analyzed under the Weibull baseline hazard function (WBLHF), exponential 

baseline hazard function (EBLHF), Gombertez BLHF (GBLHF) and Pareto baseline hazard function (PBLHF).  

 

2.2 The TPLF model with WBLHF 

The Weibull distribution’s baseline hazard and cumulative hazard functions are defined by:    

  

     𝜆0(𝑡𝒾) =   
𝜅

𝜌
(
𝑡𝒾

𝜌
)
𝜅−1

|𝑡𝒾 > 0    and        Λ0(𝑡𝒾) = (
𝑡𝒾

𝜌
)
𝜅

|𝑡𝒾 > 0,                     (11) 

where 𝜅 > 0 and 𝜌 > 0 represent, respectively, the shape parameter and the scale parameter. The Weibull 

distribution’s hazard function presents a monotonous decrease for 𝜅 < 1; it is constant over time for 𝜅 = 1 

(exponential distribution); and it monotonically increases 𝜅 > 1 (Wienke (2010)). By implementing (10) into (9), the 

marginal survival and hazard functions for the TPLF model with the WBLHF are, respectively, obtained as follows 

 𝑆(𝑡𝒾|𝓍𝒾) = {
𝜌𝑘[𝜄(𝜮2)−2]

3𝜌(𝜮2|𝑡𝒾
𝑘𝜉𝒾)

} {
𝒟(𝜮2)

1+9𝜮2
+

𝜌𝑘[𝜄(𝜮2)−2]𝐶(𝜮2)

(1+9𝜮2)𝜌(𝜮2|𝑡𝒾
𝑘𝜉𝒾)

},                                  (12) 

where 

 𝜌(𝜮2|𝑡𝒾
𝑘𝜉𝒾) = 𝑡𝒾

𝑘𝜉𝒾(1 + 9𝜮
2) + 𝜌𝑘[𝜄(𝜮2) − 2], 

and  

  

 𝜆(𝑡𝒾|𝓍𝒾) = [
𝑘𝑡𝒾
𝑘−1𝜉𝒾(1+9𝜮

2)

𝑡𝒾
𝑘𝜉𝒾(1+9𝜮

2)+𝜌𝑘[𝜄(𝜮2)−2]
] {1 +

𝜌𝑘[𝜄(𝜮2)−2]𝐶(𝜮2)

𝜌(𝜮2|𝑡𝒾
𝑘𝜉𝒾)𝒟(𝜮

2)+𝜌𝑘[𝜄(𝜮2)−2]𝐶(𝜮2)
}.          (13) 

 

2.3 The TPLF model with EBLHF 

The exponential distribution’s baseline hazard and cumulative hazard functions are provided by:    

  

     𝜆0(𝑡𝒾) = 𝜆|𝑡𝒾 > 0        and        Λ0(𝑡𝒾) = 𝜆𝑡𝒾|𝑡𝒾 > 0,                                   (14) 

where 𝜆 > 0 represents the rate parameter. The hazard function of the exponential distribution is constant over time. 

This property is known as the memoryless property. By implementing (13) into (9), the marginal survival and hazard 

functions for the TPLF model with the EBLHF are, respectively, obtained as follows  

  

𝑆(𝑡𝒾|𝓍𝒾) = {
𝜄(𝜮2)−2

3{𝜆𝑡𝒾𝜉𝒾(1+9𝜮
2)+𝜄(𝜮2)−2}

} {
𝒟(𝜮2)

1+9𝜮2
+

[𝜄(𝜮2)−2]𝐶(𝜮2)

(1+9𝜮2){𝜆𝑡𝒾𝜉𝒾(1+9𝜮
2)+𝜄(𝜮2)−2}

},      (15) 
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and  

  

 𝜆(𝑡𝒾|𝓍𝒾) = [
𝜆𝜉𝒾(1+9𝜮

2)

𝜆𝑡𝒾𝜉𝒾(1+9𝜮
2)+𝜄(𝜮2)−2

] {1 +
[𝜄(𝜮2)−2]𝐶(𝜮2)

{𝜆𝑡𝒾𝜉𝒾(1+9𝜮
2)+𝜄(𝜮2)−2}𝒟(𝜮2)+[𝜄(𝜮2)−2]𝐶(𝜮2)

}.                 (16) 

2.4 The TPLF model with GBLHF 

The Gompertz distribution’s baseline hazard and cumulative hazard functions are defined by:  

  

 𝜆0(𝑡𝒾) = 𝜑exp(𝛾𝑡𝒾)|𝑡𝒾 > 0        and      Λ0(𝑡𝒾) =
𝜑

𝛾
[exp(𝜑𝑡𝒾) − 1]|𝑡𝒾 > 0,                  (17) 

where 𝛾 > 0 is the shape parameter and 𝜑 > 0 is the scale parameter. If 𝛾 < 0, the Gompertz distribution is 

inaccurate due to the fact that t, its cumulative hazard function converges to the constant −𝜑/𝛾, leading to a cure or 

long-term survivors proportion 𝑝0 = exp(𝜑/𝛾) in the study population. The particular case for 𝛾 = 0 is the 

exponential distribution. As a consequence, the hazard function of the Gompertz distribution might be decreasing 

(𝛾 < 0), constant (𝛾 = 0), or increasing (𝛾 > 0). By implementing (16) into (9), the marginal survival and hazard 

functions for the TPLF model with the Gombertz baseline hazard function are, respectively, obtained as follows  

  

𝑆(𝑡𝒾|𝓍𝒾) = {
𝛾[𝜄(𝜮2)−2]

3{𝜑[exp(𝛾𝑡𝒾)−1]𝜉𝒾(1+9𝜮
2)+𝛾[𝜄(𝜮2)−2]}

} {
𝒟(𝜮2)

(1+9𝜮2)
+

𝛾[𝜄(𝜮2)−2]𝐶(𝜮2)

(1+9𝜮2)[
𝜑

𝛾
[exp(𝛾𝑡𝒾)−1]𝜉𝒾(1+9𝜮

2)+𝛾[𝜄(𝜮2)−2]]

},     (18) 

and  

  

𝜆(𝑡𝒾|𝓍𝒾) = [
𝜑exp(𝛾𝑡𝒾)𝜉𝒾(1+9𝜮

2)

𝜑[exp(𝛾𝑡𝒾)−1]𝜉𝒾(1+9𝜮
2)+𝛾[𝜄(𝜮2)−2]

] (1 +
𝛾[𝜄(𝜮2)−2]𝐶(𝜮2)

{
{𝜑[exp(𝛾𝑡𝒾)−1]𝜉𝒾(1+9𝜮

2)+𝛾[𝜄(𝜮2)−2]}𝒟(𝜮2)

+𝛾[𝜄(𝜮2)−2]𝐶(𝜮2)
}
).            (19) 

  

 

2.5 The TPLF model with PBLHF 

The Pareto distribution’s baseline hazard and cumulative hazard functions are defined by:  

  

     𝜆0(𝑡𝒾) =   
𝜂

𝛼+𝑡𝒾
|𝑡𝒾 > 0    and        Λ0(𝑡𝒾) = −𝜂log (

𝛼

𝛼+𝑡𝒾
) |𝑡𝒾 > 0,                          (20) 

This distribution is skewed and heavy-tailed with two parameters 𝛼 > 0 and 𝜂 > 0. The hazard function is 

monotonically decreasing. By implementing (19) into (9), the marginal survival and hazard functions for the TPLF 

model with the PBLHF are, respectively, obtained as follows,  

  

𝑆(𝑡𝒾|𝓍𝒾) = {
𝜄(𝜮2)−2

3[−𝜂log(
𝛼

𝛼+𝑡𝒾
)𝜉𝒾(1+9𝜮

2)+𝜄(𝜮2)−2]
} {

𝒟(𝜮2)

1+9𝜮2
+

[𝜄(𝜮2)−2]𝐶(𝜮2)

(1+9𝜮2)[−𝜂log(
𝛼

𝛼+𝑡𝒾
)𝜉𝒾(1+9𝜮

2)+𝜄(𝜮2)−2]
},              (21) 

and  

  

𝜆(𝑡𝒾|𝓍𝒾) =
𝜂

𝛼+𝑡𝒾
[

𝜉𝒾(1+9𝜮
2)

−𝜂log(
𝛼

𝛼+𝑡𝒾
)𝜉𝒾(1+9𝜮

2)+𝜄(𝜮2)−2
] {1 +

[𝜄(𝜮2)−2]𝐶(𝜮2)

[−𝜂log(
𝛼

𝛼+𝑡𝒾
)𝜉𝒾(1+9𝜮

2)+𝜄(𝜮2)]𝒟(𝜮2)+[𝜄(𝜮2)−2]𝐶(𝜮2)
}.   (22) 

3.Estimation 

Uncensored simulation studies using N-RR statistics collect data from a known distribution and compare it to a 

hypothesized distribution using one or more of the N-RR statistics. As well as their sensitivity to sample size, 

parameter values, and other variables, the performance of the statistics is assessed based on their capacity to properly 

identify the underlying distribution. An uncensored simulation study under N-RR statistics has several motivations. 

One of the most important motivations is to assess the statistical power of N-RR tests under a variety of scenarios. 



Pak.j.stat.oper.res.  Vol.20  No. 1 2024 pp xx-xx  DOI: http://dx.doi.org/10.18187/pjsor.v19i4.xxxx 

 

 
A New Two-Parameters Lindley-Frailty Model: Censored and Uncensored Schemes under Different Baseline Models: Applications, Assessments, 

Censored and Uncensored Validation Testing 

114 

 

The statistical power of a test refers to its ability to detect a true effect or difference. There are several factors that 

influence this statistic, including the sample size and the effect size. Researchers can determine the minimum sample 

size required to achieve a desired level of statistical power through simulation studies and determine the effects of 

other factors on test performance by conducting simulation studies.  

   

On the other hand, determining the statistical power of the tests under various types and levels of censoring is an 

important motivation for conducting a censored simulation study using Bg-N statistics. Finding the minimum size of 

samples required to obtain a specific degree of statistical power under different types and levels of censoring is crucial 

since censoring can result in information loss and reduced statistical power. Examining the precision and accuracy 

of the estimated distribution parameters, particularly when dealing with right-censored data, is another motivation 

for performing a censored simulation study using the Bg-N statistics. Goodness-of-fit tests are intended to determine 

not only whether a given distribution fits the data, but also to estimate its parameters. The accuracy and precision of 

parameter estimations under various types and levels of censoring can be obtained from simulation studies, which 

may be useful in selecting the distribution to be applied to future analyses. In this section, we establish the ML 

approach for estimating the TPLF model’s parameters using Weibull, exponential, Gombertez, and Pareto baseline 

hazard functions. MXLEs have attractive features including consistency, efficiency, asymptotic normality, and others 

under particular regularity constraints ((Lehmann and Casella(2006)).  

   

For certain research subjects, lifetime data might not be accessible. For instance, some lifetimes are right-censored, 

and the only information that is known is that they are greater than the recorded value. In that case, let 𝑇𝒾 and 𝐶𝒾 

represent the 𝒾𝑡ℎ subject’s lifetime and censoring time variables, respectively, in the population under study. Assume 

that 𝑇𝒾 and 𝐶𝒾 are independent random variables, and 𝛿𝒾 = 𝐈(𝑇𝒾≤𝐶𝒾) is the censoring indicator (i.e., 𝛿𝒾 = 1 if 𝑇𝒾 is 

lifetime, and 𝛿𝒾 = 0 otherwise). We then evaluate 𝑡𝒾 = min{𝑇𝒾 , 𝐶𝒾}. Let 𝓍𝒾 be a 𝑝 × 1 vector of the covariates for the 

𝒾𝑡ℎ subject. Following that, with a sample of 𝑛 individuals, the likelihood function for the model parameter vector 𝕆 

in the non-informative censoring scenario is given by:  

  

 𝐿(𝕆) = ∏ 𝜆𝑛
𝒾=1 (𝑡𝒾|𝓍𝒾)

𝛿𝒾𝑆(𝑡𝒾|𝓍𝒾),                                                  (23) 

  

where 𝑆(.|𝓍𝒾) and 𝜆(.|𝓍𝒾) are the Marginal survival and hazard functions given in (9). Then, the corresponding log-

likelihood function is obtained using the natural logarithm of 𝐿(𝕆).  

