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Abstract 

When a life test is terminated at a predetermined time to decide whether to accept or refuse the submitted batches, 

the types of group sampling inspection plans (single, two, and multiple stages) are introduced. The tables in this 

study give the optimal number of groups for various confidence levels, examination limits, and values of the ratio 
of the determined experiment time to the fixed percentile life. At various quality levels, the operating characteristic 

functions and accompanying producer's risk are derived for various types of group sampling inspection plans. At 

the determined producer's risk, the optimal ratios of real percentile life to a fixed percentile life are obtained. Three 

case studies are provided to illustrate the processes described here. Comparisons of single-stage and iterative group 

sampling plans are introduced. The first, second, and third sample minimums must be used to guarantee that the 

product's stipulated mean and median lifetimes are reached at a certain degree of customer trust. The suggested 

sample plans' operational characteristic values and the producer's risk are given. In order to show how the suggested 

approaches based on the mean life span and median life span of the product may function in reality, certain real-

life examples are examined. 

 

Key Words: Amputated life test; Average group number; Consumer’s risk; Operating characteristic; Single-stage 

group sampling inspection plans; Two-stage group sampling inspection plans; Multiple group sampling inspection 

plans with three-stage; Producer’s risk; Weibull Reciprocal Weibull distribution. 

 

1. Introduction  

The organizational structures used in the industrial processes are quite complicated. As a result, the unpredictable 

events that impact the system usually result in some failures and disruptions. Generally, decreasing production system 
failures is more important for all companies. At this time, process control is prioritized over quality control as a means 

of increasing productivity and performance.  Another method used to guarantee a given standard of quality in a good 

or service is quality control. It could include whatever steps a company believes are necessary to ensure the control 

and verification of a product's or service's features. The main objective of quality control is to ascertain if the monitored 

process or product will exhibit these qualities or not, to make sure that the offered goods, services, or processes are 

reliable and satisfactory and meet strict standards. We cannot test every test unit if there are many of them. To address 

this issue, we use destructive testing and statistical quality control techniques. The quality assurance managers employ 

the acceptance sampling plan, a crucial inspection tool, to decide whether to accept or reject a product based on pre-

established quality requirements. Acceptance sampling plans are frequently employed when inspecting many goods, 

which is expensive. A simple random sample is taken from a particular lot as part of the inspection process for a single 

acceptance sampling plan, and the manager should decide whether to reject the lot if some of the items don't satisfy 

the pre-assigned quality requirements. 
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Plans for acceptance sampling allow you to examine a representative sample from a batch of goods to determine 

whether or not to accept the batch, depending on the intended level of quality. The decision can be made to accept, 

reject, or, in the case of multiple and sequential sampling plans, draw another sample before repeating the decision 

operation, depending on the quantity of failure items in a specimen. It should be noted that if the observed number of 
failures does not reach the examination limit prior to the test's termination time, the batch is deemed acceptable. To 

determine the sample size from a batch being evaluated, inspection sampling plans for amputated life tests are typically 

used. Normally, just one item is inspected when employing an acceptance sampling strategy, but numerous things 

might be checked at once to save money and time. Group acceptance sampling is the name given to this procedure. 

The group sampling inspection plan (GSIP) is what we'll name the acceptance sampling plan based on these groupings 

of objects. Calculating the sample size is the same as figuring out how many groups there are in this kind of test. 

Testing for unexpected death typically employs this kind of tester. Many manufacturers use sudden death testing to 

shorten testing times. This approach was put forward by a number of scholars, including Balasooriya (1995), Pascual 

and Meeker (1998), and Vlcek et al. (2004). The sudden death test was most recently developed by Jun et al. (2006) 

on the presumption that objects' lifespans follow the Weibull distribution with specified shape parameters. In the 

sudden death tests, they created the single and double sampling variable schemes.  

