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Abstract  

 

In our paper, we introduce a novel extension of the Lomax distribution, aiming to enhance its applicability in 

various contexts. We emphasize a pragmatic approach in deriving mathematical properties of the new distribution, 

prioritizing its practical implications. Three distinct methods for characterizing the distribution are thoroughly 

discussed to provide a comprehensive understanding. The parameters of this newly proposed distribution are 

estimated through a diverse set of classical methodologies as well as Bayes’ method. Additionally, we develop the 

censored case maximum likelihood method to address scenarios where data may be incomplete. We meticulously 

compare the efficacy of likelihood estimation and Bayesian estimation using Pitman’s proximity criterion, thereby 

offering insights into their relative performance. For Bayesian estimation, we employ three distinct loss functions: 

the generalized quadratic, the Linex, and the entropy functions, each offering unique perspectives on the estimation 

process. Through extensive simulation experiments, we meticulously evaluate the performance of all estimation 

methods under various conditions, providing valuable insights into their practical utility. Furthermore, we conduct 

a comparative analysis between the Bayesian technique and the censored maximum likelihood method using the 

BB algorithm, facilitating a nuanced understanding of their respective strengths and weaknesses. In addition to 

estimation methodologies, we delve into the construction of the Nikulin-Rao-Robson statistic for the new model 

under both uncensored and censored cases. Detailed simulation studies and the presentation of two real-world 

applications elucidate the practical significance of our proposed statistics in diverse scenarios. Overall, our paper 

not only introduces a novel extension of the Lomax distribution but also provides a comprehensive exploration of 

various estimation techniques and statistical measures, underpinning its practical relevance across different 

domains. 
 

Key Words: Bayesian Estimation; BB algorithm; Censored Applications; Characterizations; Lomax Model; 

Nikulin-Rao-Robson; Pitman’s Proximity. 
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1 Introduction 

Lomax (1954) looked into his continuous heavy-tail probability distribution to simulate the real-life data of business 

failure, actuarial science, queueing theory, and internet traffic modeling. The Lomax model is frequently referred to 

as the Pareto type-II (Pa-II) distribution. In his research of lifetime data on business failure, Lomax (1954) first 

postulated the heavy-tailed distribution known as the Lomax (Lx) distribution. It has several uses in actuarial science, 

economics, and business. The distribution, which is essentially a shifted Pareto distribution, is frequently employed 

in survival analysis. In applied statistics and allied domains like engineering, for instance, wealth inequality, income, 

medical, biological studies, and dependability, there are special efforts being made to broaden the Lomax distribution 

and its pertinent expansions. The Lomax model is used to simulate actual income and wealth statistics (see Harris 

(1968) and Asgharzadeh and Valiollahi (2011)), the type-II progressive censored competing risks data analysis (see 

Cramer and Schemiedt (2011), real data of the firm sizes (see Corbellini et al. (2007)). 

 

In recent years, numerous authors have explored extensions of the Lomax (Lx) model. Shao (2004) focused on 

maximum likelihood estimation for the two-parameter Lomax (2PLx) model, while Shao et al. (2004) investigated 

statistical modeling for extreme events using the extended 2PLx model, particularly in flood frequency analysis. 

Soliman (2005) highlighted that the Lomax distribution encapsulates the curve shape characteristics of various other 

distributions. Silva et al. (2008) proposed a location-scale regression model based on the Lx model, and Paranaiba et 

al. (2011) introduced and analyzed the beta Lx (BLx) model. 

 

Al-Saiari et al. (2014) delved into the Marshall-Olkin extended Lx (MOE Lx) model, while Gomes et al. (2015) 

explored two extended Lx models and their applications. Cordeiro et al. (2018) introduced the Lx G (Lx-G) family, 

which proved to be flexible, defining several important Lx models and their special cases. Altun et al. (2018a) 

proposed a novel Lx log-location regression model with diagnostic tools and real data applications. Altun et al. (2018b) 

studied the Zografos-Balakrishnan Lx (ZBLx) distribution and developed a regression model for prediction, 

showcasing its applicability with real data. 

 

Nasir et al. (2018) presented a new Weibull Lx (WLx) distribution, and Korkmaz et al. (2018) investigated the odd 

Lindley Lx (OL Lx) model, along with Bayesian analysis and classical inference. Ibrahim (2019) derived and studied 

the compound Poisson-Rayleigh-Lx (PR Lx) distribution, elucidating its properties and applications. Yousof et al. 

(2019a) introduced the zero-truncated Poisson Topp-Leone-Lx model and provided characterizations, while Yousof 

et al. (2019b) proposed a new Lx lifetime model based on the Topp-Leone family, including regression models and 

applications. 

 

Gad et al. (2019) explored the Lx-Lx (Lx-Lx) distribution, characterizing it and demonstrating its application alongside 

statistical properties. Elgohari and Yousof (2020) introduced a generalized version of the Lomax distribution, covering 

properties, copula, and real data applications. Chesneau and Yousof (2021) introduced a special generalized mixture 

class of probabilistic models, while Elsayed and Yousof (2021) extended the Lx model to derive the Poisson 

generalized Lx (PGLx) distribution, with four applications. 

 

Aboraya et al. (2022) presented the Poisson exponentiated exponential Lomax distribution, detailing its statistical 

properties, applications, copulas, and various estimation methods including ordinary least squares, weighted least 

square, Cramér-von-Mises, Anderson-Darling, right-tail Anderson-Darling, maximum likelihood, and left-tail 

Anderson-Darling methods. 

 

For further extensions of the Lomax model, real-life datasets, and additional applications, readers are referred to the 

works of Elbiely and Yousof (2018), Ali et al. (2019, 2021), Ibrahim and Yousof (2020), Elgohari and Yousof (2020a, 

b, c), Elgohari et al. (2021), Ansari et al. (2021), Hamed et al. (2022), and Yousof et al. (2023a, b, c). 

 

To this end, we will be content with what has been reported as extensions of the Lomax distribution in the statistical 

literature, and we will refer the reader to those references for more details. But in what follows from this introduction, 

we will focus on how the new distribution was derived and originated, and on the most important motives that 

motivated us to present this work.  
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The cumulative distribution function (CDF)  of the standard one-parameter Lomax (Lx) model is given by  

 𝐆𝜌(𝒴)|(𝒴≥0) = 1 − (1 + 𝒴)
−𝜌|𝒴 ≥ 0, (1) 

the corresponding PDF is given by 

 𝖌𝜌(𝒴)|(𝒴≥0) = 𝜌 (1 + 𝒴)
−𝜌−1|𝒴 > 0, (2) 

where 𝜌 > 0 is the shape parameter. For comprehensive insights into the Lomax (Lx) model and its mathematical 

properties, researchers can refer to several seminal works in the field. Burr's contributions in 1942, 1968, and 1973 

provide foundational understanding, supplemented by the work of Burr and Cislak in 1968, Rodriguez in 1977, and 

Tadikamalla in 1980. These texts offer detailed discussions and analyses, serving as essential references for scholars 

and practitioners alike. 

 

In extending the scope of the Lx model, Yousof et al. (2017a) introduced the Burr X-G (BX-G) family of distributions, 

which incorporates additional flexibility and versatility. By leveraging the CDF of the BX-G family and performing 

an inversion followed by substituting the CDF of the Lx model, a new model emerges. This novel model, coined the 

inverted Burr X Lomax (IBX-Lx) model, represents a fusion of the Lx model's characteristics with the innovative 

features of the BX-G family. 

 

The CDF of the IBX-Lx model is expressed as a result of this transformation process, representing a synthesis of the 

underlying principles and properties of both the Lx model and the BX-G family. This formulation opens up new 

avenues for exploration and application, offering researchers a powerful tool for modeling and analyzing data in 

various domains. Through the integration of established methodologies and novel insights, the IBX-Lx model 

promises to enhance the analytical capabilities and predictive accuracy of researchers in fields ranging from statistics 

to engineering and beyond, where 

 𝐹𝒪,𝜌(𝒴) = 1 − (1 − exp{−[(1 + 𝒴)
𝜌 − 1]−2})𝒪 . (3) 

For 𝒪 = 1 the IBX-Lx model reduces to the inverted Rayleigh Lx (IRLx) model. The PDF of the IBX-Lx is given by 

𝑓𝒪,𝜌(𝒴) = 2𝒪𝜌(1 + 𝒴)
−2𝜌−1  

exp{−[(1+𝒴)𝜌−1]−2}

[1−(1+𝒴)−𝜌]3
 (1 − exp{−[(1 + 𝒴)𝜌 − 1]−2})𝒪−1⏟                      

𝓐𝒪,𝜌(𝒴)

. (4) 

The hazard rate function of the IBX-Lx distribution can be derived directly from 

 ℎ𝒪,𝜌(𝒴) = 𝑓𝒪,𝜌(𝒴)/[1 − 𝐹𝒪,𝜌(𝒴)]. 

We estimate the parameters of the new distribution using a variety of classical methods including the maximum 

likelihood method, the Cramér-von Mises method, the Anderson-Darling method and  the right-tail Anderson-Darling 

method in addition to the Bayes’ method. Moreover the maximum likelihood method in the censored case is derived 

in details and assessed via a comprehensive simulation. The Bayesian estimation is presented under different loss 

functions, the likelihood estimation and the Bayesian estimation are Compared under Pitman’s closeness criterion. 

We use three loss functions namely the generalised quadratic, the Linex and the entropy to obtain the Bayesian 

estimators and many useful details are presented in its places below. All the estimation methods referred to have been 

evaluated through simulation studies under certain conditions and with certain controls, all of which are mentioned in 

their appropriate place in the paper. 

 

The BB algorithm serves as a crucial tool for estimating processes involving censored samples, particularly in the 

context of comparing the effectiveness of the censored maximum likelihood method and the Bayesian method. Our 

paper explores the IBX-Lx distribution through three distinct characterizations: first, by utilizing two truncated 

moments; second, by examining the hazard function; and third, by analyzing the conditional expectation of a function 

of the random variable. We meticulously detail the construction of the Nikulin-Rao-Robson (NURR) statistic for the 

IBX-Lx model under both uncensored and censored cases. For the uncensored scenario, we present a comprehensive 

simulation study aimed at assessing the performance of the NURR statistics, followed by the presentation of two real-

world data applications. The first application involves the analysis of heat exchanger tube crack data, while the second 

application focuses on the strengths of glass fibers. Furthermore, we provide an in-depth exploration of the 

construction of the NURR statistic for the IBX-Lx model under the censored case, accompanied by a detailed 

simulation study to evaluate the NURR statistics' efficacy. Additionally, we present two real data applications under 

the censored case: the first involves reliability data concerning capacitors, while the second pertains to medical data 

related to lung cancer. Through these analyses and applications, our paper offers valuable insights into the IBX-Lx 

distribution, its statistical properties, and its practical implications in diverse real-world scenarios, thereby contributing 

to the advancement of reliability analysis and risk assessment methodologies. 
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In this paper, we embark on a novel exploration of the IBX-Lx distribution, diverging from the traditional 

methodologies commonly employed by researchers in this domain. Our approach breaks new ground by thoroughly 

investigating both the theoretical underpinnings and practical applications of this distribution. We achieve this through 

an intricate examination of four distinct applications and an extensive series of simulation experiments, each designed 

to shed light on different facets of the IBX-Lx distribution. This departure from conventional approaches has spurred 

us to adopt a diverse array of parameter estimation methods, blending classical techniques with the Bayesian 

framework to provide a more comprehensive understanding of the distribution's characteristics. Moreover, our 

methodological approach has led us to integrate three unique loss functions into our analysis, facilitating a rigorous 

comparison that is grounded in appropriate evaluation criteria. Within this analytical framework, we also place 

significant emphasis on statistical hypothesis testing and distributional verification, ensuring the robustness and 

validity of our findings. To illustrate the practical relevance of our study, we present four detailed applications, 

encompassing both complete datasets and scenarios involving censored data. Through these meticulously crafted 

analyses, we aim to offer a holistic perspective on the IBX-Lx distribution, elucidating its estimation methods and 

demonstrating its versatility across various real-world contexts. Ultimately, our endeavor seeks to contribute to a 

deeper understanding of this distribution and its potential applications in diverse fields. 