4.Simulation studies 

4.1 Under the WBLHF 

Considering the WBLHF, the loglikelihood function for 𝕆 = (𝜅, 𝜌, 𝜮2, ℬ) is provided by 

log𝐿(𝕆) = 𝑟log[𝑘(1 + 9𝜮2)] + (𝑘 − 1)∑

𝒾=1

𝑛

𝛿𝒾log𝑡𝒾 +∑

𝒾=1

𝑛

𝛿𝒾𝓍𝒾
⊺ℬ 

−∑

𝒾=1

𝑛

𝛿𝒾log [𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 3𝜌𝑘√2(1 + 7𝜮2) − 𝜌𝑘2] 

+ ∑
𝒾=1

𝑛

𝛿𝒾logΨ𝒾 + ∑
𝒾=1

𝑛

log𝜒𝒾 + ∑
𝒾=1

𝑛

log𝑚𝒾 ,                                                   (24) 

where 𝑟 = ∑
𝒾=1

𝑛

𝛿𝒾 is the failure number,  

   

 𝜒𝒾 =
𝜌𝑘

3{𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1+9𝜮2)+𝜌𝑘[𝜄(𝜮2)−2]}
[𝜄(𝜮2) − 2], 

  

   

 𝑚𝒾 =
𝒟(𝜮2)

1+9𝜮2
+

𝜌𝑘[𝜄(𝜮2)−2]𝐶(𝜮2)

(1+9𝜮2){𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1+9𝜮2)+𝜌𝑘[𝜄(𝜮2)−2]}
, 

and  
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 Ψ𝒾 = 𝜌
𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2) {

[𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘𝜄(𝜮2) − 𝜌𝑘2]𝒟(𝜮2)

+𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)
}

−1

+ 1. 

  

 The appropriate MLE estimators �̂� of parameter vectors 𝕆 are obtained by maximizing the log-likelihood  functions 

(23). If �̂� does not have a closed form, we must use numerical nonlinear optimization methods in order to discover 

a solution. These optimization approaches are implemented in BBsolve R software packages (V09(V09)). 

Considering the TPLF model with the WBLHF. The data were simulated 𝑁 = 12,000 times; we fixed the parameter 

values 𝜅 = 0.85, 𝜌 = 0.85, 𝜮2 = 0.65, ℬ1 = 0.7 , sample sizes 𝑛 = 20, 𝑛 = 40, 𝑛 = 350 and 𝑛 = 1000, and 

censoring proportions 0%, 15%, 35%,and 55%. We calculated the averages of the simulated values of the maximum 

likelihood estimators (MXLEs) �̂�, �̂�, 𝜮2̂, ℬ1̂ parameters and their MSQE using the R software and the Barzilai-

Borwein (BB) algorithm (see V09(V09)). The results of the simulation are provided in Table 1. The maximum 

likelihood estimates for the TPLF model with WBLHF are convergent, as we can see in Table 1.  

 

  Table 1: Bias and MSQE of the MXLEs under the WBLHF   

 𝑛     Bias   MSQE   Bias   MSQE   Bias   MSQE   Bias   MSQE  

    0%cens.     15%cens.     35%cens.     55%cens.    

20  𝜌   0.86548   0.0499   0.85999   0.0467   0.86374   0.0437   0.85761   0.0435  

  𝜅   0.89245   0.0519   0.87132   0.0512   0.86371   0.0467   0.87660   0.0486  

  𝜮2   0.67002   0.0486   0.66814   0.0485   0.66648   0.0419   0.68001   0.0415  

  ℬ1   0.79256   0.0432   0.75324   0.0416   0.74381   0.0431   0.74318   0.0398  

40  𝜌   0.86215   0.0416   0.85462   0.0413   0.86001   0.0400   0.85346   0.0412  

  𝜅   0.86754   0.0483   0.85116   0.0476   0.85344   0.0422   0.86332   0.0406  

  𝜮2   0.66532   0.0431   0.66004   0.0401   0.65807   0.0376   0.66341   0.0375  

  ℬ1   0.78361   0.0412   0.74198   0.0358   0.73674   0.0402   0.73165   0.0342  

350  𝜌   0.85673   0.0400   0.851203   0.0356   0.85749   0.0321   0.84778   0.0346  

  𝜅   0.85421   0.0412   0.85100   0.0354   0.85207   0.0396   0.85341   0.0401  

  𝜮2   0.65432   0.0364   0.65504   0.0359   0.65291   0.0323   0.65127   0.0288  

  ℬ1   0.75000   0.0351   0.71065   0.0241   0.71205   0.0234   0.71138   0.0222  

1000  𝜌   0.85201   0.0338   0.84896   0.0248   0.85120   0.0264   0.84986   0.0274  

  𝜅   0.851204   0.0308   0.84998   0.0328   0.85110   0.0315   0.85002   0.0200  

  𝜮2   0.65213   0.0339   0.65128   0.0311   0.64899   0.0275   0.65002   0.0241  

  ℬ1   0.72101   0.0301   0.71158   0.0222   0.69984   0.0215   0.70025   0.0159  

 

4.2 Under the EBLHF 

Considering the EBLHF, the loglikelihood function for 𝕆 = (𝜆, 𝜮2, ℬ) is provided by  

  

log𝐿(𝕆) = 𝑟log[𝜆(1 + 9𝜮2)] + ∑
𝒾=1

𝑛

𝛿𝒾𝓍𝒾
⊺ℬ (25) 

−∑

𝒾=1

𝑛

𝛿𝒾log[𝜆𝑡𝒾exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2] 

+∑

𝒾=1

𝑛

𝛿𝒾logΥ𝒾 +∑

𝒾=1

𝑛

log𝜗𝒾 +∑

𝒾=1

𝑛

logΔ𝒾 , 

where  

   

 𝜗𝒾 =
𝜄(𝜮2)−2

3[𝜆𝑡𝒾exp(𝓍𝒾
⊺ℬ)(1+9𝜮2)+𝜄(𝜮2)−2]

, 
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 Δ𝒾 =
𝒟(𝜮2)

1+9𝜮2
+

[𝜄(𝜮2)−2]𝐶(𝜮2)

(1+9𝜮2)[𝜆𝑡𝒾exp(𝓍𝒾
⊺ℬ)(1+9𝜮2)+𝜄(𝜮2)−2]

 

  

 and  

   

 Υ𝒾 = [𝜄(𝜮
2) − 2]𝐶(𝜮2) {

[𝜆𝑡𝒾exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2]𝒟(𝜮2)

+[𝜄(𝜮2) − 2]𝐶(𝜮2)
}
−1

+ 1. 

  

Considering the TPLF model with the EBLHF. The data were simulated 𝑁 = 12,000 times; we fixed the parameter 

values 𝜆 = 0.6, 𝜮2 = 0.5, ℬ1 = 0.9 , sample sizes 𝑛 = 20, 𝑛 = 40, 𝑛 = 350 and 𝑛 = 1000, and censoring 

proportions 0%, 15%, 35%,and 55%. We calculated the averages of the simulated values of the MXLEs �̂�, 𝜮2̂, ℬ1̂ 

parameters and their MSQE using the R software and the Barzilai-Borwein (BB) algorithm (see V09(V09)). The 

results of the simulation are provided in Table 2. The maximum likelihood estimates for the TPLF model with 

EBLHF are convergent, as we can see in Table 2.  

 

  Table 2: Bias and MSQE of the MXLEs under the EBLHF =0.18cm   

𝑛    Bias   MSQE   Bias   MSQE   Bias   MSQE   Bias   MSQE  

    0% cens.     15% cens.     35% cens.     55% cens.    

20  𝜆   0.63514   0.0496   0.62154   0.0437   0.64831   0.0487   0.62354   0.0438  

  𝜮2   0.55296   0.0435   0.53333   0.0462   0.55001   0.0438   0.53769   0.0426  

  ℬ1   0.96278   0.0431   0.94271   0.0396   0.93265   0.0421   0.93349   0.0354  

40  𝜆   0.62853   0.0417   0.62003   0.0400   0.63497   0.0427   0.61728   0.0411  

  𝜮2   0.54862   0.0374   0.52481   0.0402   0.53189   0.0476   0.91638   0.0302  

  ℬ1   0.94371   0.0411   0.92648   0.0324   0.91548   0.0416   0.51221   0.0382  

350  𝜆   0.61705   0.0361   0.61965   0.0296   0.62085   0.0355   0.59537   0.0374  

  𝜮2   0.53719   0.0309   0.51012   0.0367   0.52247   0.0422   0.50252   0.0318  

  ℬ1   0.91187   0.0412   0.90995   0.0219   0.90678   0.0332   0.91203   0.0284  

1000  𝜆   0.61202   0.0302   0.59834   0.0178   0.61207   0.0273   0.59889   0.0300  

  𝜮2   0.05108   0.0265   0.50067   0.0288   0.51305   0.0374   0.49896   0.0331  

  ℬ1   0.90506   0.0445   0.90046   0.0222   0.89798   0.0227   0.90010   0.0212  

 

4.3 Under the GBLHF 

Considering the GBLHF, the loglikelihood function for 𝕆 = (𝛾, 𝜑, 𝜮2, ℬ) is provided by  

  

log𝐿(𝕆) = 𝑟log[𝛾𝜑(1 + 9𝜮2)] + 𝛾 ∑
𝒾=1

𝑛

𝛿𝒾log𝑡𝒾 + ∑
𝒾=1

𝑛

𝛿𝒾𝓍𝒾
⊺ℬ (26) 

−∑

𝒾=1

𝑛

𝛿𝒾log [𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + 3𝛾√2(1 + 7𝜮2) − 2𝛾] 

+∑

𝒾=1

𝑛

𝛿𝒾logΦ𝒾 +∑

𝒾=1

𝑛

logΠ𝒾 +∑

𝒾=1

𝑛

log𝜁𝒾 , 

where  

   

 𝜁𝒾 =
𝛾

3𝜑(𝜮2|𝑡𝒾)
[𝜄(𝜮2) − 2], 

  

   

 Π𝒾 =
1

(1+9𝜮2)
𝒟(𝜮2) +

𝛾

(1+9𝜮2)𝜑(𝜮2|𝑡𝒾)
[𝜄(𝜮2) − 2]𝐶(𝜮2), 

and  
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Φ𝒾 = 𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2) 

× {
[𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 3𝛾√2(1 + 7𝜮2) − 2𝛾]𝒟(𝜮2)

+𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)
}

−1

+ 1. 

  

Considering the TPLF model with the GBLHF. The data were simulated 𝑁 = 12,000 times; we fixed the parameter 

values 𝛾 = 0.6, 𝜑 = 0.35, 𝜮2 = 0.5, ℬ1 = 1.5 ,sample sizes 𝑛 = 20, 𝑛 = 40, 𝑛 = 350 and 𝑛 = 1000, and censoring 

proportions 0%, 15%, 35%,and 55%. We calculated the averages of the simulated values of the MXLEs 𝛾, �̂�, 𝜮2̂, ℬ1̂ 

parameters and their MSQE using the R software and the Barzilai-Borwein (BB) algorithm (Varadhan and 

Gilbert(2009)). The results of the simulation are provided in Table 3. The maximum likelihood estimates for the 

TPLF model with GBLHF are convergent, as we can see in Table 3.  

 

  Table 3: Bias and MSQE of the MXLEs under the GBLHF =0.18cm   

 𝑛    Bias   MSQE   Bias   MSQE   Bias   MSQE   Bias   MSQE  

    0% cens.     15% cens.     35% cens.     55% cens.    

