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Abstract

The Transportation Model (TM) in the application of Linear Programming (LP) is very useful in optimal distribution
of goods. This paper focuses on finding Initial Basic Feasible Solutions (IBFS) to TMs hence, proposing a Demand-
Based Allocation Method (DBAM) to solve the problem. This unprecedented proposal goes in contrast to the Cost-
Based Resource Allocations (CBRA) associated with existing methods (including North-west Corner Rule, Least
Cost Method and Vogel’s Approximation Method) which select decision variable before choosing demand and supply
constraints. The proposed ‘DBAM’ on page 66 is implemented in MATLAB and has the ability to solve large-scale
transportation problems to meet industrial needs. A sample of five (5) examples are presented to evaluate efficiency of
the method. Initial Basic Feasible Solutions drawn from the study are of higher accuracy and will rapidly converge to
optima in less iterations. The comparative results also showed that the DBAM outperforms other methods under this
study which qualifies it as one of the best methods to solve industrial TMs.
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1. Introduction

The TM is an Optimization tool for minimizing the shipping cost for transporting units from m sources to various n
destinations to provide cost-effective distributing patterns for Logistics and Supply Chain Organizations (LSCO), etc.
According to the paper of Kamal et al. (2021), the TM is considered as a logistic (or network) problem to control the
delivery of items at minimum costs. This cost minimization is indispensable in maintaining profitability of industries
in production and distribution of items. In the general TM; (1) The sum of units at all sources equals the sum of all
demands at various destinations, (2) There is a convenient flow of units from all sources to the consumer points, (3)
There is a known Total Cost (TC) per unit from all sources to the destinations and (4) The TC for a particular route
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is linearly proportional to the amount of units sent along it. The LP formulation of TMs (according to Kamal et al.
(2021), Prasad and Singh (2020) and Saleh and Shiker (2022)) requires a set of decision variables, an objective
function and model constraints.

The broad topic of transportation has gained attention from many research backgrounds as far as production is con-
cerned. This development (of TMs) originated around the years of Monge (1781) who formalized the transport theory
for the study of optimal allocation of resources. The works of Leonid Kantrovich (1939) on LP gained advancements
through George B. Dantzig (1951) who developed the simplex algorithm for solving LP problems, which he applied
to solve TMs. Before Dantzig’s work, Frank L. Hitchcock (1941) developed a resource allocation model to mark the
actual beginning of TMs as a sub-class of Network Optimization Models (NOM). His proposal on the distribution of
units from several sources to different regions is considered as a significant contribution in finding the solutions to
transportation models.

Solving a TM requires setting out an IBFS to be improved ( using the Stepping-Stone Method (Charnes and Cooper
, 1954) or Modified Distribution) in order to become optimal. North-west Corner Rule (NCR), Least Cost Method
(LCM) and Vogel’s Approximation Method (VAM) are widely used in pursuit of this goal. Methods of Total Differ-
ences (TDM1 and TDM?2) was developed by Hosseini (2017) as a modification on the VAM, which provides satisfac-
tory solutions to TMs in at least one case. The Total Opportunity Cost Matrix-Minimal Total (TOCM-MT) method
(Amalia et al. , 2019) was compared to Hosseini’s methods and the VAM for which it was claimed to have performed
better than the other methods. Similarly, Ravi et al. (2018) proposed the Direct Sum Cost method in comparison to
the Vogel’s method (i.e VAM), NCR and the LCM to evaluate its effectiveness in solving the transportation problem.
Hanif and Rafi (2018) also suggested a new methodology which requires arithmetic and logical calculations to yield
an IBFS in comparison to VAM; even so, the proposed method could not outperform the VAM in such cases.

The Inverse Coefficient of Variation Method (Opara et al. , 2017) finds an IBFS to balanced transportation problems.
The variation coefficients in this method are calculated for each row and column as a ratio of means to corresponding
standard deviations computed for each row and column. The method selects successive least inverse variation coef-
ficients for allocation. As captured by Abdelati et al. (2020); the Row Minima Method (RMM), Column Minima
Method (CMM) and the Russel’s Approximation Method (RAM) are three other methods considered in this study

Zangiabadi and Rabie (2012) applied the concept of Fuzzy Goal Programming Problems (FGPPs) to solving a TM
with qualitative and quantitative factors. Yeola and Jahav (2016) also proposed a parallel algorithm to solve multi-
objective transportation problems with penalties calculated using a fuzzy membership function (Yeola and Jahav ,
2016). The algorithm was claimed to yield satisfactory results for multi-objective problems with less complexity.