 

2 Some properties 

In this section, we introduce a valuable linear representation for the BXLx density function (4). This representation 

serves as a powerful tool for analyzing and understanding the behavior of the density function in various contexts. By 

expressing the density function in a linear form, we can uncover underlying patterns, relationships, and properties that 

may not be immediately apparent from its original formulation. This linear representation facilitates computational 

analysis, allows for efficient manipulation of the density function, and provides insights into its mathematical 

structure. Overall, the linear representation presented herein enhances our understanding of the BXLx density function 

and its applications. If |
Υ1

Υ2
| < 1 and Υ3 > 0 is a real non-integer, the power series holds  

(1 −
1

Υ2
Υ1)

Υ3

=∑

ℏ=0

+∞
Γ(1 + Υ3)

ℏ!  Γ(1 + Υ3 − ℏ)
 (
1

Υ2
Υ1)

ℏ

(−1)ℏ . 
 

(5) 

Applying (5) to and inserting the expansion of 𝓐𝒪,𝜌(𝒴) into (4), where 

𝓐𝒪,𝜌(𝒴) = (1 − exp{−[(1 + 𝒴)
𝜌 − 1]−2})𝒪−1, 

we get 

𝑓𝒪,𝜌(𝒴) =  2𝒪𝜌  
(1 + 𝒴)−2𝜌−1

[1 − (1 + 𝒴)−𝜌]3
∑

ℏ=0

+∞
(−1)ℏ Γ(𝒪)

ℏ!  Γ(𝒪 − ℏ)
 exp[−(ℏ + 1)[(1 + 𝒴)𝜌 − 1]−2]⏟                    

𝓑ℏ,𝜌(𝒴)

. 
(6) 

 

Then, applying the power series to 𝓑ℏ,𝜌(𝒴) and inserting the expansion of 𝓑ℏ,𝜌(𝒴) into (6), the equation (6) can be 

summarized as  

𝑓𝒪,𝚽(𝒴) =  2𝒪𝜌  (1 + 𝒴)
−𝜌−1 ∑

ℏ,𝑙=0

+∞
(−1)ℏ+𝑙  (ℏ + 1)𝑙Γ(𝒪)

ℏ!  𝑙! Γ(𝒪 − ℏ)
 
[1 − (1 + 𝒴)]−2𝑙−3

[(1 + 𝒴)]−2𝑙−1⏟        

𝓑𝑙,𝜌(𝒴)

. 
(7) 

 

Applying (5) to 𝓑𝑙,𝜌(𝒴), Equation (7) This can be written as  

𝑓𝒪,𝜌(𝒴) = ∑

𝑙,𝜈=0

+∞

2𝒪
(−1)ℏ+𝑙+𝜈 Γ(𝒪)Γ(2𝑙 + 2)

 𝑙! 𝜈! Γ(2𝑙 + 2 − 𝜈)
 ∑

ℏ=0

+∞
(−1)ℏ(ℏ + 1)𝑙

ℏ! Γ(𝒪 − ℏ)
 

                                              𝜌  (1 + 𝒴)−𝜌−1[−(1 + 𝒴)−𝜌 + 1][𝜈−2(1+𝑙)]−1 (8) 

 

  

𝑓𝒪,𝜌(𝒴) =  ∑

𝜁=0

+∞

∇𝜁(ℏ, 𝑙, 𝜈)𝖌𝜌∗(𝒴)|𝜌∗=𝜌(1+𝜁) 
(9) 

 

where 
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∇𝜁(ℏ, 𝑙, 𝜈) = ∑

ℏ,𝑙,𝜈=0

+∞

2𝒪
(−1)ℏ+𝑙+𝜈+𝜁  (ℏ + 1)𝑙Γ(𝒪)Γ(2𝑙 + 2) Γ(𝜈 − 2(𝑙 + 1))

ℏ!  𝑙! 𝜈! 𝜁! Γ(𝒪 − ℏ)Γ(2𝑙 + 2 − 𝜈)Γ(𝜈 − 2(𝑙 + 1) − 𝜁)(1 + 𝜁)
 , 

and  

 𝖌𝜌∗(𝒴) = 𝜌
∗  (1 + 𝒴)−𝜌

∗−1 

is the PDF of the Lx model with parameters 𝜌∗ and Equation (9) reveals that the density of 𝑌 can be expressed as a 

linear mixture of Lx densities. Indeed, by leveraging the properties of the exponential Lomax (exp-Lx) distribution, 

we can derive numerous mathematical properties for the new family of distributions. The exp-Lx distribution serves 

as a foundational component, offering a basis from which we can extend our understanding to encompass the broader 

family. One key advantage of building upon the exp-Lx distribution lies in its well-established properties and 

characteristics, which provide a solid framework for further analysis. By understanding the fundamental properties of 

the exp-Lx distribution, such as its probability density function, cumulative distribution function, moments, and 

moment generating function, we can derive analogous properties for the broader family. Additionally, the exp-Lx 

distribution allows us to explore various statistical measures and parameters, such as the mean, variance, skewness, 

and kurtosis, which serve as essential metrics for characterizing the distribution's behavior. Through careful analysis 

and manipulation of these properties, we can elucidate the intricacies of the new family and uncover its unique features 

and capabilities. Furthermore, by studying the relationships between the exp-Lx distribution and other related 

distributions, such as the Lomax distribution itself, we can gain further insights into the behavior and properties of the 

new family. This comparative analysis enables us to identify similarities, differences, and potential areas for further 

exploration and refinement. Overall, the exp-Lx distribution serves as a valuable starting point for investigating the 

mathematical properties of the new family of distributions. By leveraging its established framework and properties, 

we can expand our understanding and unlock the full potential of this innovative class of distributions.Similarly, the 

CDF of the new distribution can also be expressed as a mixture of exp-Lx CDFs given by 

𝑓𝒪,𝜌(𝒴) =  ∑

𝜁=0

+∞

∇𝜁(ℏ, 𝑙, 𝜈)𝐆𝜌∗(𝒴) 

where 𝐆𝜌∗(𝒴) is the CDF of the Lx model with parameter 𝜌∗. Let𝑊 be a random variable having the Lx distribution 

with parameters 𝜌 and . Then, the 𝓃 𝓉ℎ ordinary and incomplete moments of 𝑊 are, respectively, given by  

𝜇𝓃,𝑊
′ |𝓃<𝜌 = 𝜌 𝓑(𝜌 − 𝓃, 1 + 𝓃) 

 and    

 𝚼𝓃,𝑊(𝓉)|𝓃<𝜌 = 𝜌 𝓑(𝓉; 𝜌 − 𝓃, 1 + 𝓃), 

where  

 𝓑(𝒶,𝒷) = ∫
+∞

0
𝚠𝒶−1 (1 + 𝚠)−(𝒶+𝒷)𝑑𝚠 

 and  

𝓑(𝓉; 𝒶, 𝒷) = ∫
𝓉

0

𝚠𝒶−1 (1 + 𝚠)−(𝒶+𝒷)𝑑𝚠 

are the beta and the incomplete beta functions of the second type, respectively. So, several structural properties of the 

IBX-Lx model can be obtained from (9) and those properties of the Lx distribution. The 𝓃 𝓉ℎ ordinary moment of 𝑌 

is given by  

𝜇𝓃,𝑌
′ = 𝐸(𝑌𝓃) = ∑

𝜁=0

+∞

∇𝜁(ℏ, 𝑙, 𝜈)   ∫
+∞

0

𝒴𝓃 𝖌𝜌∗(𝒴)𝑑𝒴. 

For 𝓃 < 𝜌, we obtain  

 𝜇𝓃,𝑌
′ = 𝐸(𝑌𝓃) = ∑

𝜁=0

+∞

∇𝜁(ℏ, 𝑙, 𝜈)𝜌
∗ 𝓑(𝜌∗ − 𝓃, 1 + 𝓃). (10) 

Setting 𝓃 = 1 in (10), we have the mean of 𝑌. The moment generating function (MGF) of  𝒴, say 𝑀𝑌(𝓉) =
𝐸[exp(𝓉𝑌)], can be easily obtained either from (9) as  

𝑀𝑌(𝓉) =∑

𝜁=0

+∞

∇𝜁(ℏ, 𝑙, 𝜈) 𝑀𝑌(𝓉; 𝜌
∗), 

where 𝑀𝑌(𝓉; 𝜌
∗) is the MGF of the Lx distribution with parameter 𝜌∗. The 𝓃 𝓉ℎ incomplete moment, say 𝚼𝒮,𝑌(𝓉), of 

the IBX-Lx distribution is given by  

𝚼𝒮,𝑌(𝓉) = ∫
𝓉

0

𝒴𝒮  𝑓(𝒴)𝑑𝒴. 
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We can write from equation (9),  

𝚼𝒮,𝑌(𝓉) =∑

+∞

𝑟=0

𝒷𝑟  ∫
𝓉

0

𝒴𝒮  𝖌𝜌∗(𝒴)𝑑𝒴, 

and then we obtain (for 𝒮 < 𝜌)  

𝚼𝒮,𝑌(𝓉) =∑

𝜁=0

+∞

∇𝜁(ℏ, 𝑙, 𝜈)𝜌
∗ 𝓑(𝓉; 𝜌∗  − 𝒮, 1 + 𝒮). 

The mean deviations, about the mean and about the median of 𝑌, depend on 𝚼1,𝑌(𝓉). The 𝒮 𝓉ℎ moment of the reversed 

residual life, say  

 𝑅𝒮,𝒴(𝓉) = 𝐸[(𝓉 − 𝑌)
𝒮|𝑌 ≤ 𝓉]for 𝓉 > 0 and 𝒮 = 1,2, … 

Then, 𝑅𝒮,𝑌(𝓉) is defined by  

𝑅𝒮,𝑌(𝓉) =
1

𝐹(𝓉)
∫
𝓉

0

(𝓉 − 𝒴)𝒮𝑑𝐹(𝒴). 

The 𝒮 𝓉ℎ moment of the reversed residual life of 𝑌 is  

𝑅𝒮,𝑌(𝓉) =
1

𝐹(𝓉)
∑

𝓃

ℏ=0

∑

𝜁=0

+∞
(−1)ℏ𝒮!

ℏ! (𝒮 − ℏ)!
∇𝜁(ℏ, 𝑙, 𝜈)𝜌

∗𝓑(𝓉; 𝜌∗ − 𝒮, 1 + 𝒮). 

The amount of time it takes a person to obtain something, be it an item, money, or a service, is referred to as the 

waiting time. Technically speaking, mean waiting time refers to the average length of time needed to access a service 

in the system.  

3 Characterization results 

 

In this section, we explore three distinct approaches for defining the IBX-Lx distribution:  

(i) through the assessment of two truncated moments;  

(ii) by analyzing the hazard function; and  

(iii) by examining the conditional expectation of a function involving the random variable. Subsequent 

subsections will elaborate on each of these methods. 

3.1 Characterizations based on two truncated moments 

 

In this subsection, our attention is directed towards characterizing the IBX-Lx distribution by establishing a direct 

relationship between two truncated moments. We delve into the intricacies of this method to illuminate the 

distribution's properties and behavior. Central to this approach is the application of Glänzel’s (1987) Theorem 3.1.1, 

a pivotal theorem that provides a framework for understanding the relationship between truncated moments. This 

theorem serves as a foundational tool, enabling us to derive meaningful insights into the IBX-Lx distribution's 

statistical characteristics. The utilization of Glänzel’s theorem allows us to establish a clear and concise relationship 

between the truncated moments of the IBX-Lx distribution, thereby facilitating a deeper understanding of its central 

tendencies and variability. Through rigorous analysis and application of this theorem, we aim to elucidate the 

distribution's underlying structure and enhance our ability to interpret and utilize its statistical properties effectively. 

As we progress through this subsection, we will explore the nuances of Glänzel’s theorem and its implications for 

characterizing the IBX-Lx distribution. By leveraging this powerful analytical tool, we endeavor to provide valuable 

insights into the distribution's behavior and foster a deeper appreciation for its role in statistical modeling and 

analysis.Clearly, the result holds when the 𝐻  is not a closed interval. 