20  𝛾   0.65548   0.0435   0.64937   0.0325   0.63418   0.0462   0.63854   0.0481  

  𝜑   0.35945   0.0475   0.35962   0.0387   0.35401   0.0475   0.35719   0.0415  

  𝜮2   0.54612   0.0421   0.53481   0.0489   0.53841   0.0321   0.52214   0.0358  

  ℬ1   1.56382   0.0437   1.54062   0.0384   1.53846   0.0384   1.53048   0.0485  

40  𝛾   0.64381   0.0395   0.62559   0.0305   0.63084   0.0439   0.62443   0.0392  

  𝜑   0.35512   0.0357   0.35462   0.0265   0.35286   0.0385   0.35608   0.0377  

  𝜮2   0.53816   0.0381   0.52647   0.0435   0.52937   0.0311   0.51473   0.0267  

  ℬ1   1.54371   0.0381   1.52034   0.0332   1.52739   0.0367   1.52271   0.0432  

350  𝛾   0.63894   0.0312   0.61738   0.2384   0.61608   0.0327   0.61850   0.0316  

  𝜑   0.35334   0.0276   0.35210   0.0213   0.35167   0.0241   0.35224   0.0324  

  𝜮2   0.52743   0.0314   0.52003   0.0412   0.51784   0.0276   0.50734   0.0233  

  ℬ1   1.52496   0.0341   1.51274   0.0251   1.51172   0.0237   1.51092   0.0255  

1000  𝛾   0.61862   0.0211   0.06522   0.0213   0.69665   0.0300   0.60023   0.0275  

  𝜑   0.35206   0.0213   0.35082   0.0135   0.35044   0.0223   0.34995   0.0281  

  𝜮2   0.51223   0.0311   0.51302   0.0246   0.50937   0.0214   0.50234   0.0200  

  ℬ1   1.51204   0.0276   1.51006   0.0233   1.51062   0.0219   1.49968   0.0201  

 

 

4.4 Under the PBLHF 

Considering the PBLHF, the loglikelihood function for 𝕆 = (𝜂, 𝛼, 𝜮2, ℬ) is provided by  

  

log𝐿(𝕆) = 𝑟log[𝜂(1 + 9𝜮2)] +∑

𝒾=1

𝑛

𝛿𝒾𝓍𝒾
⊺ℬ 

−∑

𝒾=1

𝑛

𝛿𝒾log [−𝜂log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2] 

−∑

𝒾=1

𝑛

𝛿𝒾log(𝛼 + 𝑡𝒾) +∑

𝒾=1

𝑛

log𝜚𝒾 +∑

𝒾=1

𝑛

log𝜇𝒾 +∑

𝒾=1

𝑛

𝛿𝒾logΓ𝒾 , 

  

 where  

   

𝜚𝒾 =
𝜄(𝜮2) − 2

3 [−𝜂log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2]
, 
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𝜇𝒾 =
1

(1 + 9𝜮2)
𝒟(𝜮2) +

[𝜄(𝜮2) − 2]𝐶(𝜮2)

(1 + 9𝜮2) [−𝜂log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2]
 

  and  

 

Γ𝒾 = [𝜄(𝜮2) − 2]𝐶(𝜮2) 

× {
[−𝜂log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2]𝒟(𝜮2)

+[𝜄(𝜮2) − 2]𝐶(𝜮2)
}

−1

+ 1. 

  

Considering the TPLF model with the PBLHF. The data were simulated 𝑁 = 12,000 times; we fixed the parameter 

values 𝜂 = 0.4, 𝛼 = 0.6, 𝜮2 = 0.5, ℬ1 = 1.7 , sample sizes 𝑛 = 20, 𝑛 = 40, 𝑛 = 350 and 𝑛 = 1000, and censoring 

proportions 0%, 15%, 35%,and 55%. We calculated the averages of the simulated values of the MXLEs �̂�, �̂�, 𝜮2̂, ℬ1̂ 

parameters and their MSQE using the R software and the Barzilai-Borwein (BB) algorithm (V09(V09)). The results 

of the simulation are provided in Table 4. The maximum likelihood estimates for the TPLF model with PBLHF are 

convergent, as we can see in Table 4.  

 

  Table 4: Bias and MSQE of the MXLEs under the PBLHF =0.18cm   

 𝑛     Bias   MSQE   Bias   MSQE   Bias   MSQE   Bias   MSQE  

   0% cens.  15% cens.  35% cens.  55% cens.  

20  𝜂   0.46075   0.0466   0.45137   0.0432   0.45002   0.0398   0.44521   0.0452  

  𝛼   0.64015   0.0461   0.63174   0.0319   0.64001   0.0318   0.63462   0.0437  

  𝜮2   0.54832   0.0486   0.55104   0.0482   0.53819   0.0399   0.54468   0.0437  

  ℬ1   1.76034   0.0477   1.74392   0.0451   1.73005   0.0334   1.72938   0.0468  

40  𝜂   0.44381   0.0376   0.44382   0.0396   0.43185   0.0321   0.43719   0.0427  

  𝛼   0.63176   0.0367   0.62638   0.0278   0.63591   0.0237   0.62649   0.0348  

  𝜮2   0.53714   0.0431   0.53192   0.0432   0.52619   0.0287   0.52731   0.0316  

  ℬ1   1.75123   0.0395   1.72154   0.0349   1.72419   0.0267   1.71673   0.0427  

350  𝜂   0.42864   0.0324   0.42658   0.0324   0.41300   0.0311   0.42635   0.0316  

  𝛼   0.62574   0.0324   0.61674   0.0126   0.62649   0.0173   0.61873   0.0222  

  𝜮2   0.52067   0.0325   0.52230   0.0325   0.52043   0.0125   0.51473   0.0247  

  ℬ1   1.73198   0.0351   1.71708   0.0243   1.71067   0.0213   1.70937   0.0357  

1000  𝜂   0.42100   0.0261   0.41873   0.0284   0.41074   0.0284   0.41986   0.0294  

  𝛼   0.61346   0.0300   0.60261   0.0124   0.61649   0.0122   0.60936   0.0162  

  𝜮2   0.51003   0.0301   0.49852   0.0202   0.51170   0.0100   0.50017   0.0233  

  ℬ1   1.71103   0.0307   1.70688   0.0201   1.70032   0.0187   1.70634  0.251  

 

5. Uncensored validating for the TPLF model using the N-RR test 

The N-RR test statistic examines the extent to which the statistical model fits a given set of observations. A broad 

test named the N-RR test can be used to assess the predictive fit of a variety of statistical models, such as time series, 

regression, and survival models. In conclusion, the N-RR test statistic is a useful tool for statistical analysis and has 

a wide range of uses. It is especially helpful for model selection, evaluating a model’s goodness of fit, and identifying 

issues with a model. One of the key advantages of the N-RR test statistic is its ability to capture deviations from 

normality that other statistical tests may not detect. In particular, the N-RR test is robust to outliers, making it a 

reliable tool for identifying and analyzing data sets with extreme values. This makes it particularly useful in financial 

applications, where it is essential to identify and analyze extreme events such as market crashes and large price 

movements. Here are some applications and importance of the N-RR test statistic:  

i. The N-RR test statistic can be used to compare the fit of different statistical models to the same data. 

This can help in model selection by identifying the model that provides the best fit to the data.  
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ii. The N-RR test statistic can be used to assess the goodness of fit of a statistical model to the data. If the 

N-RR test statistic is small, it indicates a good fit between the model and the data. On the other hand, 

if the N-RR test statistic is large, it indicates a poor fit between the model and the data.  

iii. The N-RR test statistic can be used to detect outliers in the data. Outliers are data points that do not fit 

the general pattern of the data and can have a significant impact on the fit of the model. The N-RR test 

can identify these outliers and help to improve the fit of the model.  

iv. The N-RR test statistic can be used to diagnose problems with a statistical model. If the N-RR test 

statistic is large, it can indicate that the model is mis specified or that there are problems with the 

assumptions of the model.   

 

Under the N-RR statistic, we need to test the following null hypothesis  

 𝐻0: Pr{𝑧𝒾 ≤ 𝑧} = 𝐹𝕆(𝑧),    𝑧 ∈ ℝ,    𝕆 = (𝕆1, 𝕆2, ⋯ ,𝕆𝑠)
𝑇 , 

Then, the N-RR statistic can be expressed as  

  

 𝑌2(�̂�𝑛) = 𝑋𝑛
2(�̂�𝑛) +

1

𝑛
ℓ𝑇(�̂�𝑛)(𝐈(�̂�𝑛) − 𝐉(�̂�𝑛))

−1ℓ(�̂�𝑛), 

where 

 𝑋𝑛
2(𝕆) = ([𝑛𝑝1(𝕆)]

−
1

2[−𝑛𝑝1(𝕆) + 𝕆1],⋯ , [𝑛𝑝𝑏(𝕆)]
−
1

2[−𝑛𝑝𝑏(𝕆) + 𝕆𝑏])
𝑇

, 

and  

 𝐉(𝕆) = 𝐵(𝕆)𝑇𝐵(𝕆), 

refers to the information matrix where 

 𝐵(𝕆) = [
1

√𝑝𝒾

𝜕

𝜕𝜇
(𝕆)]

𝑟×𝑠

|(𝒾=1,2,⋯,𝑏  and𝜅=1,2,⋯,𝑠), 

and  

  

 ℓ(𝕆) = (ℓ1(𝕆), . . . , ℓ𝑠(𝕆))
𝑇  with    ℓ𝜅(𝕆) = ∑

𝑟
𝒾=1

𝕆𝒾

𝑝𝒾

𝜕

𝜕𝕆𝜅
𝑝𝒾(𝕆), 

The 𝑌2(�̂�𝑛) statistic has (𝑏 − 1) degrees of freedom (DF) and is accompanied by 𝜒𝑏−1
2  distribution, where the 

observations. 𝓍1, 𝓍2, ⋯ , 𝓍𝑛 that are collected in 𝐈1, 𝐈2, ⋯ , 𝐈𝑏 (these 𝑏 subintervals are mutually disjoint: 𝐈𝑗 =]𝑎𝑗,𝑏 −

1; 𝑎𝑗,𝑏]). The intervals 𝐈𝑗’s limits for 𝑎𝑗,𝑏 are determined as follows 

 𝑝𝑗(𝕆) = ∫
𝑎𝑗,𝑏
𝑎𝑗,𝑏−1

𝑓𝕆(𝓍)𝑑𝓍|(  𝑗=1,2,⋯,𝑏), 

and  

  

 𝑎𝑗,𝑏 = 𝐹
−1 (

𝑗

𝑏
) |(𝑗=1,⋯,𝑏−1). 

  

In many cases, the goal of a goodness-of-fit test is not only to determine whether a particular distribution fits the 

data, but also to estimate the values of its parameters. Simulation studies can provide insights into the accuracy and 

precision of parameter estimates under different scenarios, and can inform decisions about which distribution to use 

for subsequent analyses. Overall, uncensored simulation studies under the N-RR statistics are an important tool for 

evaluating and comparing different probability distributions in a controlled environment. These studies can provide 

valuable insights into the performance of the N-RR tests under different scenarios, and can inform decisions about 

which distribution to use for subsequent analyses. Using numerical simulation, we conducted a detailed analysis to 

confirm the claims presented in this work. To verify the null hypothesis 𝐻0 We thus produced the N-RR statistics of 

the TPLF model to confirm that the sample is a 13000 using simulated samples 𝑛 = 26, 𝑛 = 40, 𝑛 = 140, 𝑛 =

250, 𝑛 = 600 and 𝑛 = 1200. Regarding various theoretical levels (𝜖 = 0.01,0.02,0.04,0.09), for the null 

hypothesis, we compute the average of the non-rejection numbers. 𝑌2 ≤ 𝜒𝜖
2(𝑏 − 1). The appropriate empirical and 

theoretical levels are presented in Table 5. It is evident that there is a good agreement between the calculated 

empirical level value and its equal theoretical level value. We therefore conclude that the proposed test is quite good 

for the TPLF distribution.  
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Table 5: Uncensored assessing for the N-RR statistic for 𝜖 = 0.01,0.02,0.04,0.09 and 𝑁 = 13000.     

𝑛 ↓ &𝜖 ⟶ 𝜖 𝜖 = 0.01 𝜖 = 0.02 𝜖 = 0.04 𝜖 = 0.09 

𝑛 = 26 0.9924 0.9822 0.9631 0.9120 

𝑛 = 40 0.9916 0.9817 0.9627 0.9116 

𝑛 = 140 0.9914 0.9815 0.9622 0.9110 

𝑛 = 250 0.9906 0.9811 0.9616 0.9108 

𝑛 = 600 0.9904 0.9807 0.9611 0.9104 

𝑛 = 1200 0.9902 0.9804 0.9606 0.9101 

 

6.Censored validating for the TPLF model using the Bg-N test 

Due to Bagdonavicius and Nikulin (2011) and Bagdonavicius et al. (2013), Khalil et al. (2023) and Yousof et al. 