Most existing methods of solutions to TMs use objective-based approaches to the solution process. NCR fully satisfies
the first destination before the next, to give a quick solution in short times. But it rarely yields near optimal solutions
(Mishra , (2017)). LCM and VAM help decision makers to provide best shipping routes and that, they yield best IBFS,
due to their potentials in yielding a near optimal solution. However, VAM slows down due to long-time computations
(Mishra , (2017)).

In contrast to Cost-Based Resource Allocations (CBRA) associated with existing methods, this study aims to: (1)
Present a Demand-Based Allocation Method (DBAM) to find initial basic feasible solutions to TMs, (2) Compare the
proposed DBAM to the existing methods, and (3) Determine the effectiveness and efficiency of the DBAM in solving
TMs based on the comparative results. The study continues through the Sections 2 to 5.
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2. The Transportation Model Design

In the TM, each source ¢ is connected to all destinations (see Figure 1) j by routes S;P;; where i = 1tom;j = 1 to
n (Ackora Prah et al. , 2022).

Figure 1: Network representation of the transportation model.

Table 1: The General TST.

5 Pj 1 2 s J s n Supply
1 l Ci1 ‘ Cia ‘ . ‘ Clj ‘ e ‘ Cin
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The general LP model formulation of the problem is shown in Equation (1);

Minimize Z = i Zn: C.,X,

i=1j=1
m n
Subject to : Z ZX” <,
i=1j=1 ey
n m
2.2 Xz
j=1i=1
X, >0V,
as it is captured by the Transportation Simplex Tableau (TST) in Table 1, where:
m =the number of sources (rows).
n = the number of destinations (columns).
mn = the number of decision variables (X) in constituting the problem.
b; =the available supply at a source ¢, representing capacity constraints.
a; =the amount of units required at the destination j, representing demand constraints.
P; —the j*" destination (see Figure 1).
Sij =the i*" source (see Figure 1).
Xij =the amount of units (of the decision variable X) transported Source (.5;) ¢ Destination (F;) j.
Ci; Xij =the cost of shipping X;; units (of the decision variable X)) from the source 4 to a destination j.

A Proposed Method for Finding Initial Solutions to Transportation Problems. 65



Pak j.stat.oper.res. Vol.19 No.1 2023 pp 63-75 DOI: http://dx.doi.org/10.18187/pjsor.v19i1.4196

Z  =Objective function value.

3. The Proposed Demand-Based Allocation Method (DBAM)

3.1. Algorithm

The first step of the algorithm below (DBAM) states that, a minimum demand must be chosen first before supplies are
made via associated least cost cells (representing decision variables).

In this method, the first supplies always go to the first (viable) destination associated with the minimum demand. The
first step must be repeated whenever supplies and demands are satisfied concurrently. Otherwise, the next steps of the
allocation process continue as outlined in Algorithm 1, until all model constraints are satisfied.

Algorithm 1 DBAM

1: function [ ]J=DBAM([C};], [bi], [a;])

2: while All constraints are not satisfied do
3: Step 1:

4: Choose a} = min{a; }

5: Select C* = min{A(:,5)}, b}

6: Step 2:

7: if a7 = b} then

8: XL] = bf

9: Return to Step 1

10: elseif a7 < b then

11: Xij=aj, b =b; —aj

12: Select C* = min{A(i,:)}, aj
13: Repeat Step 2

14: else

15: Xij =0bj,a; =aj —b;

16: Select C* = min{ A(:,7)}, b}
17: Repeat Step 2

18: end if

19: end while

20: end function

3.2. Ties for choosing Minimum Demand Values (MDVs) and for selecting Decision Variables

(1) Ties for choosing MDVs can be broken arbitrarily, or preference should be given to a column having the least-
cost cell.

(2) Ties for selecting decision variables can also be broken arbitrarily, however, preference should be given to the
cell where maximum allocations can be made (to a row) or the cell which links to the maximum capacity.