" Theorem 3.1.1.  Let (Ω, ℱ, 𝐏) be a given probability space and let  𝐻 = [𝑑, 𝑒] be an interval for some  𝑑 < 𝑒  
(𝑑 = −∞, 𝑒 = +∞mightaswellbeallowed). Let 𝑌: Ω → 𝐻  be a continuous random variable with the distribution 

function 𝐹 and let 𝑔 and ℏ be two real functions defined on 𝐻 such that 

 

 𝐄[𝑔(𝑌)|𝑌 ≥ 𝒴] = 𝐄[ℏ(𝑌)|𝑌 ≥ 𝒴]𝜍(𝒴),    𝒴 ∈ 𝐻, 
 

is defined with some real function 𝜍. Assume that 𝑔, ℏ ∈ 𝐶1(𝐻), 𝜍 ∈ 𝐶2(𝐻) and 𝐹 is twice continuously differentiable 

and strictly monotone function on the set 𝐻. Finally, assume that the equation 𝜉ℎ = 𝑔 has no real solution in the 

interior of 𝐻. Then 𝐹 is uniquely determined by the functions 𝑔, ℏ and 𝜍 , particularly 
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𝐹(𝒴) = ∫
𝒴

𝒶

𝐶 |
1

𝜍(𝒴)ℏ(𝒴) − 𝑔(𝒴)
𝜍′(𝒴)| exp(−𝒮(𝒴))𝑑𝒴, 

 

where the function  𝒮  is  a solution of the differential equation 𝒮′ =
𝜍′ℏ

𝜍ℏ−𝑔
 and 𝐶 is the normalization constant, such 

that ∫
𝐻
𝑑𝐹 = 1. " 

Proposition 3.1.1.  Let the random variable 𝑌: Ω → (0,+∞) be continuous, and assume that ℏ(𝒴) = [𝓐𝒪,𝜌(𝒴)]
−1

 

and  

 𝑔(𝒴) = ℏ(𝒴)exp{−[(1 + 𝒴)𝜌 − 1]−2},        𝒴 > 0. 
Then, the density of 𝑌 is given in (4) if and only if the function 𝜍 defined in Theorem 3.1.1 is 

 

 𝜍(𝒴) =
1

2
{1 + exp{−[(1 + 𝒴)𝜌 − 1]−2}},        𝒴 > 0. 

Proof.  If  𝑋  has pdf  (4), then 

 

 [1 − 𝐹𝒪,𝜌(𝒴)]𝐸[ℏ(𝑌)|𝑌 ≥ 𝒴] = 𝒪{1 − exp{−[(1 + 𝒴)
𝜌 − 1]−2}},      𝒴 > 0, 

 

and 

 

 (1 − 𝐹𝒪,𝜌(𝒴)) 𝐸[𝑔(𝑌)|𝑌 ≥ 𝒴] =
𝒪

2
{1 − exp[−2((1 + 𝒴)𝜌 − 1)−2]},        𝒴 > 0, 

 

and finally 

 

 𝜍(𝒴)ℏ(𝒴) − 𝑔(𝒴) =
1

2
ℏ(𝒴){1 − exp{−[(1 + 𝒴)𝜌 − 1]−2}} > 0    𝑓𝑜𝑟  𝒴 > 0. 

Conversely, if 𝜍 has the above form, then 

 

𝒮′(𝒴) =
𝜍′(𝒴)ℏ(𝒴)

𝜍(𝒴)ℏ(𝒴) − 𝑔(𝒴)
=
𝜌(1 + 𝒴)𝜌−1((1 + 𝒴)𝜌 − 1)−3exp{−[(1 + 𝒴)𝜌 − 1]−2}

1 − exp{−[(1 + 𝒴)𝜌 − 1]−2}
, 

 

and hence 

 

 𝒮𝒪,𝜌(𝒴) = −ln(1 − exp{−[(1 + 𝒴)
𝜌 − 1]−2}),    𝒴 > 0. 

 

Now, according to Theorem 3.1.1, 𝑌  has density (4). 
 

Corollary 3.1.1.  If 𝑌: Ω → (0,+∞) is a continuous random variable and ℏ(𝒴) is as in Proposition 3.1.1, then, 𝑌 has 

pdf (2) if and only if there exist functions 𝑔 and 𝜍 defined in Theorem 3.1.1 satisfying the following first order 

differential equation 

 

𝜍′(𝒴)ℏ(𝒴)

𝜍(𝒴)ℏ(𝒴) − 𝑔(𝒴)
=
𝜌(1 + 𝒴)𝜌−1((1 + 𝒴)𝜌 − 1)−3exp{−[(1 + 𝒴)𝜌 − 1]−2}

1 − exp{−[(1 + 𝒴)𝜌 − 1]−2}
. 

 

Corollary 3.1.2. The general solution of the above differential equation is 

 

𝜍𝒪,𝜌(𝒴) = {1 − exp{−[(1 + 𝒴)
𝜌 − 1]−2}}

−1
[
−∫ 𝜌(1 + 𝒴)𝜌−1((1 + 𝒴)𝜌 − 1)−3 ×

exp{−[(1 + 𝒴)𝜌 − 1]−2}(ℏ(𝒴))
−1
𝑔(𝒴) + 𝐷

], 

 

where 𝐷 is a constant. A set of functions satisfying this differential equation is presented in Proposition 3.1.1 with 

𝐷 = 0. Clearly, there are other triplets (ℏ, 𝑔, 𝜍) satisfying the conditions of Theorem 3.1.1. 
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3.2 Characterization based on hazard function 

 

The hazard function, ℏ𝐹, of a twice differentiable distribution function, 𝐹 with density 𝑓, satisfies the first following 

trivial first differential equation 

 

 
1

𝑓(𝒴)
𝑓′(𝒴) =

1

ℏ𝐹(𝒴)
ℏ𝐹
′ (𝒴) − ℏ𝐹(𝒴). 

 This is the only characterisation based on hazard function for many univariate continuous distributions, as we have 

stated in previous publications. The proposal given below offers a complex description of the IBXLx distribution. 

Proposition 3.2.1.  Suppose 𝑌:Ω → (0,+∞) is a continuous random variable.  The density of   𝑌  is (4) if and only 

if the differential equation holds 

 

ℏ𝐹
′ (𝒴) + (

1

1 − (1 + 𝒴)−𝜌
3𝜌(1 + 𝒴)−𝜌−1) ℏ𝐹(𝒴) = 2𝒪𝜌[1 − (1 + 𝒴)

−𝜌]−3
𝑑

𝑑𝒴
𝐻(𝒴; 𝜌), 𝒴 > 0, 

 

with the initial condition lim𝒴→0ℏ𝐹(𝒴) = 0, where  

 𝐻(𝒴; 𝜌) =
1

(1+𝒴)2𝜌+1
exp{−[(1 + 𝒴)𝜌 − 1]−2} 

Proof. Is straightforward and hence omitted. 

 

3.3 Characterizations based on conditional expectation 

 

The following proposition can be found in Hamedani (2013), so we will use it to characterize the IBXLx distribution. 

Proposition 3.3.1.   Suppose the random variable  𝑋:Ω → (𝒶, 𝒷) is continuous with  CDF 𝐹 .  If  𝜙(𝒴)  is a 

differentiable function on  (𝒶, 𝒷)  with  lim𝒴→0+𝜙(𝑌) = 1, then for  𝛿 ≠ 1 ,  

 𝐸[𝜙(𝑌)|𝑌 ≥ 𝒴] = 𝛿𝜙(𝑌),    𝒴 ∈ (𝒶,𝒷), 
if and only if 

 𝜙(𝑌) = (1 − 𝐹(𝒴))
1

𝛿
−1
, 𝒴 ∈ (𝒶,𝒷) 

Remark 3.3.1.  Taking 

 (𝒶, 𝒷) = (0, +∞), 𝜙(𝑌) = 1 − exp{−[(1 + 𝒴)𝜌 − 1]−2} 

 and 𝛿 =
𝒪

𝒪+1
 , Proposition 3.3.1 presents a characterization of IBXLx distribution. Clearly, there are other possible 

function. 

 

4 Construction of NURR statistic for the IBX-Lx model 

 

When working with complete data, it's common to utilize diverse methods to evaluate the appropriateness of a 

mathematical model for the observed data. One widely used technique for hypothesis testing in such cases is Pearson's 

Chi-square statistic. However, there are instances where these conventional approaches aren't applicable, particularly 

when the model's parameters are unknown or the data is censored. Since the mid-20th century, researchers have aimed 

to overcome these limitations by proposing adjustments to existing statistical tests. On one hand, they need to account 

for unknown parameters, while on the other, censorship needs consideration. For datasets with complete information, 

Nikulin (1973) and Rao and Robson (1974) independently introduced the NURR statistics, which extend the Pearson 

statistic and adhere to the chi-square distribution. Yet, in situations involving censored data and unknown parameters, 

classical tests may fall short in confirming hypotheses. To address this, Bagdonavičius and Nikulin (2011a,b) and 

Bagdonavičius et al. (2013) suggested adaptations to the NURR statistic to accommodate random right censorship. 

These adjusted statistics have been applied in various studies to align observations with models like the generalized 

inverse Weibull model, Burr XII inverse Rayleigh model, odd Lindley exponentiated exponential model, Topp-Leone-

Lomax model, and new reciprocal Rayleigh extension. In this section, we formulate a modified Chi-square test 

specifically tailored for the IBX-Lx model, considering both complete and censored data scenarios. To test the 

hypothesis  

 𝐻0: 𝑃{𝒴𝒾 ≤ 𝒴} = 𝐹𝚵(𝒴),    𝒴 ∈ ℝ,    𝚵 = (𝚵1, 𝚵2, ⋯ , 𝚵𝒮)
𝑇 , 

 wherein 𝒴1, 𝒴2, ⋯ , 𝒴𝓃, an 𝓃 −sample belong to a parametric family 𝐹(𝒴; 𝚵) where 𝚵 represents the vector of 

unknown parameters, Nikulin (1973) and Rao and Robson (1974) proposed the NURR statistic 𝑌2 where 
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 𝑌2(𝚵̂𝓃) = 𝒴𝓃
2(𝚵̂𝓃) +

1

𝓃
𝐋𝑇(𝚵̂𝓃)(𝐈(𝚵̂𝓃) − 𝐉(𝚵̂𝓃))

−1𝐋(𝚵̂𝓃), 

 

𝒴𝓃
2(𝚵) = (

𝜈1 − 𝓃𝑝1(𝚵)

√𝓃𝑝1(𝚵)
,
𝜈2 − 𝓃𝑝2(𝚵)

√𝓃𝑝2(𝚵)
,⋯ ,

𝜈𝒷 −𝓃𝑝𝒷(𝚵)

√𝓃𝑝𝒷(𝚵)
)

𝑇

 

and 𝐉(𝚵) is the information matrix for the grouped data with 

𝓑(𝚵) = [
1

√𝑝
𝒾

𝜕

𝜕𝜇
𝑝𝒾(𝚵)]

𝑟×𝒮

|(𝒾=1,2,⋯,𝒷  and𝑘=1,⋯,𝒮), 

then 

 

𝐋(𝚵) = (𝐋1(𝚵), . . . , 𝐋𝒮(𝚵))
𝒴  with    𝐋𝑘(𝚵) = ∑

𝑟

𝒾=1

𝜈𝒾
𝑝𝒾

𝜕

𝜕𝚵𝑘
𝑝𝒾(𝚵), 

where 𝐈𝓃(𝚵𝓃̂) represents the estimated Fisher information matrix and 𝚵𝓃̂ is the maximum likelihood estimator of the 

parameter vector. The 𝑌2 statistic follows a distribution of chi-square 𝜒𝒷−1
2  with (𝒷 − 1) degrees of freedom. Consider 

the Observations 𝒴1, 𝒴2, ⋯ , 𝒴𝓃, they are grouped in 𝒷 subintervals 𝐈1, 𝐈2, ⋯ , 𝐈𝒷 mutually disjoint 𝐈𝒿 =]𝒶𝒿 − 1;𝒶𝒿]; 

where 𝒿 = 1;𝒷.The limits aj of the intervals 𝐈𝒿 are obtained such that 

𝑝𝒿(𝚵) = ∫
𝒶𝒿

𝒶𝒿−1

𝑓𝚵(𝒴)𝑑𝒴|(  𝒿=1,2,⋯,𝒷), 𝒶𝒿 = 𝐹
−1 (

𝒿

𝒷
) |(𝒿=1,⋯,𝒷−1). 

If 𝜈𝒿 = (𝜈1, 𝜈2, ⋯ , 𝜈𝒷)
𝑇 is the vector of frequencies obtained by the grouping of data in these 𝐈𝒿 intervals  

 𝜈𝒿 = ∑
𝓃
𝒾=1 1{𝒴𝒾∈𝐈𝒿}|(𝒿=1,...,𝒷). 