(2023a,b,c), we can verify the suitability of the TPLF model when the parameters are unknown and the data are 

censored where the null hypothesis can be expressed as  

  

 𝐻0: 𝐹(𝓍) ∈ 𝐹0 = {𝐹0(𝓍, 𝕆), 𝓍 ∈ 𝑅
1, 𝕆 ∈ 𝕆 ⊂ 𝑅𝑠}, 

Let’s divide the limited amount of time [0, 𝜄(𝜮2)] into 𝜅|𝜅 = 1,2,⋯ , 𝑠 shorter time periods. Where is the maximum 

runtime of the research and 𝐈𝑗 = (𝑎𝑗−1, 𝑎𝑗,𝑏]; 0 =< 𝑎0,𝑏 < 𝑎1,𝑏 . . . < 𝑎𝜅−1,𝑏 < 𝑎𝜅,𝑏 = +∞. The anticipated worth of 

𝑎𝑗,�̂� can be said the following if 𝓍(𝒾) is the 𝒾𝑡ℎ element in the ordered statistics (𝓍(1), , , 𝓍(𝑛)) and if 𝚲−1 refers to the 

cumulative hazard function and  

  

 𝑎𝑗,�̂� = 𝚲
−1((𝐸𝑗,𝑋 − ∑

𝒾−1
𝑙=1 𝚲(𝓍(𝑙), �̂�))/(𝑛 − 𝒾 + 1), �̂�),      𝑎�̂� = 𝓍(𝑛)|(𝑗=1,...,𝜅), 

where  

 𝑒𝑗,𝑍 =
1

𝜅
𝐸𝜅 for every 𝑗. 

  

  

 𝚲(𝓍,𝕆) = −ln {
[

1

Λ0(𝑡𝒾)𝜉𝒾(1+9𝜮
2)+𝜄(𝜮2)−2

𝜆0(𝑡𝒾)𝜉𝒾(1 + 9𝜮
2)] [𝜄(𝜮2) − 2]𝐶(𝜮2)

× {Λ0(𝜉𝒾 , 𝜮
2)𝒟(𝜮2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)}−1 + 1

}, 

  

and  

𝐸𝑗,𝑍 = (𝑛 − 𝒾 + 1)𝚲(𝑎𝑗,�̂� , �̂�) +∑

𝒾−1

𝑙=1

𝚲(𝓍(𝑙), �̂�) = ∑

𝒾:𝑧𝒾>𝑎𝑗,𝑏

(𝚲(𝑎𝑗,𝑏 ∧ 𝑧𝒾 , �̂�) − 𝚲(𝑎𝑗−1, �̂�), 

𝐸𝜅 =∑

𝑛

𝒾=1

𝚲(𝑧𝒾 , �̂�). 

 The 𝑎𝑗,𝑏 functions for random data, and the 𝑒𝑗,𝑍 For the 𝜅 selected periods, anticipated failure rates are equal. 

Statistical data 𝑌𝑛
2 = 𝐙𝑇�̂�−1𝐙, where 𝐙 = (𝑍1, 𝑍2, . . . , 𝑍𝜅)

𝓍 , 𝑍𝑗 =
1

√𝑛
(𝐖𝑗,𝑍 − 𝑒𝑗,𝑍)|(  𝑗=1,2,...,𝜅) and 𝐖𝑗,𝑍 can be used to 

test a hypothesis since it reflects the total number of failures that have been recorded throughout these timeframes. 

The elements of the Bg-N test statistic (see also Goual et al. (2019), Ibrahim et al. (2019, 2021 and 2023), Goual and 

Yousof (2020), Mansour et al. (2020) and Yadav et al. (2020 and 2022)) 

 𝑌𝑛
2 = ∑𝜅𝑗=1

1

𝐖𝑗,𝑍
(𝐖𝑗,𝑍 − 𝑒𝑗,𝑍)

2 + 𝐃𝑊,𝐺 , 

where 

𝐃𝑊,𝐺 = �̂�
𝑇𝐆−1�̂�, �̂�−1 = �̂�−1 + �̂�−1�̂�𝑇𝐆−1�̂��̂�−1, 

𝐆 = [�̂�𝑙𝑙′]𝑠×𝑠 = �̂� − �̂��̂�−1�̂�𝓍 , 

�̂�𝑙𝑗 =
1

𝑛
∑

𝒾:𝑧𝒾∈𝐈𝑗

𝜌𝒾
𝜕

𝜕𝕆
ln[𝜆𝒾,𝕆(𝑧𝒾)],𝐖𝑗,𝑍 = ∑

𝒾:𝑧𝒾∈𝐈𝑗

𝜌𝒾 , �̂�𝑗 = 𝑛
−1𝐖𝑗,𝑍, 



Pak.j.stat.oper.res.  Vol.20  No. 1 2024 pp xx-xx  DOI: http://dx.doi.org/10.18187/pjsor.v19i4.xxxx 

 

 
A New Two-Parameters Lindley-Frailty Model: Censored and Uncensored Schemes under Different Baseline Models: Applications, Assessments, 

Censored and Uncensored Validation Testing 

121 

 

�̂�𝑙 =∑

𝜅

𝑗=1

�̂�𝑙𝑗�̂�𝑗
−1𝐙𝑗|𝑙, 𝑙

′ = 1, . . . , 𝑠, 

�̂�𝑙𝑙′ = 𝑛
−1∑

𝑛

𝒾=1

𝜌𝒾
𝜕

𝜕𝕆𝑙
ln[𝜆𝒾,𝕆(𝑧𝒾)]

𝜕

𝜕𝕆𝑙′
ln[𝜆𝒾,�̂�(𝑧𝒾)], 

and 

�̂�𝑙𝑙′ = �̂�𝑙𝑙′ −∑

𝜅

𝑗=1

�̂�𝑙𝑗�̂�𝑙′𝑗�̂�𝑗
−1, 

  

and  

�̂�𝑙𝑗 =
1

𝑛
∑

𝒾:𝑧𝒾∈𝐈𝑗

𝜌𝒾
𝜕

𝜕𝕆
ln[𝜆𝒾,�̂�(𝑧𝒾)]. 

  

Censored simulation studies under the Bag-Ni statistics are an important tool for evaluating and comparing different 

probability distributions when dealing with censored data. These studies can provide valuable insights into the 

performance of the Bg-N tests under different types and levels of censoring, and can inform decisions about which 

distribution to use for subsequent analyses. It is intended that the sample that was produced (𝑁 = 13000) will be 

censored at 24% and that DF= 5 To check if the sample agrees with the TPLF model’s null hypothesis, grouping 

intervals will be used. For various theoretical levels, we determine the average value of the non-rejection numbers 

of the null hypothesis. (𝜖 = 0.01,0.02,0.04,0.09), where 𝑌2 ≤ 𝜒𝜖
2(𝑟 − 1). The theoretical and empirical levels are 

compared in Table 6, which demonstrates how closely the determined empirical level matches the value of the 

relevant theoretical level. We conclude that the customized test is ideally suited to the TPLF model as a consequence.  

 

  Table 6: Censored assessing for the Bg-N statistic for  

 𝜖 = 0.01; 0.02; 0.05; 0.1 and 𝑁 = 13000. 

𝑛 ↓ &𝜖 ⟶ 𝜖 𝜖 = 0.01 𝜖 = 0.02 𝜖 = 0.04 𝜖 = 0.09 

𝑛 = 26 0.9924 0.9819 0.9631 0.9120 

𝑛 = 40 0.9920 0.9816 0.9625 0.9114 

𝑛 = 140 0.9915 0.9807 0.9619 0.9111 

𝑛 = 350 0.9911 0.9805 0.9613 0.9108 

𝑛 = 600 0.9906 0.9804 0.9608 0.9103 

𝑛 = 1200 0.9904 0.9801 0.9604 0.9101 

     

We conclude from these findings that the empirical significance level of the 𝑌𝑛
2 The theoretical level of the chi-square 

distribution on degrees of freedom corresponds to the statistical level at which it is statistically significant. The 

censored data acquired from the TPLF distribution may thus be satisfactorily fitted using the suggested test, according 

to this evidence.  

 

7.An application under the uncensored emergency care data 

The emergency department of the hospital associated with a public health institution offered real data that were 

collected throughout the month of March 2023, and these data were used in the current study. The goal of this study 

was to examine, in a sample of patients getting medical care at the department, the association between various 

clinical characteristics and emergency room outcomes. The required permissions were guaranteed, and moral 

standards were adhered to in the data collection. The dataset consisted of 30 different individuals, each of them 

represented a unique observation. Six separate variables were recorded for each subject: age (years), minimum and 

maximum blood pressure (mmHg), blood glucose level (mg/dL), cardiac frequency (BPM), and oxygen saturation 

(SaO 2%). To ensure the accuracy and quality of the collected data, rigorous precautions were taken during the 

collection process. This necessitated the proper documentation of patient data, adherence to predetermined measuring 

procedures, and regular quality checks to detect any missing data or variations. This dataset is useful for investigating 
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the associations between clinical variables and emergency room outcomes due to the accurate data collection method 

and the variety of the patient population.  

   

We are able to investigate the validity and application of the distribution by evaluating the goodness-of-fit of the 

TPLF model distribution and its capability to accurately describe the observed patterns and variability in emergency 

care data. For each fitted model (TPLF model with Weibull, Gombertez, Pareto beseline hazard functions), we 

indicate the point estimates. The most effective model out of all the fitted models to these data is determined using 

the well-known modified chi-squared test (Bagdonavicius and Nikulin (2011) and Bagdonavicius et al. (2013)).  

 

7.1 Validation of the TPLF model under the WBLHF 

Considering that these data are distributed according to the TPLF model with WBLHF and using R statistical software 

(the BB package), the maximum likelihood estimates of the parameter vector 𝕆 are provided as  

  

�̂� = 0.84965, �̂� = 0.831994, 𝜮2̂ = 1.019259, 

ℬ1̂ = 0064875, ℬ2̂ = −0.21048, ℬ3̂ = −0.61541, 

ℬ4 = 0.49358, ℬ5̂ = −0245174, ℬ6̂ = 0.92547. 

For censored data, we take, for example, 5 intervals (𝑟 = 5) as the number of classes, as suggested by Bagdonavicius 

and Nikulin (2011) and Bagdonavicius et al. (2013). The elements of the estimated Fisher information matrix 𝐼(�̂�) 

are presented as follows:  

  

𝐼(�̂�) =

(

 
 
 
 
 
 

1.09654 2.15048 0.514872 −5.91254 2.00215 1.09857 0.61472 3.00021 0.74581
0.65842 −6.21547 0.53251 −1.00248 2.02188 −7.15482 0.33615 1.24182

0.19547 0.00240 1.02548 −6.32514 −0.06254 9.32541 0.61245
1.00245 0.37948 0.12548 3.21547 −5.00218 0.00097

0.32458 −4.12572 1.02458 0.95774 0.84752
3.00218 −6.21542 0.900014 7.00015

0.08457 2.00978 3.02157
0.85475 −1.01021

0.17548 )

 
 
 
 
 
 

. 

Then, we calculate the value of the test statistic as 𝑌𝑛
2 = 9.120054. The critical value is 𝜒0.05

2 (4) = 9.488 > 𝑌𝑛
2. This 

data can be fitted by our proposed TPLF model with WBLHF in proper manner.  

 

7.2 Validation of the TPLF model under the EBLHF 

Considering that these data are distributed according to the TPLF model with EBLHF and using R statistical software 

(the BB package), the maximum likelihood estimates of the parameter vector 𝕆 are provided as  

  

�̂� = 0.6254, 𝜮2̂ = 1.02548, 

ℬ1̂ = 3.0254, ℬ2̂ = −9.03251, ℬ3̂ = −0.61587, 

ℬ4 = 1.0254, ℬ5̂ = 2.95014, ℬ6̂ = −2.03215. 

For censored data, we take, for example, 5 intervals (𝑟 = 5) as the number of classes, as suggested by Bagdonavicius 

and Nikulin (2011) and Bagdonavicius et al. (2013). The elements of the estimated Fisher information matrix 𝐼(�̂�) 

are presented as follows:  
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𝐼(�̂�) =

(

 
 
 
 
 

1.63254 −6.32517 2.61502 −8.3265 1.02541 0.32514 0.96584 1.06025
2.95312 5.00002 1.02543 1.03268 1.92354 −7.0095 −10.7658

0.88321 2.6157 3.00002 1.20451 2.03251 2.61547
1.54875 6.32514 3.26514 1.02547 0.00214

2.00004 −5.3268 −4.7474 2.00315
0.96584 2.30142 1.02547

1.02547 4.32510
0.32014 )

 
 
 
 
 

 

Then we calculate the value of the test statistic as 𝑌𝑛
2 = 8.80451. The critical value is 𝜒0.05

2 (4) = 9.488 > 𝑌𝑛
2. This 

data can be fitted by our proposed TPLF model with EBLHF in proper manner.  