4. Numerical Analysis

In this section, the study presents and analyzes five numerical transportation model examples with results and discus-
sions shown from Sections 4.2 to 4.3 on models’ solutions and comparisons. For each Example (I-V), per unit shipping
costs (Cj;) are in the top-right corner for each cell, supplies (b;) for each source are arranged correspondingly in the
far-right column of each tableau, and demands (a;) for each destination are arranged correspondingly in the bottom
row of each tableau. For example; in Table 2 (i.e. Example I) b; = 350, by = 400, b3 = 580; a; = 300, as = 160
, Az = 550, ay, = 50, a5 — 150, ag — 120; 011 = 6, 012 = 14, 013 = 11, 014 = 13, 015 = 2, 016 = 10,
Co =9,..., C36 = 20, X;; = 0 (units shipped initially) (V i, 7).

4.1. Illustrative Examples

Consider the following examples:
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Table 2: Example 1.

S Fj 1 2 3 4 5 6 Supply
1 [ 6 [ 14 [ 11 [ 13 [ 12 [ 10
350
2 E | 8 [ 10 | 15 e [ 9
400
3 | 4 |7 | 18 9 |7 [ 20
580
Demand 300 160 550 50 150 120
Table 3: Example IT (Hosseini , 2017).
S bj 1 2 3 4 Supply
1 [ 19 [ 30 [ 50 [ 10
70
2 | 70 [ 30 | 40 | 60
90
3 | 40 | 8 | 70 [ 20
180
Demand 50 80 70 140

S, T 1 2 3 4 Supply
1 | 13 | 18 [ 30 | 8
8
2 | 55 [ 20 | 25 | 40
10
3 30 6 50 10
11
Demand 4 7 6 12

Table 5: Example IV (Hasan , 2012).

S, P 1 2 3 4 5 6 Supply
] (9 [12] [ 9 [ 6 (9 [ [10
2 [ 7 3 7 [ 7 B 5 Z
3 (6 [ 5 9 [ 11 (3 [ [ 11 )
q (6 [ 8 [ 11 [2 (2] [ 10
Demand 4 4 6 2 4 2 &

Table 6: Example V (Mishra , 2017).

S P; 1 2 3 4 Supply

] 11 13 17 14
250

2 16 18 14 10
300

3 [ 21 [ 4 [ 13 [ 10
400

Demand 200 225 275 250
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4.2. Results and Discussions
4.2.1. Results

Consider the balanced setup in Table 2 with 3 sources; S;; @ = 1,2, 3 with supplies (b;’s), 6 destinations; P;; j =
1,2,3,4,5,6 with demands (a;’s), and shipping costs (A = [C};]). Using the Algorithm 1:

While: All constraints are not satisfied, do
Step 1: Choose the MDV;
a; = min{ai, as, ..., as} = aj = 50 units

Select the corresponding least cost in the a; —column ;
C* =min{A(:;,4)} = A(3,4) ...C*=9
Select the associated supply from the C* —row;
b} = b5 = 580 units.

Step 2: Since a < b3, then allocate 50 units to X34 and
satisfy the constraints;
X34 =50, b3 = b3 — aj = 580 — 50 = 530
Select the next least cost from the b5 —row ;
C* =min{A(3,:)} = A(3,1) .C*=4
Choose associated demand from the C*—column ;
a] = 300 units.
Repeat step 2 since aj # b3.

Step 2: Since a] < b3, then allocate 300 units to X3; and
satisfy the constraints;
X33 =300, b5 = b5 — a7 =530 — 300 = 230
Select the next least cost from the b5 —row ;
C* =min{A(3,:)} = A(3,2) ...C*=
Choose associated demand from the C*—column ;
a3 = 160 units.
Repeat step 2 since a # bj.

Step 2: Since a3 < b3, then allocate 160 units to X35 and
satisfy the constraints;
X390 =160, b3 =03 — a3 =230 —160 =70
Select the next least cost from the b5 —row ;
C* =min{A(3,:)} = A(3,5) ..C*=7
Choose associated demand from the C*—column ;
az = 150 units.
Repeat step 2 since a3 # b3.

Step 2: Since a3 > b3, then allocate 70 units to X35 and
satisfy the constraints;
X35 =70, af =af — b5 =150 — 70 = 80
Select the next least cost from the af —column ;
C* =min{A(;,5)} = A(2,5) ..C*=38
Choose associated supply from the C* —row ;
b5 = 400 units.
Repeat step 2 since ai # bj.