 
A GSIP is sometimes preferable to a single sampling strategy because it may examine a greater number of items in a 

certain test time. In the group inspection plan, the number of items to be examined is specified, and the number of 

groups is determined. The parameters here are the determining group size and the examination limit. According to 

(Aslam et al. (2009)), the selected specimen size 𝓃 is divided into ℓ (the number of groups) groups and 𝓀 (group size) 

items are put on test in each group so that 𝓃 = 𝓀. ℓ. The ℓ items in a group are tested simultaneously on each different 

tester for a pre-assigned time. The experiment is amputated if more than the examination limit 𝑎𝑐  of failures occurs in 

any group during the experiment time. This method is used by many researchers (Aslam and Jun (2009 a, b)), (Rao 

(2009, 2010 and 2011)), (Aslam et. al. (2011)), (Aslam et. al. (2013)), (Mughal and Ismail (2013)), (Rao et al. (2014)), 

(Mughal, et al. (2015)), (Rosaiah et al. (2016)), (Aziz, et al. (2020)), (Yiğiter et al. (2021)), (Almarashi (2021)) Saber 
et al. (2022), Ali et al. (2020) and (Ahmed and Yousof (2022)). However, very useful applications in the quality of 

the insurance outcomes and actuarial works are available in Mohamed et al. (2022,a,b,c). Numerous studies analyzed 

and examined the problem of creating statistical sampling plans with specifics and using them to monitor and control 

the quality of industrial products in the context of the producer-consumer relationship by looking at specific production 

quantities based on pre-defined criteria in order to determine whether the batch was able to achieve the acceptable 

quality level or not.  

 

All acceptance sampling begins with the single-sample plan. Single sampling by characteristics, the most basic 

variation of such a strategy, is applicable to dichotomous circumstances, i.e., those in which inspection findings may 

be divided into just two classes of outcomes. In addition to other categories, such as measures in or out requirements, 

this also contains go, no-go gauging approaches. The characteristics single-sampling plan, which is applicable to all 
sampling circumstances, has evolved into the standard by which other sampling plans are measured. It is used in 

inspection to determine the fraction of processes, the big lots, the individual lots, or the number of defects detected in 

the sample (Poisson distribution) that are faulty (hypergeometric distribution). Of all the sampling techniques, single 

sampling is unquestionably the most popular (see Schilling and Neubauer (2009) for more details and more examples). 

 

Plans for triple and double sampling reflect the propensity of many seasoned inspectors to give a suspect lot a second 

opportunity. Consequently, in the case of twofold sampling, if the findings of the first sample do not clearly indicate 

whether the lot should be accepted or rejected, a second sample is collected, and the disposition of the lot is decided 

after that. This method makes sense due to the procedure's mathematical features as well as the results of experience. 

For starters, the average sample number (ASN) for a double-sampling plan may often be set to be lower than for a 

single-sampling plan with the same protection. Allowing for the collection of more samples in order to gain even 

greater distinction in a lot's disposition is a logical extension of double sampling. When the last sample is built to 
compel a choice at that time, as with double sampling, these techniques are known as multiple sampling plans. 

 

This paper's goal is to provide a novel method for comparing group sample inspection plans (single, two, and multiple 

stages) based on amputation life tests where a product's lifetime follows the Weibull reciprocal Weibull (WRW) 

distribution with a specified shape parameter.  The significance of the study stems from how crucial it is to have high-

quality goods available at competitive costs that can satisfy customers' needs and compete in both domestic and 

international markets.  The research is significant because it directly applies the idea of statistical sampling to the goods 
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produced by businesses and factories, whether they are finished goods, raw materials, or semi-manufactured materials.  

In fact, there are a lot of elastic probability distributions that deserve further study and analysis using the examination 

of acceptance plans and related theories. Specifically, the Reciprocal Weibull distribution has many useful extensions. 

See, for example: Korkmaz et al. (2017), Haq et al. (2017), Al-Babtain et al. (2020), Elsayed and Yousof, H. M. 

(2020), Jahanshahi et al. (2020), Salah et al. (2020), Yousof et al. (2016, 2018a,b, 2019, 2020), Hamedani et al. (2022), 
Ibrahim et al. (2022) and Salem et al. (2022).  

 

The remainder of the work is structured as follows: The amputated life test for the WRW distribution is presented in 

Section 2. The single-stage group inspection plans are designed in Section 3. The design of the two-stage group sample 

inspection strategy is introduced in Section 4. The design of the three-stage multiple group sample inspection strategy 

is suggested in Section 5. With the use of industry illustrative scenarios, Section 6 explains how the proposed forms 

of group sample inspection plans might be applied. Comparisons of the one-stage and iterative group sampling plans 

are shown in Section 7. 