 

7.3 Validation of the TPLF model under the GBLHF 

Considering that these data are distributed according to the TPLF model with GBLHF and using R statistical software 

(the BB package), the maximum likelihood estimates of the parameter vector 𝕆 are provided as  

  

𝛾 = 1.023014, �̂� = 0.98351, 𝜮2̂ = 1.120034, 

ℬ1̂ = 0.963514, ℬ2̂ = 0.845271, ℬ3̂ = −2.61847, 

ℬ4̂ = 0.530018, ℬ5̂ = −1.02947, ℬ6̂ = 0.125437. 

We take the estimated Fisher matrix with intervals of 𝑟 = 5, which is represented as  

  

𝐼(�̂�) =

(

 
 
 
 
 
 

0.93254 2.02154 0.21547 1.09587 −2.00347 2.15427 −8.06254 −5.00214 0.61542
1.09651 1.09658 −4.21571 0.61547 0.12548 1.23565 0.19574 1.02659

0.85247 0.02154 1.03254 −4.03251 −6.21541 0.21547 1.02558
1.63254 0.91547 1.02548 −4.02158 2.02154 −7.02154

2.00314 −5.03268 4.02158 −8.5479 −4.01924
0.86592 0.21547 0.61547 0.2158

0.46215 1.09754 0.21547
1.00985 −1.00025

0.36251 )

 
 
 
 
 
 

, 

then we calculate the value of the Bagdonavicius and Nikulin (2011) and Bagdonavicius et al. (2013) statistic : 𝑌𝑛
2 =

8.123048. For different critical values: 𝛼 = 5% and 𝛼 = 10%, we find 𝑌2 < 𝜒0.05
2 (4) = 9.488 and 𝑌𝑛

2 <

𝜒0.1
2 (5 − 1) respectively. Hence we reason that the emergency care data is compatible with our proposed TPLF model 

with GBLHF.  

 

7.4 Validation of the TPLF model under the PBLHF 

Considering that these data are distributed according to the TPLF model with PBLHF and using R statistical software 

(the BB package), the maximum likelihood estimates of the parameter vector 𝕆 are provided as  

�̂� = 0.09584, �̂� = 1.24051, 𝜮2̂ = 0.89574, 

ℬ1̂ = 0.32658, ℬ2̂ = 0.19487, ℬ3̂ = −0.613548, 

ℬ4 = −2.164957, ℬ5̂ = −1.94378, ℬ6̂ = 0.379138. 

We take the estimated Fisher matrix with intervals of 𝑟 = 5, which is represented as:  

  



Pak.j.stat.oper.res.  Vol.20  No. 1 2024 pp xx-xx  DOI: http://dx.doi.org/10.18187/pjsor.v19i4.xxxx 

 

 
A New Two-Parameters Lindley-Frailty Model: Censored and Uncensored Schemes under Different Baseline Models: Applications, Assessments, 

Censored and Uncensored Validation Testing 

124 

 

𝐼(�̂�) =

(

 
 
 
 
 
 

0.93518 1.02547 0.321874 −2.06587 1.02368 1.09557 −2.45871 0.19385 −3.21574
0.64875 1.026589 1.02547 −8.02157 −9.12547 −4.02154 3.12574 −6.21542

0.61847 0.84753 2.03254 −12.0214 0.12547 0.95847 4.02157
0.46158 −3.16587 −4.1257 −4.91578 0.12548 1.9658

1.02458 1.84576 1.3258 0.002157 1.21547
0.93784 −2.12547 −1.29568 −2.02145

1.19325 −3.21547 0.23515
0.84571 1.55524

1.90542 )

 
 
 
 
 
 

 

  

then we calculate the value of the Bagdonavicius and Nikulin: 𝑌𝑛
2 = 7.23197. For different critical values : 𝛼 = 5% 

and 𝛼 = 10%, we find 𝑌𝑛
2 < 𝜒0.05

2 (5 − 1) = 9.488 and 𝑌𝑛
2 < 𝜒0.1

2 (4) = 7.779 respectively. Hence we reason that 

the emergency care data is compatible with our proposed TPLF model with PBLHF.  

8.An application under the censored heart attack dataset 

This is a multivariate type of dataset, which refers to multivariate numerical data analysis that involves or provides 

a range of distinct mathematical or statistical variables. This database includes 76 covariables, in our work we have 

used 5 covariables which are: age, resting blood pressure, serum cholesterol, maximum heart rate achieved, and 

oldpeak: ST depression induced by exercise relative to rest. One of the main objectives of this dataset is to predict, 

using the patient’s provided attributes, whether or not the individual has heart disease. Another experimental task 

involves diagnosing the individual and extracting various insights from the dataset that could help in a deeper 

understanding of the issue. The dataset was created by the Hungarian Institute of Cardiology, see 

https://doi.org/10.24432/C52P4X (alsom see Janosi et al. (1988)). We may study the distribution’s validity and 

application by analyzing the goodness-of-fit of the TPLF model distribution and its ability to effectively represent 

observed patterns and variability in Heart attack data. We provide the point estimates for each fitted model (TPLF 

model with Weibull, exponential, Gombertez, and Pareto baseline hazard functions). The modified chi-squared test 

is used to select the most effective model out of all the fitted models to these data (see Bagdonavicius and 

Nikulin(2011) and Bagdonavicius et al. (2013)).  

 

8.1 Validation of the TPLF model under the WBLHF 

Given that these data are distributed using the TPLF model with the WBLHF and that R statistical software (the BB 

package) is used, the maximum likelihood estimates of the parameter vector 𝕆 are provided as follows  

  

�̂� = 1.00245, �̂� = 0.61472, 

𝜮2̂ = 1.00214, ℬ1̂ = −2.02154, 

ℬ2̂ = 3.00215, ℬ3̂ = −4.02875, 

ℬ4 = 1.023548, ℬ5̂ = −1.23487. 

We choose 8 intervals as the number of classes for censored data, as suggested by Bagdonavicius and Nikulin (2011) 

and Bagdonavicius et al. (2013). The following are the elements of the estimated Fisher information matrix 𝐼(�̂�):  

  

𝐼(�̂�) =

(

 
 
 
 
 

2.003254 4.15785 0.15478 −3.62501 0.00217 −8.12544 6.00985 1.21545
1.96542 −6.30214 1.02458 3.11241 2.13547 1.75845 −8.00002

0.96584 3.20145 −2.15347 0.95135 1.54863 −0.96584
2.965847 8.215478 −4.00215 12.3518 6.00214

3.021457 2.15475 −5.88547 −9.32514
1.92547 0.35748 12.2514

2.11045 −17.2152
0.65847 )

 
 
 
 
 

, 

The test statistic value is then calculated as 𝑌𝑛
2 = 13.58497. The key point is 𝜒0.05

2 (7) = 14.0689 > 𝑌𝑛
2. This data 

can be properly fitted by our proposed TPLF model with WBLHF.  
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8.2 Validation of the TPLF model under the EBLHF 

Given that these data are distributed using the TPLF model with the exponential baseline hazard function and that R 

statistical software is used, the maximum likelihood estimates of the parameter vector 𝕆 are provided as follows  

  

�̂� = 2.12501, 𝜮2̂ = 1.02102, 

ℬ1̂ = 0.2154, ℬ2̂ = −9.3258, ℬ3̂ = 1.95201, 

ℬ4 = −10.8124, ℬ5̂ = 2.61024. 

We choose 8 intervals as the number of classes for censored data, as suggested by Bagdonavicius and Nikulin (2011) 

and Bagdonavicius et al. (2013). The following are the elements of the estimated Fisher information matrix 𝐼(�̂�):  

  

𝐼(�̂�) =

(

 
 
 
 

1.32054 −7.92518 −9.3251 2.95147 1.92358 1.32547 3.00214
0.26531 −7.1658 1.32547 0.21574 0.96325 4.9513

1.92543 −10.3201 5.0001 1.42152 3.0302
2.30154 1.11124 0.85647 1.95487

3.00002 1.44475 −7.9514
1.20541 2.0215

2.15482 )

 
 
 
 

, 

The test statistic value is then calculated as 𝑌𝑛
2 = 12.95682. The key point is 𝜒0.05

2 (7) = 14.0689 > 𝑌𝑛
2. This data 

can be properly fitted by our proposed TPLF model with EBLHF.  

 

8.3 Validation of the TPLF model under the GBLHF 

Given that these data were distributed using the TPLF model with the Gombertez baseline hazard function and that 

R statistical software was used, the maximum likelihood estimates of the parameter vector 𝕆 can be obtained as  

  

𝛾 = 1.36001, �̂� = 1.24801, 𝜮2̂ = 1.03452, 

ℬ1̂ = −3.51204, ℬ2̂ = −4.671305, ℬ3̂ = 1.30265, 

ℬ4̂ = 2.101036, ℬ5̂ = 1.063254. 

We take the estimated Fisher matrix with 𝑟 = 8 intervals, which is denoted as  

  

𝐼(�̂�)

=

(

 
 
 
 
 

0.965847 −5.02147 −9.21578 1.95847 3.21542 −21.31544 0.93548 2.00031
3.26150 2.301245 −8.02547 1.362548 0.965842 1.20154 1.99658

2.61354 1.25698 0.15472 −7.95382 −12.4512 2.00001
2.165847 1.952014 1.02154 −9.32518 1.02458

1.92546 2.035214 −12.32548 3.1102
0.84571 4.03528 −8.3219

4.00621 1.02326
0.88827 )

 
 
 
 
 

, 

Then we compute the test of Bagdonavicius and Nikulin (2011) and Bagdonavicius et al. (2013): 𝑌𝑛
2 = 11.684002. 

For various critical values of 𝛼 = 5%, we obtain 𝑌2 < 𝜒0.05
2 (7) = 14.0689. As a result, we conclude that the 

emergency care data is consistent with our proposed TPLF model using the Gompertz baseline hazard function.  

 

8.4 Validation of the TPLF model under the PBLHF 

Given that these data are distributed using the TPLF model with the Pareto baseline hazard function and that R 

statistical software is used, the maximum likelihood estimates of the parameter vector 𝕆 are provided as follows.  

�̂� = 1.00254, �̂� = 1.36254, 𝜮2̂ = 0.88695, 

ℬ1̂ = 0.96584, ℬ2̂ = −0.93747, ℬ3̂ = −0.63625, 
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ℬ4 = 1.02547, ℬ5̂ = −9.002547. 

the estimated Fisher matrix with intervals of 𝑟 = 8 is represented as:  

  

𝐼(�̂�) =

(

 
 
 
 
 

0.236584 −9.32514 −11.2548 −13.6258 2.15471 3.26587 2.15473 1.99685
2.05487 −12.3254 1.95324 4.00215 3.02130 1.95684 −7.3184

1.92564 0.902457 −4.9515 1.95684 2.00514 2.15043
0.32678 2.2223 4.00125 3.12022 1.84502

3.12045 3.01254 1.90547 −9.8124
1.39584 −8.8965 1.35486

1.32547 0.96584
2.91573 )

 
 
 
 
 

 

Then, we compute the test of Bagdonavicius and Nikulin (2011) and Bagdonavicius et al. (2013): 𝑌𝑛
2 = 11.57482. 

For alternative critical values of 𝛼 = 5%, we find 𝑌𝑛
2 < 𝜒0.05

2 (7) = 14.0689, respectively. As a result, we conclude 

that the emergency care data is consistent with our proposed TPLF model with PBLHF.  