Step 2: Since af < b3, then allocate 80 units to X5 and
satisfy the constraints;
Xo5 =80, b5 = b5 — af =400 — 80 = 320
Select the next least cost from the b5 —row ;
C* =min{A(2,:)} = A(2,6) .. C*=9
Choose associated demand from the C* —column ;
ag = 120 units.
Repeat step 2 since ai # b3.
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Step 2: Since ag < b3, then allocate 120 units to X6 and
satisfy the constraints;
Xoe =120, b3 = b5 — af = 320 — 120 = 200
Select the next least cost from the b5 —row ;
C* =min{A(2,:)} = A(2,3) ..C*=10
Choose associated demand from the C* —column ;
a3 = 550 units.
Repeat step 2 since ag # b3.

Step 2: Since a3 > b3, then allocate 200 units to X3 and
satisfy the constraints;
X3 =200, a3 = aj — b5 = 550 — 200 = 350
Select the next least cost from the a3 —column ;
C* =min{A(:,3)} = A(1,3) -.C*=11
Choose associated supply from the C* —row ;
ai = 350 units.
Repeat step 2 since a3 # bj.

Step 2: Since a3 = b7, then allocate 350 units to X3 and
satisfy the constraints;
X113 =350, b3 =03 —a] =350—-350=10
Return to step 1 since aj = b} (supply and
demand are satisfied concurrently).

Step 1: Since all constraints are satisfied,
Stop

End

Table 7 gives the solution where X135 = 350, Xo3 = 200, Xo5 = 80, X9 = 120, X3 = 300, X35 = 160,
X34 = 50, and X35 =70.

3 6
Z=3"3"CyXy; = 11(350) + 10(200) + 8(80) + 9(120) + 4(300) + 7(160) + 9(50) + 7(70) = 10830 (2)
i=1 j=1

In the same way algorithm 1 is applied to the Examples II to V. The results are shown respectively in the tables 8 to 11
with Z;; = 7430, Zrr = 412, Zjy = 112, and Zy = 12075, where Z;; is the value of Z at Example II, and so
on.

Table 7: Solution to Example 1

S P; 1 2 3 4 5 6 Supply

I 6 14 [ 13 12 10
350 350

) 9 8 10 15 8 9
200 80 120 400

3 K 7 8 9 7 20
300 160 50 70 580

Demand 300 160 550 50 150 120

Table 8: Initial Solution to Example I1

S, Fi 1 2 3 4 Supply

1 { 19 [ 30 [ 50 { 10

50 20 70
2 [ 70 { 30 { 40 [ 60

20 70 90
3 { 40 { 8 { 70 { 20

60 120 180

Demand 50 80 70 140
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Table 9: Initial Solution to Example I1I

S, T 1 2 3 4 Supply
1 [ 13 [ 18 [ 30 [ 8
4 4 8
2 [ 55 [ 20 [ 25 [ 40
4 6 10
3 [ 30 [ 6 [ 50 [ 10
3 8 11
Demand 4 7 6 12
Table 10: Initial Solution to Example IV
P 1 2 3 4 5 6 Supply
1 [ 9 [ 12 [ 9 [ 6 [ 9 [ 10
5 5
2 7] [ 3 7 7 5] [
3 1 2 6
3 [ 6 [ 5 [ 9 [ 11 [ 3 [ 11
1 1 2
4 [ 6 [ 8 [ 11 [ 2 [ 2 [ 10
3 2 4 9
Demand 4 4 6 2 4 2
Table 11: Initial Solution to Example V.
3 P 1 2 3 4 Supply
1 11 13 [ 17 [ 14
200 50 250
2 [ 16 18 [ 14 10
175 125 300
3 21 24 13 10
| 275 125 400
Demand 200 225 275 250

4.2.2. Discussions

In solving the transport network (shown in Figure 1), decision-makers hope to reduce the number (mn) of routes in the
end. Hence, methods such as VAM etc., are developed to cover such goals. The problem in ‘Example I.” on page 67
has eighteen (18) routes (i.e. S1P; to S3F;) connecting three (3) sources and six (6) destinations. The study presented
in Table 7 the ‘Solution to Example 1° on page 69 using ‘DBAM’ on page 66 (i.e. Algorithm 1), where; (1) 350 units
should be sent via Sy Ps (i.e. Source (S;) 1 Destination (P;) 3), (2) 200 units via Sa P», (3) 80 units via S Ps, (4) 120
units via Sy Pg, (5) 300 units via S3 P, (6) 160 units should be sent via S3P,, (7) 50 units via S3 P4 and (8) 70 units
via S35 P5. Table 12 shows the ‘Distributing pattern for Example I’ on page 70, where according to the Stepping-Stone
Method (Sharma , 2010), the objective value (Z) is optimal, as compared to results from six other methods captured
by the ‘Comparative results’ on page 72 (Table 17).