 

2. The amputated life test for the WRW distribution 
This kind of abbreviated life test has been proposed by several scholars. In all earlier studies, the authors often build 

acceptance sampling plans  (ASP) with the presumption that the product's lifetime follows a certain lifetime 

distribution, such as exponential distribution, gamma distribution, Weibull distribution, and so forth. Take into 

consideration the lifetime of an item, symbolized by 𝜇𝜌, as its quality property. If the lifetime of an item is more than 

the determined value of as 𝜇𝜌
0 , then the product complies with the standard. Alternatively, if 𝜇𝜌 ≥ 𝜇𝜌

0 , then the item is 

conforming and if 𝜇𝜌 < 𝜇𝜌
0 , then the item is not conforming. Among the constraints in most life testing experiments, 

are limits on time spent on life testing. If the product life is anticipated to be long, waiting until all items have failed 

is extremely time-consuming. Consequently, it is better to stop the life test at a pre-set time and record the number of 

nonconforming items (Aslam et al. (2016)). This kind of test for assessing a product's lifetime is known as an 

amputated life test. The following facets are researched in amputated life tests: 

i. The suitable distribution for the item’s lifetime, 
ii. The sampling plan employed for this kind of test,  

iii. Analyzing the mean/median or quantile lifetime of the item. 

Many researchers use an acceptance sampling plan based on an amputated life test with a single-item group using 

various statistical lifetime distributions, including Goode and Kao (1961), Gupta and Groll (1961), Fertig and Mann 

(1980), Kantam and Rosaiah (1998), Tsai and Wu (2006), Balakrishnan et al. (2007), Lio et al. (2010), Gui and Aslam 

(2017), and Ahmed et al. (2022). Afify et al. (2016) introduced the WRW distribution using the Weibull-G family 

pioneered by Bourguignon et al. (2014). The WRW distribution can be used to efficiently examine lifetime data, 

engineering, medicine, and other fields of study. The cumulative distribution function (CDF) and the probability 

density function (PDF) of the WRW distribution are given as 

𝐹𝛽,𝛾,𝜎,𝜑(𝓏) = 1 − exp [−𝛽 {exp [(
𝜑

𝓏
)
𝛾

] − 1}
−𝜎

]  |  𝓏 > 0,                                                 (1) 

 

and  

𝑓𝛽,𝛾,𝜎,𝜑(𝓏) = 𝛽𝜎𝛾𝜑
𝛾𝓏−(𝛾+1) exp [−𝜎 (

𝜑

𝓏
)
𝛾

]
 exp{−𝛽[𝑒𝑥𝑝(

𝜑

𝓏
)
𝛾
−1]

−𝜎
}

{1−𝑒𝑥𝑝[−(
𝜑

𝓏
)
𝛾
]}
𝜎+1   |  𝓏 > 0,                                  (2) 

respectively, where 𝜑 > 0 is the scale parameter and 𝛽, 𝛾 and 𝜎 > 0 are shape parameters. In general,  

𝒵~𝑊𝐹(𝛽, 𝛾, 𝜎, 𝜑) denotes a random variable with a CDF of (1). Hence, the WRW distributed item has the following 

percentile time: 

𝜇𝜌 = 𝜑(log {1 + [(−
1

𝛽
) log(1 − 𝜌)]

−
1

𝜎
})

−
1

𝛾

|0 < 𝜌 < 1.                                             (3) 

The median of  𝜇𝜌 is obtained by substituting 𝜌 = 0.5 in Eq. (3). For further information about the WRW distribution, 

see Afify et al. (2016). Henceforward, unless otherwise stated, we consider 𝜇𝜌 as the quality parameter. From Eq. (3) 

it is evident that for fixed 𝛽 = 𝛽0, 𝜎 = 𝜎0, 𝛾 = 𝛾0, 𝜇𝜌 ≥ 𝜇𝜌
0 ⇔ 𝜑 ≥ 𝜑0 , where 
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𝜑0 = 𝜇𝜌
0 (log {1 + [(−

1

𝛽
) log(1 − 𝜌)]

−
1

𝜎
})

−
1

𝛾

.                                                            (4) 