9. Conclusion 

In this paper, we propose a new frailty model to account for survival data’s unobserved heterogeneity. The TPL 

distribution with a unitary mean is used as the frailty distribution in this case. We calculated the Laplace transform 

of this frailty distribution, then developed the marginal survival and hazard functions. The Laplace transform of the 

TPL distribution provides a simple mathematical method for obtaining analytical formulas for the TPLF model’s 

hazard and marginal survival functions. The Gompertz, Weibull, exponential, and Pareto hazard functions were used 

as the baseline hazard functions to construct the TPLF models. Simulation analyses revealed that, as expected, the 

convergence characteristics of the MXLEs were achieved for a variety of censoring proportions (0%, 10%, 30%, 

and 50%). We created a modified chi-squared test statistic based on the statistics of Nikulin Rao Robson (1973a,b,c, 

and 1974) and Bagdonavicus and Nikuln (2011), taking into consideration both complete and censored data cases, 

to evaluate a statistical test for the TPLF model in survival analysis. The TPLF model was used to construct the 

suggested test statistic element formulations. Besides performing as intended, the modified chi-squared test 

demonstrated its ability to identify unobserved heterogeneity in both small and large samples (𝑛 = 26, 𝑛 = 40, 𝑛 =

140, 𝑛 = 250, 𝑛 = 550 and 𝑛 = 1000). The simulation study demonstrates that the suggested test for the TPLF 

model works effectively in both complete and censored data sets. It implies that the test is reliable and precise for 

evaluating the goodness of fit of our suggested model to real survival data. The test developed by Bagdonavicius and 

Nikulin (2011) and Bagdonavicius et al. (2013) offers favorable statistical properties, such as precise parameter 

estimates. This demonstrates that the test provides accurate inference for the TPLF model and captures the underlying 

structure of the data. Although the simulation study confirms the efficacy of the proposed test, more research, and 

validation in various contexts or datasets would be interesting. Additional sample sizes, various frailty distribution 

assumptions, or alternative censoring procedures should be explored in order to acquire a further understanding of 

the test’s performance. We used a real emergency care dataset (with six covariates) collected from an Algerian 

department on emergencies in the presence of censoring to test the TPLF model with Weibull, exponential, 

Gombertez, and Pareto as the baseline hazard functions. The Weibull TPLF, Gompertz TPLF, and Pareto TPLF 

models provided a good fit for the emergency care data, according to the Bagdonavicius and Nikulin (2011) and 

Bagdonavicius et al. (2013)test for censored data. In the application with data on emergency care, the TPLF models 

were effective at capturing unobserved heterogeneity. For the uncensored emergency care data, we have the following 

results:  

I. Under the WBLHF: Since 𝜒0.05
2 (4) = 9.488 > 𝑌𝑛

2 = 9.120054 ⇒ Decision: accept 𝐻0.  

II. Under the EBLHF: Since 𝜒0.05
2 (4) = 9.488 > 𝑌𝑛

2 = 8.80451 ⇒ Decision: accept 𝐻0.  

III. Under the GBLHF: Since 𝜒0.05
2 (4) = 9.488 > 𝑌𝑛

2 = 8.123048 ⇒ Decision: accept 𝐻0.  

IV. Under the GBLHF: Since 𝜒0.05
2 (4) = 9.488 > 𝑌𝑛

2 = 7.23197 ⇒ Decision: accept 𝐻0.   

For the censored heart attack data, we have the following results:  

I. Under the WBLHF: Since 𝜒0.05
2 (7) = 14.0689 > 𝑌𝑛

2 = 13.58497 ⇒ Decision: accept 𝐻0.  

II. Under the EBLHF: Since 𝜒0.05
2 (7) = 14.0689 > 𝑌𝑛

2 = 12.95682 ⇒ Decision: accept 𝐻0.  
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III. Under the GBLHF: 𝜒0.05
2 (7) = 14.0689 > 𝑌𝑛

2 = 11.684002 ⇒ Decision: accept 𝐻0.  

IV. Under the GBLHF: 𝜒0.05
2 (7) = 9.488 > 𝑌𝑛

2 = 11.57482 ⇒ Decision: accept 𝐻0.   

For more details about related works in risk analysis and insurance see Hashempour et al. (2023), Mohamed et al. 

(2024) and Elbatal et al. (2024). For some new compound G families for  the Cox model and frailty models see 

Hashem et al. (2024). Sen et al. (2022) and Alizadeh et al. (2023) presented a novel XGamma extensions, we may 

use this in frailty models and relibility anlaysis. For other Lomax extention for the fraitly models see Hamed et al. 

(2022), El-Morshedy et al. (2022), Al-Essa et al. (2023), Salem et al. (2023). 
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10.Appendix: score functions 

The score function is the gradient of the log-likelihood function of the probability distribution with respect to the 

distribution’s support.  

10.1 The Score functions of TLPF model in case of the WBLHF 

The score functions of each parameter using the WBLHF are obtained as follows:  

  

𝜕log(Θ)

𝜕ℬ1
=∑

𝒾=1

𝑛

𝛿𝒾𝓍1 −∑

𝒾=1

𝑛

𝛿𝒾 {
[(𝑡𝒾

𝑘𝓍1exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮
2)]

[(𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]]
−1} 

+∑

𝒾=1

𝑛

{−
[(𝑡𝒾

𝑘𝓍1exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮
2)]

[(𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]]
−1} 

+∑

𝒾=1

𝑛

{−
[
(𝑡𝒾
𝑘𝓍1exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮

2)

𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

[(𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]]
−1
} [
𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]

𝒟(𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

 

+∑

𝒾=1

𝑛

𝛿𝒾

{
 
 

 
 

−

[
𝒟(𝜮2) (𝑡𝒾

𝑘𝓍1exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮
2))

𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

[
𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]

𝒟(𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

}
 
 

 
 

[

𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]

𝒟(𝜮2)

+2𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)

]

−1

, 

where 

 𝜆(𝜮2|𝑡𝒾) = {𝜆𝑡𝒾exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2]} 

  

  

𝜕log(Θ)

𝜕ℬ2
=∑

𝒾=1

𝑛

𝛿𝒾𝓍2 −∑

𝒾=1

𝑛

𝛿𝒾 {
[(𝑡𝒾

𝑘𝓍2exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮
2)]

[(𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]]
−1} 

+∑

𝒾=1

𝑛

{−
[(𝑡𝒾

𝑘𝓍1exp(𝓍2ℬ1 + 𝓍2ℬ2)(1 + 9𝜮
2)]

[(𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]]
−1} 

+∑

𝒾=1

𝑛

{−
[
𝑡𝒾
𝑘𝓍2exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮

2)

𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

[𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]]
−1
} [
𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]

𝒟(𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1
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+∑

𝒾=1

𝑛

𝛿𝒾

{
 
 

 
 

−

[

𝒟(𝜮2)

𝑡𝒾
𝑘𝓍2exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮

2)

𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)

]

[
𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]𝒟(𝜮2)

+𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

}
 
 

 
 

[
𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]𝒟(𝜮2)

+2𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

, 

 

 

𝜕log(Θ)

𝜕𝑘
=∑

𝒾=1

𝑛

𝛿𝒾
1

𝑘
+∑

𝒾=1

𝑛

𝛿𝒾log𝑡𝒾 −∑

𝒾=1

𝑛

{−
[ln𝑡𝒾𝑡𝒾

𝑘exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + ln𝜌𝜌𝑘[𝜄(𝜮2) − 2]]

[𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]]
−1 } 

+∑

𝒾=1

𝑛

{
[𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)(ln𝜌 − ln𝑡𝒾)]

[𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]]
−1} +∑

𝒾=1

𝑛

[𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]]
−1

 

×

{
 
 

 
 [
𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)

(𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(ln𝜌 − ln𝑡𝒾))
]

[
𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]

𝒟(𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

}
 
 

 
 

 

+∑

𝒾=1

𝑛

{
  
 

  
 
[

𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)

𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(ln𝜌 − ln𝑡𝒾)

𝒟(𝜮2)(1 + 9𝜮2)

]

× [

𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]

𝒟(𝜮2)

+𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)

]

−1

}
  
 

  
 

[
𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]

𝒟(𝜮2) + 2𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

, 

 

 

𝜕log(Θ)

𝜕𝜌
=∑

𝒾=1

𝑛

𝛿𝒾 {
[𝑘𝜌𝑘−1[𝜄(𝜮2) − 2]]

[𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]]
−1}

+∑

𝒾=1

𝑛

{
[𝑘 (𝑡𝒾

𝑘exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2))]

[𝜌(𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]]
−1} 

+∑

𝒾=1

𝑛

{
[
𝑘𝜌𝑘−1[𝜄(𝜮2) − 2]𝐶(𝜮2)

(𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)
]

[𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]]
−1
} [
𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]

𝒟(𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

 

+∑

𝒾=1

𝑛

𝛿𝒾 {

[𝑘𝜌𝑘−1[𝜄(𝜮2) − 2]𝐶(𝜮2)𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)𝒟(𝜮2)]

[
𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]

𝒟(𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1 } [
𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]

𝒟(𝜮2) + 2𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

, 

  

   

  

𝜕log(Θ)

𝜕𝜮2
=∑

𝒾=1

𝑛

𝛿𝒾 [
9

1 + 9𝜮2
] −∑

𝒾=1

𝑛

𝛿𝒾 {

[√2(1 + 7𝜮2) (9𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)) + 21𝜌𝑘]

[√2(1 + 7𝜮2) (
𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)

+𝜌𝑘[𝜄(𝜮2) − 2]
)]
} 
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+∑

𝒾=1

𝑛

{
 
 

 
 [
21[𝑡𝒾

𝑘exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2)]

− (9𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)) [𝜄(𝜮2) − 2] (√2(1 + 7𝜮2))
]

[
(√2(1 + 7𝜮2)) 𝑡𝒾

𝑘exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2)

+𝜌𝑘[𝜄(𝜮2) − 2][𝜄(𝜮2) − 2]
]

}
 
 

 
 

+∑

𝒾=1

𝑛

{
 
 

 
 
[(1 + 9𝜮2)(𝑡𝒾

𝑘exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2])]

[

𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]

𝒟(𝜮2)

+𝜌𝑘[𝜄(𝜮2) − 2](3 + 9𝜮2 − 𝜄(𝜮2))

]

−1

}
 
 

 
 

 

(

 
 
 
 
 
 
 
 
 
 {
[3 (−63𝜮2 − 11 + 6√2(1 + 7𝜮2))]

[(√2(1 + 7𝜮2)) (1 + 9𝜮2)2]
−1 }

+ [(1 + 9𝜮2)2 (
𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)

+𝜌𝑘[𝜄(𝜮2) − 2]
)

2

]

−1

{
 
 

 
 
[𝜍(𝜮2)𝜌𝑘𝐶(𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2](9 − 𝜍(𝜮2))]

× (1 + 9𝜮2) [
𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)

+𝜌𝑘[𝜄(𝜮2) − 2]
]

− [
9(𝑡𝒾

𝑘exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + 9𝜌𝑘[𝜄(𝜮2) − 2]

+9(𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)𝜍(𝜮2)𝜌𝑘(1 + 9𝜮2)
] 𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)

}
 
 

 
 

)

 
 
 
 
 
 
 
 
 
 

 

 

 

+∑

𝒾=1

𝑛

𝛿𝒾 [

𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]

𝒟(𝜮2)

+𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)

]

−1

× [
𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]

𝒟(𝜮2) + 2𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

 

×

{
 
 
 
 

 
 
 
 
[𝜍(𝜮2)𝜌𝑘𝐶(𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2](9 − 𝜍(𝜮2))]

× [
𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]

𝒟(𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

− [

−9(𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ) + 𝜍(𝜮2)𝜌𝑘𝒟(𝜮2) + (18 + 𝜍(𝜮2))

× 𝑡𝒾
𝑘exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2]

+𝜍(𝜮2)𝜌𝑘𝐶(𝜮2) + 𝜌𝑘[𝜄(𝜮2) − 2](9 − 𝜍(𝜮2))

]

× 𝜌𝑘[𝜄(𝜮2) − 2]𝐶(𝜮2) }
 
 
 
 

 
 
 
 

, 

where 𝜍(𝜮2) =
21

√2(1+7𝜮2)
.  