Table 12: Distributing pattern for Example I

| 3 350 IT 3850
2 2 80 8 640
2 3 200 10 2000
2 6 120 9 1080
3 1 300 4 1200
3 2 70 7 490
3 4 50 9 450
3 5 160 7 1120

Z =10830
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In the same way, the Algorithm 1 is applied to each of the Examples (II to V, shown in the Tables 3 to 6) to provide
distributing patterns respectively, as shown in the Tables 13 to 16. All Initial Basic feasible solutions provided in this
study represent optimal solution, according to the Stepping-Stone Method and the Modified Distribution. Furthermore,
the number of routes has reduced from eighteen (18) to eight (8) for ‘Example I’in Table 7, from twelve (12) to six (6)
for the Examples (II, III, & V) in the Tables 8 to 11, except Table 10 where the number of straight routes is reduced
from twenty-four (24) to nine (9). Comparative results to the study are presented in the following section.

Table 13: Distributing pattern for Example II

Source (5;)  Destination (P;)  Units (X;;)  Cost/Unit  Shipment Cost
I I 30 19 950

1 4 20 10 200

2 2 20 30 600

2 3 70 40 2800

3 2 60 8 480

3 4 120 20 2400

Z =17430

Table 14: Distributing pattern for Example III
Source (5;)  Destination (P;)  Units (X;;)  Cost/Unit  Shipment Cost

I I 4 I3 52
1 4 4 8 32
2 2 4 20 80
2 3 6 25 150
3 2 3 6 18
3 4 8 10 80

Z =412

Table 15: Distributing pattern for Example IV

Source (S;)  Destination (P;)  Units (X;;)  Cost/Unit  Shipment Cost
I 3 5 9 45
2 2 3 3 9
2 3 1 7 7
2 6 2 5 10
3 1 1 6 6
3 2 1 5 5
4 1 3 6 18
4 4 2 2 4
4 5 4 2 8
Z =112
Table 16: Distributing pattern for Example V
Source (5;)  Destination (P;)  Units (X;;)  Cost/Unit  Shipment Cost
I 1 200 11 2200
1 2 50 13 650
2 2 175 18 3150
2 4 125 10 1250
3 3 275 13 3575
3 4 125 10 1250
Z =12075

4.3. Comparing the proposed DBAM to the existing methods.

The study is supported with a sample of five (5) TM examples to evaluate efficiency of the DBAM. The ‘Comparative
results’ on page 72 show Initial Basic Solutions (IBS) to the five examples, represented by their respective objective
values, Z (in the Table 17) which are presented six methods (i.e. NCR, LCM, VAM, RAM, RMM and CMM) in
comparison to the proposed method.
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Table 17: Comparative results

Objective value (7)
Problem NCR LCM VAM RAM RMM CMM DBAM

Example [ 14670 10930 12810 10830 15600 11230 10830
Example II 10150 8140 7790 8070 11100 7790 7430
Example III 484 516 476 454 457 476 412
Example IV 139 112 112 115 128 118 112

Example V 12200 12200 | 12075 12200 13175 [WI2075 12075

The proposed method outperforms the other methods in Table 17.

5. Conclusions

This study has presented the Demand-Based Allocation Method (DBAM) as a means to find Initial Basic Feasible So-
Iutions (IBFS) to Transportation Models (TMs). Using MATLAB (See ‘Computer Solutions’ on page 73, Appendix A,
Figures 2 to 5) as well as hand calculation, the DBAM Algorithm 1 has been implemented with five models examples
in which the study results qualify the proposed method as efficient and effective in solving the models. The DBAM
yields solutions that can converge rapidly to optima (through testing) in less iterations. Moreover, it outperforms the
other methods (including VAM and LCM) with reference to the comparative results in Table 17. This makes it one of
the best methods applicable to solving large-scale TMs for Logistics and Supply-Chain Systems.
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Appendices