In order to check whether the data used in this paper is distributed according to the IBX-Lx model, in the case of 

unknown parameters, we construct the chi-square goodness-of-fit test by fitting the NURR statistics developed 

previously. After calculating the maximum likelihood estimator 𝚵𝓃̂ for the unknown parameters of the IBX-Lx 

distribution on the data set, we use 𝐈𝓃(𝚵𝓃̂) as the estimated Fisher information matrix to provide all the components 

of the 𝑌2 statistic of our IBX-Lx model. 

 

5 Classical estimations 

5.1 Maximum likelihood method 

 

The maximum likelihood estimates (MLEs) enjoy desirable properties and can be used when constructing confidence 

intervals. Let 𝑤1 , 𝑤2, … , 𝑤𝓃 be a RS from this distribution with parameter vector 𝚵 = (𝒪, 𝜌)⊺. The log-likelihood 

function for 𝚵, say ℓ(𝚵), is given by  

ℓ(𝚵) = log [∏𝑓𝒪,𝜌(𝒴𝑚)

𝓃

𝒾=1

], 

which can be maximized either using the statistical programs or by solving the nonlinear system obtained from ℓ(𝚵) 

by differentiation. The score vector , 𝐔𝚵 = (
𝜕ℓ(𝚵)

𝜕𝒪
,
𝜕ℓ(𝚵)

𝜕𝜌
)
⊺

, are easy to derive. Below, we aim to obtain the maximum 

likelihood estimator of inverted Burr X-Lx (IBX-Lx) distribution under type II censored data. Consider the n-sample 

(𝒴1, 𝒴2, … , 𝒴𝓃) and a fixed constant 𝑚, we assume that the m-sample (𝒴1, 𝒴2, … ,𝒴𝑚) generated from IBX-Lx.The 

likelihood function of this sample is 

  

𝐿𝒪,𝜌(𝒴) = 𝑁∏

𝑚

𝒾=1

𝑓𝒪,𝜌(𝒴𝒾)[1 − 𝐹𝒪,𝜌(𝒴𝑚)]
𝓃−𝑚

, 

where 𝑁 =
𝓃!

(𝓃−𝑚)!
, using (3) and (4) we get    

𝐿𝒪,𝜌(𝒴) = 𝑁2
𝑚𝒪𝑚𝜌𝑚∏

𝑚

𝒾=1

𝓐𝒾(𝒴𝒾)𝓑𝒾(𝒴𝒾)𝐶𝒾(𝒴𝒾)𝐷𝒾
𝒪−1(𝒴𝒾)𝐸

𝒪(𝓃−𝑚)(𝒴𝒾), 

where    

𝓐𝒾(𝒴𝒾) = [1 − (1 + 𝒴𝒾)
−𝜌]−3, 
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𝓑𝒾(𝒴𝒾) = (1 + 𝒴𝒾)
−2𝜌−1, 

𝐶𝒾(𝒴𝒾) = exp{−[(1 + 𝒴𝒾)
𝜌 − 1]−2} 

𝐷𝒾
𝒪−1(𝒴𝒾) = 1 − exp{−[(1 + 𝒴𝒾)

𝜌 − 1]−2}, 
𝐸 = 1 − exp − [(1 + 𝒴𝑚)

𝜌 − 1]−2, 
 

ln[𝐿𝒪,𝜌(𝒴)] = 𝑙𝒪,𝜌(𝒴) = ln𝑁 + 𝑚ln2 + 𝑚ln𝒪 +𝑚ln𝜌 

+∑

𝑚

𝒾=1

[ln𝓐𝒾(𝒴𝒾) + ln𝓑𝒾(𝒴𝒾) + ln𝐶𝒾(𝒴𝒾) + (𝒪 − 1)ln𝐷𝒾
𝒪−1(𝒴𝒾)] + 𝒪(𝓃 −𝑚)ln𝐸. 

 

The maximum likelihood estimators 𝒪𝑀𝐿𝐸 and 𝜌𝑀𝐿𝐸  of the parameters 𝒪, 𝜌, respectively. are The solution of the 

following non-linear system 

  

{
 
 

 
 𝜕𝑙𝒪,𝜌(𝒴)

𝜕𝒪
=
𝑚

𝒪
+∑

𝑚

𝒾=1

[ln𝐷𝒾
𝒪−1(𝒴𝒾)] + (𝓃 −𝑚)ln𝐸

𝜕𝑙𝒪,𝜌(𝒴)

𝜕𝜌
=
𝑚

𝜌
∑

𝑚

𝒾=1

𝓐𝒾,1

𝓐𝒾(𝒴𝒾)
+

𝓑𝒾,1
𝓑𝒾(𝒴𝒾)

+
𝐶𝒾,1
𝐶𝒾(𝒴𝒾)

+ (𝒪 − 1)
𝐷𝒾,1

𝐷𝒾
𝒪−1(𝒴𝒾)

+ 𝒪(𝓃 −𝑚)
𝐸1
𝐸

 

where    

𝓐𝒾,1 =
𝜕𝓐𝒾(𝒴𝒾)

𝜕𝜌
= −3(1 − (1 + 𝒴𝒾)

−𝜌)−4ln(1 + 𝒴𝒾)(1 + 𝒴𝒾)
−𝜌, 

𝓑𝒾,1 =
𝜕𝓑𝒾(𝒴𝒾)

𝜕𝜌
= −2ln(1 + 𝒴𝒾)(1 + 𝒴𝒾)

−2𝜌−1, 

𝐶𝒾,1 =
𝜕𝐶𝒾(𝒴𝒾)

𝜕𝜌
= 2[(1 + 𝒴𝒾)

𝜌 − 1]−3ln(1 + 𝒴𝒾)(1 + 𝒴𝒾)
𝜌exp − [(1 + 𝒴𝒾)

𝜌 − 1]−2, 

𝐷𝒾,1 =
𝜕𝐷𝒾

𝒪−1(𝒴𝒾)

𝜕𝜌
= −2[(1 + 𝒴𝒾)

𝜌 − 1]−3ln(1 + 𝒴𝒾)(1 + 𝒴𝒾)
𝜌exp − [(1 + 𝒴𝒾)

𝜌 − 1]−2, 

and 

𝐸1 =
𝜕𝐸

𝜕𝜌
= −2((1 + 𝒴𝑚)

𝜌 − 1)−3ln(1 + 𝒴𝑚)(1 + 𝒴𝑚)
𝜌exp − ((1 + 𝒴𝑚) − 1)

−2
 

  

  

There is no analytical solution for this system, thus so we use the R-package (the BBsolve function) to obtain the 

approximate values of maximum likelihood estimators 𝒪𝑀𝐿𝐸 , and 𝜌𝑀𝐿𝐸 . 

 

5.2 The Cramér-von Mises method 

 

The Cramér-von Mises estimates (CVME) of the parameters 𝒪̂ and 𝜌̂ are obtained via minimizing the 

following expression with respect to the parameters 𝒪 and 𝜌 respectively, where  

𝐂𝐕𝐌(𝚵) =
1

12
𝓃−1 +∑

𝓃

𝒾=1

[𝐹𝒪,𝜌(𝒴𝒾,𝓃) − 𝛜(𝒾,𝓃)]
2
, 

where 𝛜(𝒾,𝓃) =
2𝒾−1

2𝓃
 and  

𝐂𝐕𝐌(𝚵) =∑

𝓃

𝒾=1

[𝐹𝒪,𝜌(𝒴𝒾,𝓃) − 𝛜(𝒾,𝓃)]
2
. 

 Then, CVME of the parameters 𝒪 and 𝜌 are obtained by solving the two following non-linear equations  

∑

𝓃

𝒾=1

[𝐹𝒪,𝜌(𝒴𝒾,𝓃) − 𝛜(𝒾,𝓃)]𝛓(𝒪)(𝒴[𝒾:𝓃], 𝚵) = 0and∑

𝓃

𝒾=1

[𝐹𝒪,𝜌(𝒴𝒾,𝓃) − 𝛜(𝒾,𝓃)]𝛓(𝜌)(𝒴[𝒾:𝓃], 𝚵) = 0, 

 

where 𝛓(𝒪)(𝒴[𝒾:𝓃], 𝚵) and 𝛓(𝜌)(𝒴[𝒾:𝓃], 𝚵) are the first derivatives of the CDF of GWNH distribution WRT 𝒪 and 𝜌 

respectively. 
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5.3  The Anderson-Darling method 

 

The Anderson-Darling estimates (ADEs) of 𝒪 and 𝜌 are obtained by minimizing the function 

𝐴𝐷𝐸(𝚵) = −𝓃 −𝓃−1∑

𝓃

𝒾=1

(2𝒾 − 1) {
log𝐹𝒪,𝜌(𝒴𝒾,𝓃)

+log[1 − 𝐹𝒪,𝜌(𝒴[−𝒾+1+𝓃:𝓃])]
}. 

 

The parameter estimates of 𝒪 and 𝜌 follow by solving the nonlinear equations 
𝜕

𝜕𝒪
[ADE(𝚵)] = 0 and 

𝜕

𝜕𝜌
[ADE(𝚵)] = 0. 

5.4  The right-tail Anderson–Darling method 

The right-tail Anderson–Darling estimates (ADERTEs) of 𝒪 and 𝜌 are obtained by minimizing 

ADERT(𝚵) =
1

2
𝓃 − 2∑

𝓃

𝒾=1

𝐹𝒪,𝜌(𝒴𝒾,𝓃) −
1

𝓃
∑

𝓃

𝒾=1

(2𝒾 − 1){log[1 − 𝐹𝒪,𝜌(𝒴[−𝒾+1+𝓃:𝓃])]}. 

The parameter estimates of 𝒪 and 𝜌 follow by solving the nonlinear equations
𝜕

𝜕𝒪
[ADERT(𝚵)] = 0 and 

𝜕

𝜕𝜌
[ADERT(𝚵)] = 0. 

5.5 Kolmogorov method 

The Kolmogorov estimates (KEs) 𝒪̂ and 𝜌̂ of 𝒪 and 𝜌 are obtained by minimizing the function  

K = K(𝒪, 𝜌) = max
1≤𝒾≤𝓃

{
𝒾

𝓃
− 𝐹𝒪,𝜌(𝒴𝒾,𝓃), 𝐹𝒪,𝜌(𝒴𝒾,𝓃) −

𝒾 − 1

𝓃
}. 

6 Bayesian estimation under different loss functions 

Bayesian estimation under various loss functions is a fundamental aspect of statistical inference, allowing researchers 

to derive optimal estimators based on different criteria. In Bayesian analysis, the choice of loss function reflects the 

decision-maker's preferences and the context of the problem at hand. Here, we will explore the Bayesian estimation 

process under three commonly used loss functions: the quadratic loss function, the Linex loss function, and the entropy 

loss function. 

I. Quadratic Loss Function: The quadratic loss function, also known as the mean squared error, penalizes 

deviations between the true parameter value and the estimated value quadratically. In Bayesian 

estimation, the posterior distribution is obtained by multiplying the prior distribution with the likelihood 

function, and the posterior mean serves as the Bayesian estimator under the quadratic loss function. This 

approach aims to minimize the expected squared difference between the true parameter and the estimated 

parameter. 

II. Linex Loss Function: The Linex loss function is a robust alternative to the quadratic loss function, 

particularly in cases where outliers may skew the results. It penalizes deviations asymmetrically, placing 

more weight on positive deviations than negative deviations. In Bayesian estimation, the Linex loss 

function leads to a posterior distribution that minimizes the expected value of the exponential of the 

absolute difference between the true parameter and the estimated parameter. The Bayesian estimator 

under the Linex loss function is typically the posterior median. 

III. Entropy Loss Function: The entropy loss function, also known as the Kullback-Leibler divergence, 

measures the information lost when using an estimated parameter to approximate the true parameter. In 

Bayesian estimation, maximizing the posterior distribution under the entropy loss function results in the 

Bayesian estimator that minimizes the expected Kullback-Leibler divergence between the true parameter 

distribution and the estimated parameter distribution. This approach emphasizes the preservation of 

information when making parameter estimates. 

Each of these loss functions has its advantages and is suitable for different scenarios. The choice of loss function 

depends on the specific goals of the analysis and the underlying assumptions about the data. By considering Bayesian 
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estimation under different loss functions, researchers can tailor their approach to best address the objectives of their 

study and obtain robust parameter estimates. 