 

10.2 The score functions of TLPF model in case of the EBLHF 

The score functions of each parameter using the EBLHF are obtained as follows :  

  

𝜕log(Θ)

𝜕𝜆
=∑

𝒾=1

𝑛

𝛿𝒾
1

𝜆
−∑

𝒾=1

𝑛

𝛿𝒾 {
[𝑡𝒾exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)]

× [𝜆𝑡𝒾exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2]]

−1} 

+∑

𝒾=1

𝑛

{−
[𝑡𝒾exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)]

× [𝜆𝑡𝒾exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2]]

−1} +∑

𝒾=1

𝑛

− {
𝑡𝒾exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)[𝜄(𝜮2) − 2]𝐶(𝜮2)

× [𝜆𝑡𝒾exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2]]

−1} 
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[
𝜆𝑡𝒾exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2]

𝒟(𝜮2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)
]
−1

 

+∑

𝒾=1

𝑛

𝛿𝒾 {

[−(𝑡𝒾exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2))𝒟(𝜮2)[𝜄(𝜮2) − 2]𝐶(𝜮2)]

[
(𝜆𝑡𝒾exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])

× 𝒟(𝜮2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)
]
−1 } [

(𝜆𝑡𝒾exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])𝒟(𝜮2)

+2[𝜄(𝜮2) − 2]𝐶(𝜮2)
]
−1

, 

 

 

𝜕log(Θ)

𝜕ℬ1
=∑

𝒾=1

𝑛

𝛿𝒾𝓍1 −∑

𝒾=1

𝑛

𝛿𝒾 {
[𝜆𝑡𝒾𝓍1exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮

2)]

[𝜆𝑡𝒾exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2]]

−1}

+∑

𝒾=1

𝑛

(−
[𝜆𝑡𝒾𝓍1exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮

2)]

[𝜆𝑡𝒾exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2]]

−1) 

+∑

𝒾=1

𝑛

− {
𝜆𝑡𝒾𝓍1exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮

2)[𝜄(𝜮2) − 2]𝐶(𝜮2)

[𝜆𝑡𝒾exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2]]

−1 } 

× [𝜆(𝜮2|𝑡𝒾)𝒟(𝜮
2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)]−1 

+∑

𝒾=1

𝑛

𝛿𝒾 {
[
−(𝜆𝑡𝒾𝓍1exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮

2))

𝒟(𝜮2)[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

× [𝜆(𝜮2|𝑡𝒾)𝒟(𝜮
2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)]−1

} [𝜆(𝜮2|𝑡𝒾)𝒟(𝜮
2) + 2[𝜄(𝜮2) − 2]𝐶(𝜮2)]−1, 

 

 

𝜕log(Θ)

𝜕ℬ2
=∑

𝒾=1

𝑛

𝛿𝒾𝓍2 −∑

𝒾=1

𝑛

𝛿𝒾 {
[𝜆𝑡𝒾𝓍2exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮

2)]

[𝜆𝑡𝒾exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2]]

−1} 

+∑

𝒾=1

𝑛

{−
[𝜆𝑡𝒾𝓍2exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮

2)]

[𝜆𝑡𝒾exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2]]

−1} 

+∑

𝒾=1

𝑛

− {

𝜆𝑡𝒾𝓍2exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮
2)

× [𝜄(𝜮2) − 2]𝐶(𝜮2)

× [𝜆𝑡𝒾exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2]]

−1
} [𝜆(𝜮2|𝑡𝒾)𝒟(𝜮

2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)]−1 

+∑

𝒾=1

𝑛

𝛿𝒾

{
 
 

 
 
[

−(𝜆𝑡𝒾𝓍2exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮
2))

𝒟(𝜮2)

[𝜄(𝜮2) − 2]𝐶(𝜮2)

]

[
𝜆𝑡𝒾exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2]

𝒟(𝜮2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)
]
−1

}
 
 

 
 

[𝜆(𝜮2|𝑡𝒾)𝒟(𝜮
2) + 2[𝜄(𝜮2) − 2]𝐶(𝜮2)]−1, 

 

 

 

 

𝜕log(Θ)

𝜕𝜮2
=∑

𝒾=1

𝑛

𝛿𝒾 (
9

1 + 9𝜮2
) −∑

𝒾=1

𝑛

𝛿𝒾 {
(9𝜆𝑡𝒾exp(𝓍𝒾

⊺ℬ)) (√2(1 + 7𝜮2)) + 21

[(√2(1 + 7𝜮2)) 𝜆(𝜮2|𝑡𝒾)]
−1 } 

+∑

𝒾=1

𝑛

{
 
 

 
 
21𝜆𝑡𝒾exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) − 9𝜆𝑡𝒾exp(𝓍𝒾
⊺ℬ)

× (√2(1 + 7𝜮2)) [𝜄(𝜮2) − 2]

× [[𝜄(𝜮2) − 2](√2(1 + 7𝜮2)𝜆(𝜮2|𝑡𝒾)]
−1

}
 
 

 
 

+∑

𝒾=1

𝑛

{
(1 + 9𝜮2){𝜆𝑡𝒾exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2]}

× [𝜆(𝜮2|𝑡𝒾)𝒟(𝜮
2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)]−1

} 
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(

 
 
 
 
 
 
3(−63𝜮2 − 11 + 6√2(1 + 7𝜮2)) [(√2(1 + 7𝜮2)) (1 + 9𝜮2)2]

−1

+[(1 + 9𝜮2)2𝜆(𝜮2|𝑡𝒾)
2]−1

{21𝐶[𝜮2] + (9√2(1 + 7𝜮2) − 21) [𝜄(𝜮2) − 2] [√2(1 + 7𝜮2)]
−1

}

(1 + 9𝜮2)[𝜆𝑡𝒾exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2]]

− {[
18𝜆𝑡𝒾exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)

+9[𝜄(𝜮2) − 2] + 𝜍(𝜮2)(1 + 9𝜮2)
][𝜄(𝜮2) − 2]𝐶(𝜮2)}

)

 
 
 
 
 
 

 

+∑

𝒾=1

𝑛

𝛿𝒾[𝜆(𝜮
2|𝑡𝒾)𝒟(𝜮

2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)]−1[𝜆(𝜮2|𝑡𝒾)𝒟(𝜮
2) + 2[𝜄(𝜮2) − 2]𝐶(𝜮2)]−1 

{
  
 

  
 [(𝜍(𝜮

2))𝐶(𝜮2) + (9 − 𝜍(𝜮2))[𝜄(𝜮2) − 2]]

[𝜆(𝜮2|𝑡𝒾)𝒟(𝜮
2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)]

− [

[𝜄(𝜮2) − 2]𝐶(𝜮2)(9𝜆𝑡𝒾exp(𝓍𝒾
⊺ℬ) + 𝜍(𝜮2))𝒟(𝜮2)

+(18 + 𝜍(𝜮2))𝜆(𝜮2|𝑡𝒾)

+(𝜍(𝜮2))𝐶(𝜮2) + (9 − 𝜍(𝜮2))[𝜄(𝜮2) − 2].

]

}
  
 

  
 

. 

  

10.3 The score functions of TLPF model in case of the GBLHF 

The score functions of each parameter using the GBLHF are obtained as follows :  

  

𝜕log(Θ)

𝜕𝜑
=∑

𝒾=1

𝑛

𝛿𝒾
1

𝜑
−∑

𝒾=1

𝑛

𝛿𝒾 {
[[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)]

[𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + 𝛾[𝜄(𝜮2) − 2]]

−1} 

+∑

𝒾=1

𝑛

{−
[[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)]

[𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + 𝛾[𝜄(𝜮2) − 2]]

−1} 

+∑ −

𝒾=1

𝑛

{
[[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)]

[𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + 𝛾[𝜄(𝜮2) − 2]]

−1} 

[𝜑(𝜮2|𝑡𝒾)𝒟(𝜮
2) + 𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)]−1 

+∑

𝒾=1

𝑛

𝛿𝒾[𝜑(𝜮
2|𝑡𝒾)𝒟(𝜮

2) + 2𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)]−1 − {
[
(𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2))

𝒟(𝜮2)𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

[𝜑(𝜮2|𝑡𝒾)𝒟(𝜮
2) + 𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)]−1

}, 

where 

𝜑(𝜮2|𝑡𝒾) = {𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + 𝛾[𝜄(𝜮2) − 2]}, 

  

  

𝜕log(Θ)

𝜕𝛾
=∑

𝒾=1

𝑛

𝛿𝒾
1

𝛾
+∑

𝒾=1

𝑛

𝛿𝒾log𝑡𝒾 −∑

𝒾=1

𝑛

𝛿𝒾 {
𝜑𝑡𝒾[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2]

[𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + 𝛾[𝜄(𝜮2) − 2]]

−1} 

+∑

𝒾=1

𝑛

{
[
(1 + 9𝜮2)𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾

⊺ℬ)

−𝛾𝜑𝑡𝒾(exp(𝛾𝑡𝒾)exp(𝓍𝒾
⊺ℬ)

]

[𝛾𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2)𝛾[𝜄(𝜮2) − 2]]

−1
} 

+∑

𝒾=1

𝑛

{
 
 

 
 
[

[𝜄(𝜮2) − 2]𝐶(𝜮2)

(1 + 9𝜮2) (
𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾

⊺ℬ)

−𝛾𝜑𝑡𝒾(exp(𝛾𝑡𝒾)exp(𝓍𝒾
⊺ℬ)

)
]

[
𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)

+𝛾[𝜄(𝜮2) − 2]
]
−1

}
 
 

 
 

[𝜑(𝜮2|𝑡𝒾)𝒟(𝜮
2) + 𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)]−1 
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+∑

𝒾=1

𝑛

𝛿𝒾 [
𝜑(𝜮2|𝑡𝒾)

𝒟(𝜮2) + 2𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)
]
−1

{
 
 

 
 
[𝜄(𝜮2) − 2]𝐶(𝜮2)𝒟(𝜮2)

× (1 + 9𝜮2) (
𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾

⊺ℬ)

−𝛾𝜑𝑡𝒾(exp(𝛾𝑡𝒾)exp(𝓍𝒾
⊺ℬ)

)

× [
𝜑(𝜮2|𝑡𝒾)

𝒟(𝜮2) + 𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)
]
−1

}
 
 

 
 

, 

 

 

𝜕log(Θ)

𝜕ℬ1
=∑

𝒾=1

𝑛

𝛿𝒾𝓍1 +∑

𝒾=1

𝑛

𝛿𝒾 {

𝜑[exp(𝛾𝑡𝒾) − 1]𝓍1exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮
2)

[
𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)

+𝛾[𝜄(𝜮2) − 2]
]
−1 } 

+∑

𝒾=1

𝑛

− {
𝜑[exp(𝛾𝑡𝒾) − 1]𝓍1exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮

2)

[𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + 𝛾[𝜄(𝜮2) − 2]]

−1} 

+∑

𝒾=1

𝑛

− {
[
𝜑[exp(𝛾𝑡𝒾) − 1]𝓍1exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮

2)

× 𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

[𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + 𝛾[𝜄(𝜮2) − 2]]

−1
} [𝜑(𝜮2|𝑡𝒾)𝒟(𝜮

2) + 𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)]−1 

+∑

𝒾=1

𝑛

𝛿𝒾 [
𝜑(𝜮2|𝑡𝒾)

𝒟(𝜮2) + 2𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)
]
−1

 

−

{
 
 

 
 [
𝜑[exp(𝛾𝑡𝒾) − 1]𝓍1exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮

2)

× 𝒟(𝜮2)𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

× [
(𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝛾[𝜄(𝜮2) − 2])

× 𝒟(𝜮2) + 𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)
]
−1

}
 
 

 
 

, 

 

 

𝜕log(Θ)

𝜕ℬ2
=∑

𝒾=1

𝑛

𝛿𝒾𝓍2 +∑

𝒾=1

𝑛

𝛿𝒾 {

𝜑[exp(𝛾𝑡𝒾) − 1]𝓍2exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮
2)

[
𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)

+𝛾[𝜄(𝜮2) − 2]
]
−1 } 

+∑

𝒾=1

𝑛

− {
𝜑[exp(𝛾𝑡𝒾) − 1]𝓍2exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮

2)

× {𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + 𝛾[𝜄(𝜮2) − 2]}−1

} 

+∑

𝒾=1

𝑛

− {
[
𝜑[exp(𝛾𝑡𝒾) − 1]𝓍2exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮

2)

× 𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

× [𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + 𝛾[𝜄(𝜮2) − 2]]

−1
} [𝜑(𝜮2|𝑡𝒾)𝒟(𝜮

2) + 𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)]−1 

+∑

𝒾=1

𝑛

𝛿𝒾[𝜑(𝜮
2|𝑡𝒾)𝒟(𝜮

2) + 2𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)]−1 − {
[
𝜑[exp(𝛾𝑡𝒾) − 1]𝓍2exp(𝓍1ℬ1 + 𝓍2ℬ2)(1 + 9𝜮

2)

× 𝒟(𝜮2)𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

× [𝜑(𝜮2|𝑡𝒾)𝒟(𝜮
2) + 𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)]−1

}, 

 

 

𝜕log(Θ)

𝜕𝜮2
=∑

𝒾=1

𝑛

𝛿𝒾 (
9

1 + 9𝜮2
) −∑

𝒾=1

𝑛

𝛿𝒾

{
 

 {[21𝛾 + √2(1 + 7𝜮
2)] 9𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾

⊺ℬ)}

[
(√2(1 + 7𝜮2))

(𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + 𝛾[𝜄(𝜮2) − 2])

]
}
 

 

 

+∑

𝒾=1

𝑛

{
 
 

 
 [
21𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)

−{9𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾
⊺ℬ)}√2(1 + 7𝜮2)[𝜄(𝜮2) − 2]