A. Computer Solutions

Command Window

Enter cost matrix:[6 14 11 13 12 10;92 8 10 15 & 9;4 7 13 3 7 Z0]
Enter supplies in a column: [350;400;580]

Enter demands in a row:[300 160 550 50 150 120]

SCLUTICH:

SHIPMENTS =

1] 1] 350 ) ) ) 350

[+] [+] 200 0 80 120 400

300 160 0 50 T0 [v] 580

300 160 550 S0 150 120 1330

SHIPPING COST =

[+] [+] 3850 0 0 0 350

1] 1] 2000 ) 640 1080 400

1200 1120 0 450 490 0 580

300 160 550 S0 150 120 1330

FUNC (Z*) =10830

Figure 2: IBFS - Example I

Note. X13 == 350, ng == 2007 X25 == 80, X26 == 120, X31 == 300, X32 == 160, X34 == 50, X35 =70
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Command Window

Enter cost matrix:[19% 30 50 10;70 30 40 g0;40 8 70 20]
Enter supplies in a column: [T0:590;180]
Enter demands in a row:[S0 80 70 140]

SOLUTION:
SHIFPMENTS =
50 o] o] 20 TO
0 20 TO Q =]
o] &0 o] 120 180

50 B0 70 140 340

SHIPPING COST =

S50 Q o] 200 TO
o] 600 2800 o] a0

7] 480 v] 2400 180
50 80 70 140 340

FUNC (2*) =7430
Figure 3: IBFS - Example II
Note. X171 =50, X154 =20, X9 =20, Xo3 =70, X33 = 60, X34 =120

Command Window

Enter cost matrix:[13 18 30 8;55 20 25 40;30 & 50 10]
Enter supplies in a column: [8;10;11]
Enter demands in a row:[4 7 & 12]
SCLUTICH:
SHIPMENTS =

4 0 0 4 8

0 4 g 0 10

0 3 0 g 11

4 7 3 12 24
SHIFPING COST =

52 Q0 0 32 g

0 g0 150 0 10

0 158 0 80 11

4 7 3 12 24
FUNC(Z*%) =412

Figure 4: IBFS - Example III
Note. X171 =4, X1u=4, Xoo =4, Xo3=06, X30=3, X34 =38
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Command Window

Enter cost matrix:[9% 12 9 6 9 10;7 3 7 7 5 56 8 11 2 2 10:5 6 9 11 3 11]
Enter supplies in a column: [5;6;%:2]
Enter demands in a row:[4 4 6 2 4 2]

SOLUTICH:

SHIPMENTIS =
0 Q 5 0 0 Q 5
0 3 1 0 0 2 &
3 Q 0 2 4 ] ]
1 1 0 0 0 1] 2
E] 4 & 2 E] s 22

SHIPPING COST =
o] Q 45 0 o] ] 5
o] =] 7 L] 1] 10 &

18 L] ) 4 k=] [u] g

5 & 0 0 0 ] 2
4 4 & 2 4 2 22

FUNC(Z#) =112
Figure 5: IBFS - Example IV
Note. X153 =5, Xoo =3, Xog =1, Xo6 =2, X351 =3, Xza =2, Xgz5=4, Xpn =1, Xyo=1

Pseudocoode

Algorithm 2 DBAM - MATLAB

1: function [ ]= DBAM([ il 1bi], laj])

2 Input: A = [Cy;]; B = [bi]T D = [a,], and Initialize: OS = zeros(m,n); T =min(D); J = D
3 if > B # > D then

4 Display(’Enter a balanced problem.”)

5: else

6 while constraints are not satisfied, do

7 forj =1:ndo

8 if T'= J(j) = True then

9: K =min(A(:,4)); s=17; J(:) =00

10: end if

11: end for

12: for j =s:ndo

13: fori=1:mdo

14: if K = A(i,j) = True then

15: if C(j) < B(i) = True then

16: Set B(i) = B(i) — D(j); OS(i,j) = D(5); T =] | K = min(A(4,:));s =1
17: Satisfy Rim conditions.

18: else if D(j) = B(i) = T'rue then

19: Set,0S(i,7) = D(j);, satisfy RC and set T' = min(D; J = D
20: else
21 Set D(j) = D(j) — B(i); 0S(i, j) = B):T = [ |; K = min(A(, j)); s = j
22: Satisfy Rim conditions.
23: end if
24: end if
25: end for
26: end for
27: end while
28: end if

29: end function
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