6.1    Prior and posterior model 

 

As prior distributions, we assume the parameters 𝒪, 𝜌 follow the Gamma distribution as a prior: 

  

𝜋(𝒪) =
𝒶1𝒷1
Γ(𝒷1)

𝒪𝒷1−1exp(−𝒶1𝒪)|𝒪,𝜌,𝒶1,𝒷1>0, 

𝜋(𝜌) =
𝒶2𝒷2
Γ(𝒷2)

𝜌𝒷2−1exp(−𝒶2𝜌)|𝒪,𝜌,𝒶1,𝒷1>0, 

where the constants 𝒶1,𝒷1, 𝒶2,𝒷2 are called hyper-parameters. Thus, the joint prior distribution of (𝒪, 𝜌) is given by 

  

𝜋(𝒪, 𝜌) =
𝒶1𝒷1𝒶2𝒷2
Γ(𝒷1)Γ(𝒷2)

𝒪𝒷1−1𝜌𝒷2−1exp − (𝒶1𝒪 + 𝒶2𝜌). 

The joint posterior distribution of (𝒪, 𝜌) reads as 

𝜋(𝒪, 𝜌|𝒴) =
𝒪𝑚+𝒷1−1𝜌𝑚+𝒷2−1exp[−(𝒶1𝒪 + 𝒶2𝜌)]∏

𝑚
𝒾=1 𝓐𝒾(𝒴𝒾)𝓑𝒾(𝒴𝒾)𝐶𝒾(𝒴𝒾)𝐷𝒾

𝒪−1(𝒴𝒾)𝐸
𝒪(𝓃−𝑚)(𝒴𝒾)

𝒪𝑚+𝒷1−1𝜌𝑚+𝒷2−1exp[−(𝒶1𝒪 + 𝒶2𝜌)]∏
𝑚
𝒾=1 𝓐𝒾(𝒴𝒾)𝓑𝒾(𝒴𝒾)𝐶𝒾(𝒴𝒾)𝐷𝒾

𝒪−1(𝒴𝒾)𝐸
𝒪(𝓃−𝑚)(𝒴𝒾)𝑑𝒪𝑑𝜌

, 

so the joint posterior of (𝒪, 𝜌) is 

𝜋(𝒪, 𝜌|𝒴) = 𝐾𝒪𝑚+𝒷1−1𝜌𝑚+𝒷2−1exp − (𝒶1𝒪 + 𝒶2𝜌)∏

𝑚

𝒾=1

𝓐𝒾(𝒴𝒾)𝓑𝒾(𝒴𝒾)𝐶𝒾(𝒴𝒾)𝐷𝒾
𝒪−1(𝒴𝒾)𝐸

𝒪(𝓃−𝑚)(𝒴𝒾), 

where 𝐾 is the normalizing constant. Next, we use the three loss functions namely the generalised quadratic (GQ), the 

Linex and the entropy functions to obtain the Bayesian estimators 

 

6.2   Bayesian estimators and their posterior risks 

 

The Bayesian estimators under the GQ loss function are    

𝒪̂𝐺𝑄 =
𝒪𝑚+𝒷1−1+𝛿𝜌𝑚+𝒷2−1exp − (𝒶1𝒪 + 𝒶2𝜌)∏

𝑚
𝒾=1 𝓐𝒾(𝒴𝒾)𝓑𝒾(𝒴𝒾)𝐶𝒾(𝒴𝒾)𝐷𝒾

𝒪−1(𝒴𝒾)𝐸
𝒪(𝓃−𝑚)(𝒴𝒾)

𝒪𝑚+𝒷1+𝛿−2𝜌𝑚+𝒷2−1exp − (𝒶1𝒪 + 𝒶2𝜌)∏
𝑚
𝒾=1 𝓐𝒾(𝒴𝒾)𝓑𝒾(𝒴𝒾)𝐶𝒾(𝒴𝒾)𝐷𝒾

𝒪−1(𝒴𝒾)𝐸
𝒪(𝓃−𝑚)(𝒴𝒾)𝑑𝒪𝑑𝜌

, 

and 

𝜌̂𝐺𝑄 =
𝒪𝑚+𝒷1−1𝜌𝑚+𝒷2−1+𝛿exp − (𝒶1𝒪 + 𝒶2𝜌)∏

𝑚
𝒾=1 𝓐𝒾(𝒴𝒾)𝓑𝒾(𝒴𝒾)𝐶𝒾(𝒴𝒾)𝐷𝒾

𝒪−1(𝒴𝒾)𝐸
𝒪(𝓃−𝑚)(𝒴𝒾)

𝒪𝑚+𝒷1−1𝜌𝑚+𝒷2+𝛿−2exp − (𝒶1𝒪 + 𝒶2𝜌)∏
𝑚
𝒾=1 𝓐𝒾(𝒴𝒾)𝓑𝒾(𝒴𝒾)𝐶𝒾(𝒴𝒾)𝐷𝒾

𝒪−1(𝒴𝒾)𝐸
𝒪(𝓃−𝑚)(𝒴𝒾)𝑑𝒪𝑑𝜌

. 

The corresponding posterior risks are then 

  

𝑃𝑅(𝒪̂𝐺𝑄) = 𝐸𝜋(𝒪
𝛿+1) − 2𝒪̂𝐺𝑄𝐸𝜋(𝒪

−𝛿) + 𝒪𝐺𝑄
2 𝐸𝜋(𝒪

𝛿−1), 

and 

 𝑃𝑅(𝜌̂𝐺𝑄) = 𝐸𝜋(𝜌
𝛿+1) − 2𝜌̂𝐺𝑄𝐸𝜋(𝜌

−𝛿) + 𝜌𝐺𝑄
2 𝐸𝜋(𝜌

𝛿−1). 

Under the entropy loss function, we obtain the following estimators 

  

𝒪̂𝐸 = [𝐾𝒪
𝑚+𝒷1−1+𝑝𝜌𝑚+𝒷2−1exp[−(𝒶1𝒪 + 𝒶2𝜌)]∏

𝑚

𝒾=1

𝓐𝒾(𝒴𝒾)𝓑𝒾(𝒴𝒾)𝐶𝒾(𝒴𝒾)𝐷𝒾
𝒪−1(𝒴𝒾)𝐸

𝒪(𝓃−𝑚)(𝒴𝒾)]

1−𝑝

, 

and 

𝜌̂𝐸 = [𝐾𝒪
𝑚+𝒷1−1𝜌𝑚+𝒷2−1−𝑝exp[−(𝒶1𝒪 + 𝒶2𝜌)]∏

𝑚

𝒾=1

𝓐𝒾(𝒴𝒾)𝓑𝒾(𝒴𝒾)𝐶𝒾(𝒴𝒾)𝐷𝒾
𝒪−1(𝒴𝒾)𝐸

𝒪(𝓃−𝑚)(𝒴𝒾)]

1−𝑝

. 

The corresponding posterior risks are then 

 𝑃𝑅(𝒪̂𝐸) = 𝑃𝐸𝜋 (ln(𝒪) − ln(𝒪̂𝐸)) and  𝑃𝑅(𝜌̂𝐸) = 𝑃𝐸𝜋(ln(𝜌) − ln(𝜌̂𝐸)). 

Finally, under the entropy loss function, the Bayesian estimators 
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𝒪̂𝐸 =
−𝐾

𝒶
ln [𝒪𝑚+𝒷1−1𝜌𝑚+𝒷2−1exp[−(𝒶1𝒪 + 𝒶2𝜌 − 𝑟𝒪)]∏

𝑚

𝒾=1

𝓐𝒾(𝒴𝒾)𝓑𝒾(𝒴𝒾)𝐶𝒾(𝒴𝒾)𝐷𝒾
𝒪−1(𝒴𝒾)𝐸

𝒪(𝓃−𝑚)(𝒴𝒾)], 

and 

𝜌̂𝐿 =
−𝐾

𝒶
ln [𝒪𝑚+𝒷1−1𝜌𝑚+𝒷2−1exp[−(𝒶1𝒪 + 𝒶2𝜌 − 𝑟𝜌)]∏

𝑚

𝒾=1

𝓐𝒾(𝒴𝒾)𝓑𝒾(𝒴𝒾)𝐶𝒾(𝒴𝒾)𝐷𝒾
𝒪−1(𝒴𝒾)𝐸

𝒪(𝓃−𝑚)(𝒴𝒾)]. 

The corresponding posterior risks are then 

 𝑃𝑅(𝒪̂𝐿) = 𝒶(𝒪̂𝐺𝑄 − 𝒪̂𝐿), 𝑃𝑅(𝜌̂𝐿) = 𝒶(𝜌̂𝐺𝑄 − 𝜌̂𝐿). 

 

Considering the intricate nature of obtaining all these estimators analytically, it is unlikely to achieve this task feasibly. 

Therefore, we advocate for the utilization of Markov Chain Monte Carlo (MCMC) procedures to evaluate these 

estimators, as elaborated upon in the following section. 

7 Simulation studies 

Simulation studies are invaluable tools in comparing classical methods in various fields, including statistics, 

economics, and engineering. They allow researchers to evaluate the performance of different methods under controlled 

conditions where the true underlying parameters are known. Here's a general outline of how simulation studies can be 

conducted to compare classical methods: 

Define the Problem: Clearly define the problem you want to address and the classical methods you want to compare. 

For example, you might want to compare the performance of different hypothesis testing methods or regression 

techniques. 

I. Simulate data that reflects the characteristics of the problem you defined. This may involve specifying 

distributions for variables, correlation structures, sample sizes, and other relevant parameters. Ensure 

that the data generation process aligns with the assumptions of the methods being compared. 

II. Implement the classical methods you want to compare using the simulated data. This may involve coding 

algorithms or using existing software packages. 

III. Define appropriate performance metrics to evaluate the methods. Common metrics include bias, 

variance, mean squared error, confidence interval coverage probability, Type I error rate, power, and 

computational efficiency. 

IV. Repeat the simulation process multiple times to account for randomness in the data generation process. 

This helps reduce the variability in the results and provides more reliable estimates of performance 

metrics. 

V. Analyze the results of the simulation study. Compare the performance of the classical methods based on 

the chosen metrics. Graphical representations such as box plots, histograms, or scatter plots can be 

helpful in visualizing the results. 

VI. Conduct sensitivity analyses to assess the robustness of the results to changes in simulation parameters 

or assumptions. This helps ensure that the conclusions drawn from the study are valid across different 

scenarios. 

VII. Clearly document the methodology, results, and conclusions of the simulation study in a report or 

manuscript. Provide insights into the strengths and weaknesses of each method and discuss implications 

for real-world applications. 

VIII. Validate the simulation results by comparing them with theoretical expectations or results from empirical 

studies if available. This helps ensure that the simulation accurately reflects the behavior of the methods 

in real-world settings. 

IX. Submit the study for peer review to obtain feedback from experts in the field. Address any concerns or 

suggestions raised by reviewers to improve the quality and credibility of the study. 

By following these steps, researchers can conduct rigorous simulation studies to compare classical methods and gain 

valuable insights into their relative performance across different scenarios. 
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7.1 Simulation studies for comparing the classical methods 

 

In order to assess and compare the performance of the proposed calssical methods, we perform three Monte Carlo 

simulation study through three carefully selected different scenarios. The results of these three scenarios in Table 1 

(𝒪 = 2 and  𝜌 = 1.5), Table 2 (𝒪 = 0.8 and𝜌 = 0.8) and Table 3 (𝒪 = 1.5 and 𝜌 = 0.5). All simulation studies are 

performed using 𝑁 = 1000 samples with different sample sizes 𝓃 =50, 100, 200 and 300. Specifically, Table 1 gives 

the mean squared errors (MSEs) under 𝒪 = 2 and 𝜌 = 1.5. Table 2 lists the MSEs under 𝒪 = 0.8 and  𝜌 = 0.8. Table 

3 presents the MSEs under 𝒪 = 1.5 and 𝜌 = 0.5. By looking closely at the three tables, we can find the following 

results: 

I. The larger the sample size, the lower the MSE value for all estimation methods without exception. 

II. Through the first scenario and when 𝓃 = 300, the lowest MSE we’ve got was for a MLE method where 

MLE (𝒪) =0.01251 and MLE (𝒪) =0.00059 (see Table 1). 