]

[√2(1 + 7𝜮2) (
𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)

+𝛾[𝜄(𝜮2) − 2]
) [𝜄(𝜮2) − 2]]

−1

}
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+∑

𝒾=1

𝑛

{
[(1 + 9𝜮2)(𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝛾[𝜄(𝜮2) − 2])]

[𝜑(𝜮2|𝑡𝒾)𝒟(𝜮
2) + 𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)]−1

} 

{
 
 
 
 
 
 

 
 
 
 
 
 3 (−63𝜮

2 − 11 + 6√2(1 + 7𝜮2)) [√2(1 + 7𝜮2)(1 + 9𝜮2)2]
−1

+ [
(1 + 9𝜮2)2

(𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + 𝛾[𝜄(𝜮2) − 2])2

]

−1

[(
21𝛾

√2(1 + 7𝜮2)
) 𝐶(𝜮2) + 𝛾(9 − 𝜍(𝜮2))[𝜄(𝜮2) − 2]]

[(1 + 9𝜮2)(𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + 𝛾[𝜄(𝜮2) − 2])]

− [

9(𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2) + 𝛾[𝜄(𝜮2) − 2])

+(9(𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾
⊺ℬ)) +

21𝛾

√2(1 + 7𝜮2)
) (1 + 9𝜮2)

]

× [𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)] }
 
 
 
 
 
 

 
 
 
 
 
 

 

+∑

𝒾=1

𝑛

𝛿𝒾 [
𝜑(𝜮2|𝑡𝒾)

𝒟(𝜮2) + 2𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)
]
−1

[𝜑(𝜮2|𝑡𝒾)𝒟(𝜮
2) + 𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)]−1 

{
 
 
 
 
 
 

 
 
 
 
 
 
[(

21𝛾

√2(1 + 7𝜮2)
) 𝐶(𝜮2) + 𝛾(9 − 𝜍(𝜮2))[𝜄(𝜮2) − 2]]

[𝜑(𝜮2|𝑡𝒾)𝒟(𝜮
2) + 𝛾[𝜄(𝜮2) − 2]𝐶(𝜮2)]

(

 
 
 
 
 
 𝛾[𝜄(𝜮

2) − 2]𝐶(𝜮2) {

9𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾
⊺ℬ)

+
21𝛾

√2(1 + 7𝜮2)

}

𝒟(𝜮2) + (18 + 𝜍(𝜮2)) (
𝜑[exp(𝛾𝑡𝒾) − 1]exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)

+𝛾[𝜄(𝜮2) − 2]
)

+(
21𝛾

√2(1 + 7𝜮2)
)𝐶(𝜮2) + 𝛾(9 − 𝜍(𝜮2))[𝜄(𝜮2) − 2]

)

 
 
 
 
 
 

}
 
 
 
 
 
 

 
 
 
 
 
 

. 

 

   

10.4 The score functions of TLPF model in case of the PBLHF 

The score functions of each parameter using the PBLHF are obtained as follows :  

  

𝜕log(Θ)

𝜕ℬ1
=∑

𝒾=1

𝑛

𝛿𝒾𝓍1 −∑

𝒾=1

𝑛

𝛿𝒾

{
 

 

−

[(1 + 9𝜮2)𝜂log (
𝛼

𝛼 + 𝑡𝒾
) 𝓍1exp(𝓍1ℬ1 + 𝓍2ℬ2)]

[−𝜂log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2]
−1

}
 

 

 

 + ∑
𝒾=1

𝑛

{
[(1 + 9𝜮2)𝜂log (

𝛼

𝛼+𝑡𝒾
)𝓍1exp(𝓍1ℬ1 + 𝓍2ℬ2)]

[−𝜂log (
𝛼

𝛼+𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2]
−1} 

 

+ ∑
𝒾=1

𝑛

{
[(1 + 9𝜮2)𝜂log (

𝛼

𝛼+𝑡𝒾
)𝓍1exp(𝓍1ℬ1 + 𝓍2ℬ2)[𝜄(𝜮

2) − 2]𝐶(𝜮2)]

[−𝜂log (
𝛼

𝛼+𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2]
−1 } [

(−𝜂log (
𝛼

𝛼+𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])

𝒟(𝜮2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1
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+ ∑
𝒾=1

𝑛

{
 
 

 
 [
(1 + 9𝜮2)𝜂log (

𝛼

𝛼+𝑡𝒾
) 𝓍1exp(𝓍1ℬ1 + 𝓍2ℬ2)

[𝜄(𝜮2) − 2]𝐶(𝜮2)𝒟(𝜮2)
]

[
(−𝜂log (

𝛼

𝛼+𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])

𝒟(𝜮2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

}
 
 

 
 

{[
(−𝜂log (

𝛼

𝛼+𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])

𝒟(𝜮2) + 2[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

}, 

  

  

 
𝜕log(Θ)

𝜕ℬ2
= ∑

𝒾=1

𝑛

𝛿𝒾𝓍2 − ∑
𝒾=1

𝑛

𝛿𝒾

{
 
 

 
 

−
[
(1 + 9𝜮2)𝜂log (

𝛼

𝛼+𝑡𝒾
)

𝓍2exp(𝓍1ℬ1 + 𝓍2ℬ2)
]

[−𝜂log (
𝛼

𝛼+𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2]
−1

}
 
 

 
 

 

+∑

𝒾=1

𝑛

{
  
 

  
 
[
(1 + 9𝜮2)𝜂log (

𝛼

𝛼 + 𝑡𝒾
)

𝓍2exp(𝓍1ℬ1 + 𝓍2ℬ2)
]

[
−𝜂log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)

+𝜄(𝜮2) − 2

]

−1

}
  
 

  
 

 

+∑

𝒾=1

𝑛

{
 
 

 
 
[
(1 + 9𝜮2)𝜂log (

𝛼

𝛼 + 𝑡𝒾
) 𝓍2exp(𝓍1ℬ1 + 𝓍2ℬ2)

[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

[−𝜂log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2]
−1

}
 
 

 
 

 

 {[
(−𝜂log (

𝛼

𝛼+𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])𝒟(𝜮2)

+[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

} 

+∑

𝒾=1

𝑛

{
 
 

 
 [(1 + 9𝜮

2)𝜂log (
𝛼

𝛼 + 𝑡𝒾
) 𝓍2exp(𝓍1ℬ1 + 𝓍2ℬ2)[𝜄(𝜮

2) − 2]𝐶(𝜮2)𝒟(𝜮2)]

[
(−𝜂log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])

𝒟(𝜮2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

}
 
 

 
 

 

 [
(−𝜂log (

𝛼

𝛼+𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])

𝒟(𝜮2) + 2[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

, 

  

  

𝜕log(Θ)

𝜕𝜂
=∑

𝒾=1

𝑛

𝛿𝒾
1

𝜂
−∑

𝒾=1

𝑛

𝛿𝒾

{
 

 

−

[log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)]

[−𝜂log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2]
−1

}
 

 

 

+∑

𝒾=1

𝑛

{
 

 [log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)]

[−𝜂log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2]
−1

}
 

 

 

+∑

𝒾=1

𝑛

{
 
 

 
 
[
log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)

[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

[−𝜂log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2]
−1

}
 
 

 
 

[
(−𝜂log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])

𝒟(𝜮2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1
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+∑

𝒾=1

𝑛

{
 
 

 
 [(1 + 9𝜮

2)log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)[𝜄(𝜮2) − 2]𝐶(𝜮2)𝒟(𝜮2)]

[
(−𝜂log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])

𝒟(𝜮2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

}
 
 

 
 

[
(−𝜂log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])

𝒟(𝜮2) + 2[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

, 

 

 

𝜕log(Θ)

𝜕𝛼
= −∑

𝒾=1

𝑛

𝛿𝒾

{
 

 

−

[𝜂 (
𝑡𝒾

𝛼(𝛼 + 𝑡𝒾)
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)]

[−𝜂log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2]
−1

}
 

 

−∑

𝒾=1

𝑛

𝛿𝒾 (
1

𝛼 + 𝑡𝒾
)

+∑

𝒾=1

𝑛

{
 

 [𝜂 (
𝑡𝒾

𝛼(𝛼 + 𝑡𝒾)
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)]

[−𝜂log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2]
−1

}
 

 

 

+∑

𝒾=1

𝑛

{
 
 

 
 
[
𝜂 (

𝑡𝒾
𝛼(𝛼 + 𝑡𝒾)

) exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2)

[𝜄(𝜮2) − 2]𝐶(𝜮2)

]

[−𝜂log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2]
−1

}
 
 

 
 

[
 
 
 (−𝜂log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])

𝒟(𝜮2)

+[𝜄(𝜮2) − 2]𝐶(𝜮2) ]
 
 
 
−1

 

+∑

𝒾=1

𝑛

𝛿𝒾

{
 
 

 
 [𝜂 (

𝑡𝒾
𝛼(𝛼 + 𝑡𝒾)

) exp(𝓍𝒾
⊺ℬ)(1 + 9𝜮2)[𝜄(𝜮2) − 2]𝐶(𝜮2)𝒟(𝜮2)]

[
(−𝜂log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])

𝒟(𝜮2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

}
 
 

 
 

[
(−𝜂log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])

𝒟(𝜮2) + 2[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

, 

 

 

𝜕log(Θ)

𝜕𝜮2
=∑

𝒾=1

𝑛

𝛿𝒾 (
9

1 + 9𝜮2
) −∑

𝒾=1

𝑛

𝛿𝒾

{
 
 
 

 
 
 [(−9𝜂log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ))√2(1 + 7𝜮2) + 21]

[
 
 
 
 √2(1 + 7𝜮

2)

(
−𝜂log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)

+𝜄(𝜮2) − 2

)

]
 
 
 
 
−1

}
 
 
 

 
 
 

 

+∑

𝒾=1

𝑛

{
 
 
 
 

 
 
 
 

[
 
 
 
 
 −21𝜂log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)

+√2(1 + 7𝜮2)[𝜄(𝜮2) − 2]

(9𝜂log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ))
]
 
 
 
 
 

[
√2(1 + 7𝜮2)[𝜄(𝜮2) − 2]

(−𝜂log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2)
]

−1

}
 
 
 
 

 
 
 
 

 

+∑

𝒾=1

𝑛

{
 
 

 
 [(1 + 9𝜮

2) (−𝜂log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2)]

[
(−𝜂log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])

𝒟(𝜮2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

}
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{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 [3 (−63𝜮2 − 11 + 6√2(1 + 7𝜮2))] [(√2(1 + 7𝜮2)) (1 + 9𝜮2)2]

−1

+[
(1 + 9𝜮2)2

(−𝜂log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])2
]

−1

[(𝜍(𝜮2))𝐶(𝜮2) + [𝜄(𝜮2) − 2](9 − 𝜍(𝜮2))]

[
 
 
 
 
(1 + 9𝜮2)

(
−𝜂log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)

+𝜄(𝜮2) − 2

)

]
 
 
 
 

−

[
 
 
 
 
 
−9(

−𝜂log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2)

+𝜄(𝜮2) − 2

)

+(−9𝜂log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ) + (𝜍(𝜮2))(1 + 9𝜮2)) [𝜄(𝜮2) − 2]𝐶(𝜮2)
]
 
 
 
 
 

}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

+∑

𝒾=1

𝑛

𝛿𝒾 [
(−𝜂log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])

𝒟(𝜮2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

[
(−𝜂log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])

𝒟(𝜮2) + 2[𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−1

 

{
 
 
 
 
 
 

 
 
 
 
 
 
[(𝜍(𝜮2))𝐶(𝜮2) + [𝜄(𝜮2) − 2](9 − 𝜍(𝜮2))]

[
(−𝜂log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + [𝜄(𝜮2) − 2])

𝒟(𝜮2) + [𝜄(𝜮2) − 2]𝐶(𝜮2)
]

−

[
 
 
 
 
 
 
 (−9𝜂log (

𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ) + (𝜍(𝜮2)))

𝒟(𝜮2) + (18 + 𝜍(𝜮2))

(−𝜂log (
𝛼

𝛼 + 𝑡𝒾
) exp(𝓍𝒾

⊺ℬ)(1 + 9𝜮2) + 𝜄(𝜮2) − 2)

+[(𝜍(𝜮2))𝐶(𝜮2) + [𝜄(𝜮2) − 2](9 − 𝜍(𝜮2))] ]
 
 
 
 
 
 
 

[𝜄(𝜮2) − 2]𝐶(𝜮2) }
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