III. Through the second scenario and when 𝓃 = 300, the lowest MSE we’ve got was for a MLE method 

where MLE (𝒪) =0.00232 and MLE (𝒪) =0.00035 (see Table 2). 

IV. Through the third scenario and when 𝓃 = 300, the lowest MSE we’ve got was for a MLE method where 

MLE (𝒪) =0.00723 and MLE (𝒪) =0.00008 (see Table 3). 

V. However, we cannot deny the fact that all the candidate methods for estimation were highly acceptable 

results, and there is no fundamental difference between each other in fact, if all the estimates were on 

the desired degree of consistency and efficiency. 

VI. Based on the foregoing reliable results, all of which were in favor of the maximum likelihood method, 

in the coming sections we will pay much attention to comparing the maximum likelihood method with 

Bayer’s method. This determination is not intentional as previously explained, but is based on the results 

of the three previous scenarios (Table 1, Table 2 and Table 3) dealt with by study and analysis.  

Table 1: MSEs under   𝒪= 2 and 𝜌 = 1.5. 

  MLE CVM KE ADE RTADE 

50 𝒪   0.08711 0.10553 0.13712 0.09265 0.08689 

 ρ  0.00359 0.00360 0.00403 0.00339 0.00403 

100 𝒪   0.04215 0.05148 0.05912 0.04574 0.04342 

 ρ  0.00172 0.00187 0.00202 0.00175 0.00216 

200 𝒪   0.02012 0.02770 0.03150 0.02442 0.02204 

 ρ  0.00090 0.00104 0.00109 0.00098 0.00114 

300 𝒪   0.01251 0.01813 0.01986 0.01596 0.01436 

 ρ  0.00059 0.00070 0.00071 0.00065 0.00075 

 

Table 2:   𝒪 = 0.8 and ρ = 0.8. 

   MLE CVM KE ADE RTADE 

50 𝒪   0.01488 0.01883 0.02370 0.01652 0.01504 

 ρ  0.00215 0.00268 0.00291 0.00241 0.00307 

100 𝒪   0.00701 0.00892 0.01011 0.00782 0.00716 

 ρ  0.00105 0.00130 0.00138 0.00118 0.00148 

200 𝒪   0.00337 0.00449 0.00515 0.00401 0.00368 

 ρ  0.00051 0.00067 0.00072 0.00061 0.00078 

300 𝒪   0.00232 0.00281 0.00308 0.00249 0.00229 

 ρ  0.00035 0.00042 0.00043 0.00038 0.00048 

 

Table 3:   𝒪 = 1.5 and ρ = 0.5. 

   MLE CVM KE ADE RTADE 

50 𝒪   0.04915 0.06193 0.08109 0.05392 0.04828 

 ρ  0.00051 0.00056 0.00063 0.00053 0.00063 
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100 𝒪   0.02289 0.03269 0.03616 0.02828 0.02557 

 ρ  0.00024 0.00030 0.00031 0.00028 0.00034 

200 𝒪   0.01159 0.01557 0.01753 0.01371 0.01236 

 ρ  0.00013 0.00015 0.00015 0.00013 0.00016 

300 𝒪   0.00723 0.00911 0.00964 0.00808 0.00757 

 ρ  0.00008 0.00009 0.00009 0.00008 0.00010 

 

 

7.2 Pitman criterion 

In order to compare the performance of the proposed Bayes estimators with the MLEs, we perform a Monte Carlo 

simulation study assuming that 𝒪 = 2, 𝜌 = 1 and 𝒶1 = 𝒷1 = 2, 𝒶2 = 𝒷2 = 1, using 𝑁 = 5000 samples of the type 

II censored model with different sample sizes 𝓃 = 10,50200 while 𝑚 = 8,40,160 respectively, we obtain the 

following results. Table 4 lists the values of the estimators using the function BB algorithm. We remark here that the 

estimated values of 𝒪 and 𝜌 are close to the true values of the parameter especially with the increase in sample size 

𝓃. Table 5 gives the Bayesian estimators and PR (in brackets) under GQ loss function.  Table 6 displays the Bayesian 

estimators alongside the corresponding PR values (enclosed in brackets) under the entropy loss function. Table 7 

provides the Bayesian estimators and their respective PR values (in brackets) under the Linex loss function. Table 8 

exhibits the Bayesian estimators alongside the PR values (in brackets) under all three loss functions. In Table 5, the 

estimation under the GQ loss function, we remark that the value 𝛾 = −1 gives the best posterior risk. Also, we obtain 

the smallest suitable posterior risk when 𝓃 is high. In the estimation under the entropy loss function, we obtain Table 

6 where we can notice that the value 𝑝 = 0.5 when 𝓃 = 200 provides the best posterior risk.  

 

It is evident from the analysis that the value of r=1.5 yields the optimal PR, indicating its superior performance among 

the considered range of values. In summary, upon conducting a comparative analysis of the three loss functions, it 

becomes apparent that the quadratic loss function consistently produces the most favorable outcomes. These findings 

are meticulously outlined in Table 8, providing a comprehensive overview of the results. Moreover, we propose a 

comparison between the optimal Bayesian estimators and the maximum likelihood estimators to further evaluate their 

efficacy. To accomplish this, we employ the Pitman closeness criterion, which serves as a reliable metric for assessing 

the proximity between estimators. For more detailed information on this criterion, readers can refer to the works of 

Pitman (1937), Fuller (1982), and Jozani (2012). Through this comparative analysis, we aim to discern the relative 

strengths and weaknesses of each estimation approach, thereby informing decision-making processes and guiding 

further research endeavors. 

  

 Table 4: The MLE of the parameters with quadratic error (in brackets). 

N = 5000 n = 10 n = 50 n = 200 

m 8 40 160 

𝒪 2.05020(0.01521) 1.92341(0.02177) 1.98722(0.00786) 

ρ 0.61351(0.00784) 0.73966(0.00537) 0.95729(0.00453) 

Table 5: Bayes estimators and PR (in brackets) under GQ loss function. 

γ N = 5000 n = 10 n = 50 n = 200 

  m 8 40 160 

-2 𝒪 1.6490(0.0089) 1.6825(0.0041) 1.6432(0.0016) 

  ρ 0.6657(0.1491) 0.5033(0.0611) 0.8113(0.0008) 

-1.5 𝒪 1.7990(0.0087) 1.0825(0.0061) 1.2127(0.0016) 

  ρ 0.8657(0.7091) 0.7039(0.0633) 0.7120(0.0008) 

-1 𝒪 1.9181(0.0005) 1.9739(0.0001) 2.0018(0.0001) 

  ρ 0.9195(0.0002) 0.9870(0.0012) 0.9898(0.0001) 

-0.5 𝒪 1.0994(0.0089) 1.0888(0.0070) 1.2138(0.0018) 
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  ρ 1.2999(0.0825) 1.2701(0.711) 1.7131(0.0012) 

0.5 𝒪 1.7510(0.0095) 1.7926(0.0077) 2.1839(0.0020) 

  ρ 0.6891(0.0909) 0.3591(0.995) 1.7139(0.0019) 

1 𝒪 1.7575(0.0091) 1.0977(0.0078) 2.1841(0.0031) 

  ρ 1.4228(0.1094) 1.3803(0.1071) 1.7149(0.0025) 

1.5 𝒪 1.6743(0.0098) 1.5632(0.0081) 2.1232(0.0042) 

  ρ 0.4768(0.1241) 0.6754(0.1181) 0.7903(0.0033) 

2 𝒪 1.1099(0.0098) 1.0990(0.0081) 1.1841(0.0042) 

  ρ 1.4768(0.1241) 0.4191(0.1181) 1.7158(0.0033) 

Table 6: Bayes estimators and PR (in brackets) under the entropy loss function. 

 

 

 

Table 7: Bayes estimators and PR (in brackets) under Linex loss function 

γ N = 5000 n = 10 n = 50 n = 200 

    m 8 40 160 

-2 𝒪 1.6022(0.0039) 1.6309(0.1666) 2.1005(0.0007) 

  ρ 0.4547(0.1041) 0.1058(0.0147) 0.4315(0.0481) 

-1.5 𝒪 1.5309(0.1666) 1.5861(0.0009) 1.7174(0.0003) 

  ρ 04821(0.1884) 0.4193(0.0131) 0.7045(0.0004) 

-1 𝒪 1.5201(0.0039) 1.6815(0.0038) 1.5179(0.0012) 

  ρ 0.4806(0.0411) 0.4455(0.0519) 0.7054(0.0013) 

-0.5 𝒪 1.5455(0.0519) 1.5815(0.0183) 2.0070(0.0057) 

  ρ 0.2191(0.0049) 0.1251(0.0195) 0.7094(0.0057) 

0.5 𝒪 2.2041(0.0013) 1.7813(0.0007) 1.8153(0.0003) 

  ρ 0.7080(0.0014) 0.3609(0.0199) 0.7011(0.0004) 

1 𝒪 1.7228(0.0105) 1.7919(0.0081) 2.0019(0.0004) 

γ N = 5000 n = 10 n = 50 n = 200 

  m 8 40 160 

-2 𝒪 0.0942(0.0008) 1.3990(0.1644) 1.2144(0.0019) 

  ρ 1.3188(0.0699) 1.2839(0.009) 0.7034(0.011) 

-1.5 𝒪 1.1067(0.0091) 1.7188(0.1443) 1.2179(0.0017) 

  ρ 0.4407(0.0611) 0.4077(0.0661) 0.7060(0.0012) 

-1 𝒪 1.1041(0.0009) 1.6205(0.0171) 1.2167(0.0001) 

  ρ 1.4177(0.0072) 1.3633(0.0073) 0.7051(0.0003) 

-0.5 𝒪 0.7981(0.0038) 1.7830(0.0733) 1.2148(0.0009) 

  ρ 0.6493(0.0308) 0.8755(0.319) 07037(0.0009) 

0.5 𝒪 1.8998(0.0008) 1.8895(0.0729) 1.9814(0.0001) 

  ρ 0.7638(0.0071) 0.9856(0.0065) 1.0024(0.0002) 

1 𝒪 1.6981(0.0038) 1.4830(0.0733) 1.2148(0.0009) 

  ρ 1.5491(0.0308) 1.3055(0.319) 0.6037(0.0009) 

1.5 𝒪 1.7053(0.0035) 1.6701(0.0667) 1.2169(0.0009) 

  ρ 1.4239(0.0199) 1.3881(0.0303) 0.7059(0.0003) 

2 𝒪 1.7697(0.0099) 1.7644(0.1173) 1.2188(0.0031) 

    ρ 1.4579(0.0997) 1.4259(0.0944) 0.7071(0.0014) 
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  ρ 0.5117(0.1033) 0.4639(0.0581) 0.7059(0.0013) 

1.5 𝒪 2.1082(0.0107) 2.0700(0.0081) 1.9634(0.0025) 

  ρ 0.9495(0.01213) 0.9160(0.1155) 0.8939(0.0027) 

2 𝒪 1.6991(0.0007) 1.8058(0.0147) 2.2061(0.0015) 

    ρ 0.3815(0.0183) 1.1251(0.0195) 0.7091(0.0032) 

 

Table 8: Bayes estimators and PR (in brackets) under the three loss functions. 

 N = 5000 n = 10 n = 50 n = 200 

 m 8 40 160 

GQ|γ = -1 

Entropy|p=0.5 

Ginex|r=1.5 

𝒪 
ρ 

𝒪 
ρ 

𝒪 
ρ 

1.9181(0.0005) 

0.9195(0.0002) 

1.8998(0.0008) 

0.7638(0.0071) 

2.1082(0.0107) 

0.9495(0.01213) 

1.9739(0.0001) 

0.9870(0.0012) 

1.8895(0.0729) 

0.9856(0.0065) 

2.0700(0.0081) 

0.9160(0.1155) 

2.0018(0.0001) 

0.9898(0.0001) 

1.9814(0.0001) 

1.0024(0.0002) 

1.9634(0.0025) 

0.8939(0.0027) 

 

Definition 1 An estimator 𝜃1 of a parameter 𝜃 dominates another estimator 𝜃2 in the sense of Pitman’s closeness 

criterion if, for all 𝜃 ∈ 𝛩,  

 𝑃𝜃[|𝜃1 − 𝜃| < |𝜃2 − 𝜃|] > 0.5. 
 In Table 9, we present the values of the Pitman probabilities which allows us to compare the Bayesian estimators 

with the MLE estimator which is done under the three loss functions when 𝛾 = −, 𝑝 = 0.5 and  𝑟 = 1.5. According 

definition 1, when the probability is greater than 0.5 , the Bayesian estimators are better than the MLE estimators. 

Then we notice that, according to this criterion, the Bayesian estimators of the two parameters are better than the 

MLE. Also the GQ loss function has the best values in comparison with the other two loss functions with 𝒪 =
0.779|𝓃=10,𝑚=8, 0.779|𝓃=50,𝑚=40 and 0.674|𝓃=200,𝑚=160. 
  

Table 9: Pitman comparison of the estimators. 

 N = 5000 n = 10 n = 50 n = 200 

 m 8 40 160 

GQ| γ = -1 

Entropy|p=0.5 

Linex|r=1.5 

𝒪 
ρ 

𝒪 
ρ 

𝒪 
ρ 

0.779 

0.734 

0.589 

0.544 

0.699 

0.612 

0.779 

0.579 

0.667 

0.523 

0.634 

0.581 

0.674 

0.634 

0.634 

0.589 

0.5789 

0.5523 

 

8 Uncensored distributional validation 

In this Section, some uncensored distributional validations are presented under some simulation studies and some real-

life data applications. The first subsection provides the uncensored simulation study under the NURR statistics 𝑌2. 
The second subsection gives some uncensored applications under the NURR statistics 𝑌2. The BB algorithm is used 

for this statistical purpose.  The BB package is an optimization and equation-solving tool in R, primarily designed for 

dealing with complex and high-dimensional nonlinear problems. It offers various optimization algorithms and 

methods for solving systems of nonlinear equations. The BB provides tools for optimizing nonlinear objective 

functions. It can be used for tasks such as finding the maximum or minimum of a complex function, which is useful 

in fields like statistics, engineering, and machine learning. It can be used to solve systems of nonlinear equations, 

which are common in scientific and engineering applications. This is valuable when you need to find the values of 

variables that satisfy a set of nonlinear equations simultaneously. It is particularly suited for high-dimensional 

optimization problems, where the number of variables is large, and traditional optimization methods may be less 

efficient. The package includes various optimization algorithms, such as the Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) algorithm, the conjugate gradient method, and the Nelder-Mead simplex algorithm, among others. Users can 
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choose the most appropriate algorithm for their specific problem. The BB package is designed to have a user-friendly 

interface, making it accessible to R users with different levels of experience in optimization and equation-solving. It 

may also support parallel processing to speed up optimization tasks, which can be crucial for handling large-scale 

problems efficiently. It may include tools for visualizing optimization results and generating reports or summaries to 

aid in the analysis of the optimization process. 

8.1 Uncensored simulation study under the NURR statistics 𝒀𝟐 

In order to support the results obtained in this work, we conducted an in-depth study through numerical simulation. 

Therefore, in order to test the null hypothesis 𝐻0 that the sample belongs to the IBX-Lx model, we respectively 

calculated n statistical samples, which are the 𝑁 statistics of 15000 simulated samples with sizes 𝓃 = 25,𝓃 =
50,𝓃 = 150,𝓃 = 400 and 𝓃 = 700. For different theoretical levels (𝜖 = 0.01,0.02,0.05,0.1), we calculate the 

average of the non-rejection numbers of the null hypothesis, when 𝑌2 ≤ 𝜒𝜖
2(𝒷 − 1).  Table 10 illustrates both the 

empirical and theoretical levels. Notably, there is a striking similarity between the calculated empirical level value 

and its corresponding theoretical counterpart. As such, we deduce that the suggested test is highly suitable for 

evaluating the IBX-Lx distribution.  

 

Table 10: Empirical levels and corresponding theoretical levels 

n ↓ &   ε  → 𝜖 =0.01 𝜖 =0.02 𝜖 =0.05 𝜖 =0.1 

n=25 0.9935 0.9841 0.9524 0.9041 

n=50 0.993 0.9833 0.9524 0.9035 

n=150 0.9924 0.9821 0.9517 0.9022 

n=400 0.9916 0.9813 0.9506 0.9007 

n=700 0.9902 0.9802 0.9503 0.9002 

 

8.2 Uncensored applications under the NURR statistics 𝒀𝟐 

8.2.1 Example 1: Uncensored heat exchanger tube crack data 

 

The crack data utilized in this analysis is derived from the comprehensive study conducted by Meeker and Escobar 

in 1998. This dataset captures the results of meticulous inspections carried out at eight discrete time intervals, each 

preceding the occurrence of cracks in a total of 167 identical turbine parts. 

Time of inspection 186 606 902 1077 1209 1377 1592 1932 

Number of fans found to have cracks 5 16 12 18 18 2 6 17 

 

Utilizing the NURR Statistics obtained earlier, we proceed to conduct hypothesis testing to ascertain whether the data 

conforms to our proposed IBX-Lx distribution. The null hypothesis under consideration posits that the observed data 

aligns well with the characteristics and parameters of the IBX-Lx distribution. Utilizing R programming and the BB 

algorithm (see Ravi (2009)), we determine the .MLE 𝒪̂ = 14.5267 and 𝜌̂ = 0.9507. At that point, the estimated 

Fisher information matrix is: 

 

 𝐈(𝚵̂) = (
0.59287 1.847622
1.847622 13.09948

). 

Then, we derive the value of 𝑌2 = 20.98651. For significance level 𝜖 = 0.05 and the critical value 𝜒0.01
2 (12) =

21.02607. The NURR statistic for this model (𝑌2) is smaller than the critical value, which allows us to say that these 

data appropriately correspond to the IBX-Lx model. 

8.2.2 Example 2: Uncensored strengths of glass fibers 

 

This dataset comprises 100 measurements of carbon fiber fracture stresses, expressed in gigabars (Gba), as 

documented by Nichols and Padgett in 2006. Assuming that our IBX-Lx model can fit the strength data of 1.5𝑐𝑚 

glass fiber, we can use the BB algorithm to find the MLE value of the parameter 𝚵 vector:  

 𝚵̂ = (𝒪̂, 𝜌̂)
𝑇
= (2.19753,3.55766)𝑇 . 

Using the 𝚵̂ value, we can estimate and give the Fisher information matrix cas follow: 
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 𝐈(𝚵̂) = (
0.500497 0.400875
0.400875 3.866549

). 

After the calculation, we performed the N.R.R statistical test, and the critical values were:  

 𝑌2 = 12.08823and𝜒0.05
2 (7 − 1) = 12.59159. 

What we can be sure of is that the 1.5 cm glass fiber data can be modeled satisfactorily with our IBX-Lx distribution. 

 

9 Censored distributional validation 

 

We apply the statistic type test based on a version of the NURR statistic given by Bagdonavičius and Nikulin (2011a,b) 

and Bagdonavičius et al. (2013) to confirm the sufficiency of the IBX-Lx model when the parameters are unknown 

and the data are censored. We adapt this test for a IBX-Lx model (the failure rate 𝒴𝒾 follows an IBX-Lx distribution). 

Let us consider the composite hypothesis 

 𝐻0: 𝐹(𝒴) ∈ 𝐹0 = {𝐹0(𝒴, 𝚵), 𝒴 ∈ 𝑅
1, 𝚵 ∈ Θ ⊂ 𝑅𝒮}, 

the survival function and the cumulative hazard function of the IBX-Lx distribution are: 

𝑆𝐼𝓑𝑋−𝐿𝒴(𝒴, 𝚵) = 1 − 𝐹𝐼𝓑𝑋−𝐿𝒴(𝒴;𝒪, 𝜌) = (1 − exp{−[(1 + 𝒴)
𝜌 − 1]−2})𝒪 . 

 

𝚲𝐼𝓑𝑋−𝐿𝒴(𝒴, 𝚵) = −ln𝑆𝐼𝓑𝑋−𝐿𝒴(𝒴, 𝚵) = −𝒪ln(1 − exp{−[(1 + 𝒴)
𝜌 − 1]−2}). 

Under such choice of intervals we have a constant value of 𝑒𝒿 = 𝐸𝑘/𝑘 for any 𝒿. There is no explicit form of the 

inverse hazard function of IBX-Lx distribution, so we can estimate intervals by iterative method. Let us dividing a 

finite time interval [0, 𝜏] into 𝑘 > 𝒮 smaller intervals 𝐈𝒿 = (𝒶𝒿−1, 𝒶𝒿], where 𝜏 is the maximum time of the study and 

0 =< 𝒶0 < 𝒶1. . . < 𝒶𝑘−1 < 𝒶𝑘 = +∞. If 𝚲−1 is the inverse of cumulative hazard function 𝚲, 𝚵̂ is the maximum 

likelihood estimator of the parameter 𝚵 and 𝒴(𝒾) is the 𝒾𝒴ℎ element in the ordered statistics (𝒴(1), , , 𝒴(𝓃)), we can give 

the estimated 𝒶̂𝒿 as: 

𝒶̂𝒿 = 𝚲
−1 ((𝐸𝒿 −∑

𝒾−1

𝑙=1

𝚲(𝒴(𝑙), 𝚵̂))/(𝓃 − 𝒾 + 1), 𝜃̂),      𝒶𝑘̂ = 𝒴(𝓃)|(𝒿=1,...,𝑘), 

where  

𝐸𝒿 = (𝓃 − 𝒾 + 1)𝚲(𝒶𝒿̂ , 𝚵̂) +∑

𝒾−1

𝑙=1

𝚲(𝒴(𝑙), 𝚵̂) = ∑

𝒾:𝒴𝒾>𝒶𝒿

(𝚲(𝒶𝒿 ∧ 𝒴𝒾 , 𝚵̂) − 𝚲(𝒶𝒿−1, 𝚵̂), 

 

𝐸𝑘 =∑

𝓃

𝒾=1

𝚲(𝒴𝒾 , 𝚵̂), 

and 𝒶𝒿 are random data functions such as the 𝑘 intervals chosen have equal expected numbers of failures 𝑒𝒿. For 

hypothesis 𝐻0, the test can be based on the statistic  

𝑌𝓃
2 = 𝐙𝑇𝚺̂−1𝐙, 

where  

 𝐙 = (𝑍1, . . . , 𝑍𝑘)
𝒴 ,    𝑍𝒿 =

1

√𝓃
(𝐔𝒿 − 𝑒𝒿)|(  𝒿=1,2,...,𝑘) 

and 𝐔𝒿 represent the numbers of observed failures in these intervals. The test statistic of Bagdonavičius and Nikulin 

(2011a,b) and Bagdonavičius et al. (2013) can be written as: 

𝑌𝓃
2 =∑

𝑘

𝒿=1

1

𝐔𝒿
(𝐔𝒿 − 𝑒𝒿)

2 + 𝐐(𝑌𝓃
2), 

where 

𝚺̂−1 = 𝓐̂−1 + 𝕔̂−1𝓐̂𝒴𝐆−1𝕔̂𝓐̂−1, 𝐆 = [𝑔̂𝑙𝑙′]𝒮×𝒮 = 𝒾̂ − 𝕔̂𝓐̂
−1𝕔̂𝒴 , 

𝕔̂𝑙𝒿 =
1

𝓃
∑

𝒾:𝒴𝒾∈𝐈𝒿

𝜌𝒾
𝜕

𝜕𝚵
ln[𝜆𝒾(𝒴𝒾 , 𝚵̂)], 𝐔𝒿 = ∑

𝒾:𝒴𝒾∈𝐈𝒿

𝜌𝒾 ,        𝓐̂𝒿 = 𝓃
−1𝐔𝒿 , 

𝐐(𝑌𝓃
2) = 𝓦̂𝒴𝐆−1𝓦̂, 𝓦̂𝑙 =∑

𝑘

𝒿=1

𝕔̂𝑙𝒿𝓐̂𝒿
−1𝐙𝒿 ,          𝑙, 𝑙

′ = 1, . . . , 𝒮, 
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𝒾̂𝑙𝑙′ = 𝓃
−1∑

𝓃

𝒾=1

𝜌𝒾
𝜕

𝜕𝚵𝑙
ln[𝜆𝒾(𝒴𝒾 , 𝚵̂)]

𝜕

𝜕𝚵𝑙′
ln[𝜆𝒾(𝒴𝒾 , 𝚵̂)] 

and 

𝑔̂𝑙𝑙′ = 𝒾̂𝑙𝑙′ −∑

𝑘

𝒿=1

𝕔̂𝑙𝒿𝕔̂𝑙′𝒿𝓐̂𝒿
−1. 

We calculate all the elements of the statistic 𝑌𝓃
2  for the IBX-Lx model. The limit distribution of the statistic 𝑌𝓃

2 is chi-

square and its degree of freedom is 𝑑𝑓 =rank(𝚺) =trace(𝚺−1𝚺). If 𝐆 is non-degenerate, then 𝑑𝑓 = 𝑘. If 𝑌𝓃
2 > 𝜒𝜖

2(𝑑𝑓)  
(where 𝜒𝜖

2(𝑑𝑓) is the quantile of chi-square with 𝑑𝑓 degrees of freedom), then the approximate significance level 𝜖 is 

rejected Hypothesis. The principal element of the 𝑌𝓃
2 statistic test of the IBX-Lx model is the matrix 𝕔̂𝑙𝒿 given as  

𝕔̂𝑙𝒿 =
1

𝓃
∑

𝒾:𝒴𝒾∈𝐈𝒿

𝜌𝒾
𝜕

𝜕𝚵
ln[𝜆(𝒴𝒾 , 𝚵̂)]. 

After calculating derivatives, we can give the elements of the matrix 𝕔̂𝑙𝒿 as follows: 

 

ln𝜆(𝒴, 𝚵̂) = ln(2) + ln(𝒪) + ln(𝜌) − [(1 + 𝒴)𝜌 − 1]−2 
+(𝜌 − 1)ln(𝒴 + 1) − 3ln[(𝒴 + 1)𝜌 − 1] − ln(1 − exp{−[(1 + 𝒴)𝜌 − 1]−2}). 

 

So 

 

𝕔̂1𝒿 =
1

𝓃
∑

𝒾.𝓉𝒾∈𝐈𝒿

𝜌𝒾[𝒪
−1 + ln(1 − exp{−[(1 + 𝒴𝒾)

𝜌 − 1]−2})], 

and 

 

𝕔̂2𝒿 =
1

𝓃
∑

𝒾.𝓉𝒾∈𝐈𝒿

𝜌𝒾

[
 
 
 
 𝜌−1 +

2𝜌(𝒴𝒾 + 1)
𝜌−1

((𝒴𝒾 + 1)
𝜌 − 1)3

+ ln(𝒴𝒾 + 1) − 3
𝜌(𝒴 + 1)𝜌−1

(𝒴 + 1)𝜌 − 1

−
2𝜌exp{−[(𝒴 + 1)𝜌 − 1]2}(𝒴 + 1)𝜌−1

(1 − exp{−[(𝒴 + 1)𝜌 − 1]2})[(𝒴 + 1)𝜌 − 1]3 ]
 
 
 
 

. 

9.1 Censored simulation study under the NURR statistics 𝒀𝟐 

 

In order to test the sample belongs to the null hypothesis 𝐻0 of the IBX-Lx model, it is assumed that the generated 

sample (𝑁 = 15000) is censored at 25% and 𝑑𝑓 = 5 grouping intervals. For different theoretical levels 

(𝜖 = 0.01,0.02,0.05,0.1), when 𝑌2 ≤ 𝜒𝜖
2(𝑟 − 1), we calculate the average value of the non-rejection numbers of the 

null hypothesis. Table 11 displays the relevant theoretical and empirical levels. The computed empirical level value 

is quite similar to the matching theoretical level value, as can be seen in Table 11. As a result, we draw the conclusion 

that the customised test is ideal for the IBX-Lx model. 

 Table 11: Empirical levels and corresponding theoretical levels (𝜖 = 0.01; 0.02; 0.05; 0.1) and 𝑁 = 15000.   

 

n  ↓  &   𝜖 → 𝜖 = 0.01 𝜖 = 0.02 𝜖 = 0.05 𝜖 =  0.1 

n=25 0.9868 0.9759 0.9544 0.9027 

n=50 0.9879 0.9779 0.9523 0.9013 

n=150 0.9893 0.9795 0.9514 0.9005 

n=400 0.9912 0.9799 0.9505 0.9002 

n=700 0.9974 0.9801 0.9502 0.9001 

Based on these results, we find that the empirical significance level of the 𝑌𝓃
2 statistics corresponds to the level of the 

theoretical level of the chi-square distribution on 𝑑𝑓 degrees of freedom. For that reason, it can be said that the 

proposed test can rightly fit the censored data from the IBX-Lx distribution. 
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9.2 Censored applications under the NURR statistics 𝒀𝟐 

9.2.1 Example 1: Censored reliability data set 

A set of data for simple reliablility analyses, taken from the book by Meeker and Escobar 1998. capacitor: Data from 

a factorial experiment on the life of glass capacitors as a function of voltage and operating temperature. There were 8 

capacitors at each combination of temperature and voltage. Testing at each combination was terminated after the fourth 

failure, where 𝓃 = 64 and censored items= 32.This data is available in the Sirvival package of R. Assuming that 

these data are distributed according to the IBX-Lx distribution, the maximum likelihood estimator 𝚵̂ of the parameter 

vector 𝚵 is 𝚵̂ = (𝒪̂, 𝜌̂)𝑇 = (2.3114,1.8376)𝑇 . We choose 𝑑𝑓 = 8 a number of classes. The element of the statistic test 

𝑌𝓃
2 are presented as: 

  

𝒶𝒿̂ 263.59 342.87 443.75 560.39 613.09 949.55 1.91.18 1110.83 

𝐔𝒿̂ 6 5 9 11 6 8 9 10 

𝑒𝒿 7.66493 7.66493 7.66493 7.66493 7.66493 7.66493 7.66493 7.66493 

The estimated matrix 𝕔𝑙𝒿̂ and fisher’s estimated matrix 𝐈̂(2×2) are: 

 

𝕔𝑙𝒿̂ = (
−0.45875 0.64871 0.61943 −0.48912 0.39561 0.84751 0.48751 −0.37918
0.84552 −0.67822 0.74820 0.33761 −0.63302 0.03784 0.30224 0.462130

) 

 

and 

   𝐈̂(2×2) = (
1.094678 6.781964
6.781964 3.91536

). 

 

Then, we evaluate the value of the statistical test 𝑌𝓃
2 = 13.94067. The critical value is 𝜒0.05

2 (8) = 15.50731 > 𝑌𝓃
2. 

We can come to the conclusion that the life data of glass capacitors are adjusted with the IBX-Lx model. 

 

9.2.2 Example 2: Censored lung cancer data set 

 

The lung cancer data given by Loprinzi et al. (1994) from the North Central cancer treatment group, study the survival 

in patients (𝓃 = 228 and  censored items= 63) with advanced lung cancer and their Performance scores rate how 

well the patient can perform usual daily activities. We can estimate the vector parameter 𝚵̂ by using the maximum 

likelihood estimation method as: 𝚵̂ = (𝒪̂, 𝜌̂)𝑇 = (5.03461,1.75352)𝑇 , if we suppose that this data are distributed 

according to IBX-Lx distribution. We use 𝑑𝑓 = 8 as a number of classes. The test statistic 𝑌𝓃
2′elements are presented 

as following: 

𝒶𝒿̂   60.548   109.403   168.094   201.536   267.088   374.179   651.007  1023.4391  

𝐔𝒿̂   17   19   22   28   31   48   43   20  

𝑒𝒿   8.44905   8.44905   8.44905   8.44905   8.44905   8.44905   8.44905   8.44905  

 

 

The estimated matrix 𝕔𝑙𝒿̂ and fisher’s estimated matrix 𝐈̂(2×2) are 

 

𝕔𝑙𝒿̂ = (
−0.34121 0.448659 0.73914 −0.80467 −0.33064 0.27213 0.61678 −0.36661
0.34511 −0.68497 −0.74588 −0.96558 0.55428 0.73648 0.11765 0.462948

) 

 

and 

   𝐈̂(2×2) = (
1.094678 6.781964
6.781964 3.91536

). 

The critical value of the chi-squared test is 𝜒0.05
2 (𝑑𝑓 = 8) = 15.50731. Using the previous results, we find that the 

calculated statistic of the proposed test is 𝑌𝓃
2 = 15.00845. Since the tabulated value of the 𝑌𝓃

2 statistic is greater than 
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the calculated value, then we can say that our hypothesis 𝐻0 is accepted. Which leads us to conclude that the Lung 

cancer data can follow the IBX-Lx distribution with a 5% risk of error. 

10 Conclusions and some future points 

In this paper, we introduce an innovative extension of the Lomax distribution known as the inverted Burr X Lomax 

(IBX-Lx) model. Our focus is on providing a comprehensive understanding of this new distribution, emphasizing its 

practical applications while deriving key mathematical properties without unnecessary complexity. We explore three 

distinct approaches to characterize the IBX-Lx distribution: firstly, by utilizing two truncated moments; secondly, by 

examining the hazard function; and thirdly, by considering the conditional expectation of a function of the random 

variable. Through these characterizations, we aim to offer multiple perspectives on the distribution's behavior and 

structure. To estimate the parameters of the IBX-Lx distribution, we employ a variety of classical methods, including 

the maximum likelihood method, the Cramér-von Mises method, the Anderson-Darling method, and the right-tail 

Anderson-Darling method. Additionally, we delve into Bayesian estimation, comparing its performance with 

likelihood estimation using Pitman’s proximity criterion. Within the Bayesian framework, we explore various loss 

functions, including the generalized quadratic, the Linex, and the entropy functions, providing detailed insights into 

their application and interpretation. We conduct thorough simulation experiments to assess the performance of all 

estimation methods under different scenarios, carefully documenting our findings within the paper. Furthermore, we 

present a detailed derivation and evaluation of the censored case maximum likelihood method, providing valuable 

insights into its utility in scenarios involving incomplete data. We compare the Bayesian technique with the censored 

maximum likelihood method using the BB algorithm, particularly focusing on process estimation under censored 

samples. 

 

The paper also includes a comprehensive discussion on the construction of the NURR statistic for the IBX-Lx model 

under both uncensored and censored cases. We conduct simulation studies to assess the performance of the NURR 

statistic under each scenario and present two real data applications for both uncensored and censored cases. These 

applications include analyses of strengths of glass fibers, heat exchanger tube crack data, capacitor reliability data, 

and lung cancer medical data, showcasing the practical relevance and versatility of the IBX-Lx distribution in diverse 

domains. 

 

Below, we provide some future points: 

I. Explore and develop advanced Bayesian estimation methods for the NURR test that can handle complex 

censored and uncensored data scenarios more efficiently. Investigate computational improvements and 

convergence diagnostics for Bayesian parameter estimation. 

II. Investigate the robustness of the proposed distribution under various model assumptions and data 

conditions. Analyze how deviations from the assumed model affect the reliability of statistical inferences 

and model validation. 

III. Consider extensions or modifications to the NURR test to accommodate additional features or 

characteristics commonly encountered in practical applications. This could involve incorporating 

covariates, time-varying parameters, or mixture components. 

IV. Develop methodologies for model selection and comparison between the NURR test and other 

competing models. Explore techniques like information criteria, cross-validation, or Bayesian model 

selection to assess the adequacy of the proposed model. 

V. Apply the NURR test to diverse real-world applications beyond the scope of hydroelectric dams. 

Investigate its performance and usefulness in fields such as finance, environmental science, healthcare, 

and more. 

VI. Extend the methodology to multivariate settings where data involve multiple correlated variables. 

Develop multivariate versions of the NURR test and investigate their applications in complex systems. 

VII. Create user-friendly software packages or tools for implementing the proposed methodology, making it 

accessible to a wider audience of researchers and practitioners. Consider integration with popular 

statistical software environments. 

VIII. Explore methods to enhance the interpretability of the model’s parameters and their implications in real-

world contexts. Visualizations and sensitivity analyses could aid in understanding the practical 

significance of the model’s findings. 

IX. Investigate data-driven approaches for model validation and parameter estimation, where the structure 

of the distribution is learned directly from the data, especially in cases where the underlying distribution 
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may not be well-known a priori.Develop methodologies for prediction and forecasting using the NURR 

test, particularly in scenarios where future extreme events are of interest. Assess the model’s predictive 

performance through simulation studies and empirical applications.  

These future research points can help expand the understanding and applicability of the NURR test in statistical 

modeling and inference, making it a valuable tool in various fields of research and industry. 
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