Note that 𝜑0 depends on 𝛽0, 𝜎0 and 𝛾0 . In order to develop GSIPs for the WRW distribution, it is determined that 𝜇𝜌 

surpasses 𝜇𝜌
0  equivalently 𝜑 exceeds 𝜑0 . The shape parameters are assumed to be known in acceptance sampling 

plans. If the shape parameters are not known, the suggested sampling plan is used for an estimated value of the shape 

parameters depending on the previous failure data. Manufacturers usually retain the estimated parameters of the life 

distribution for their product (see Aslam et al. (2009)).  The GSIPs for the WRW distribution is developed to make 

sure that the 𝜌th percentile lifetime of the product under examination exceeds a pre-specified quality given by the 

consumer say 𝜇𝜌, equivalent 𝜑 exceeds 𝜑0 , with probability 𝜀∗. It is better to design an acceptance sampling plan to 

make sure that the lifetime 𝜌th percentile of the product is at least 𝜇𝜌
0 . The batch is accepted if there is enough evidence 

that 𝜇𝜌 ≥ 𝜇𝜌
0  at a certain level of confidence for the consumers. To make things easier, it is presumed that the stop 

time of the test, 𝓏0, for each item is a coefficient of the specified value of the lifetime 𝜌th percentile, 𝜇𝜌
0 , when 𝓏0 =

𝓊𝜌𝜇𝜌
0, where 𝓊𝜌 is a factor of the coefficient. For instance, to test if the lifetime 𝜌th percentile of the product exceeds 

5,000 h and set 𝓊𝜌 = 0.8, the test for each item is terminated after 4,000 h from the start of the test. For the specified 

value of test termination time, 𝓏0, the probability of failure for each item, 𝜋, is equal to the CDF of the WRW 

distribution at 𝓏0, as  

𝜋 = Pr(𝒵 < 𝓏0) = 1 − exp(−𝛽 {exp [𝒬 (
ℓ

𝓊𝜌
)
𝛾

] − 1}
−𝜎

) ,                                                     (5) 

where 

𝒬 = (log{1 + [(−
1

𝛽
) log(1 − 𝜌)]

−
1
𝜎
})

−
1
𝛾

, 

and ℓ = 𝜇𝜌 𝜇𝜌
0⁄ , when the shape parameters, coefficient factor 𝓊𝜌, and ratio ℓ are determined, the proportion 𝜋 can be 

evaluated. 

3. Design of the single-stage group inspection plan 

In this part, the design single-group inspection plan is introduced to make sure that the 𝒵𝜌 percentiles life of an item 

in a batch is more than the specified life, i.e., 𝜇𝜌 ≥ 𝜇𝜌
0  under the assumption that the lifetime of an item follows the 

WRW distribution with known shape parameters. A batch of an item is recognized to be conforming if the real 

percentiles life 𝜇𝜌 is more than the specified life 𝜇𝜌
0 .  A batch will be accepted if 𝜇𝜌 ≥ 𝜇𝜌

0  at a certain level of 

consumer’s risk, otherwise, it will be rejected. A group inspection plans based on amputated life test comprises four 

parameters: 

i. The Number of groups ℓ, 

ii. The group size 𝓀. When 𝓀 = 1 the single-stage GSIPs (S-SGSIP) returns to the ordinary sampling plan. 

iii. Examination limit 𝑎𝑐 . For instance, if during the pre-determined experiment time 𝒵0, 𝑎𝑐  or fewer failure 

happened, the lot is accepted. 

iv. The ratio 𝓊𝜌 = 𝒵0 𝜇𝜌
0⁄  where 𝒵0 is the maximum testing time and 𝜇𝜌

0  is the specified median or percentile 

life. 

As a result, the S-GSIP can be defined by the parameters (ℓ,𝓀, 𝑎𝑐 , 𝓊𝜌). All groups are tested simultaneously, and the 

failure number in each group is recorded. The batch is accepted if the failure number in each group during the time 

𝒵0 is equal to 𝑎𝑐  at most 𝑎𝑐 , and if it is more than 𝑎𝑐  in any group, then the batch is rejected  

We are concerned with deciding the ℓ needed for the WRW distribution, whereas 𝑎𝑐 , 𝓀 , and 𝒵0 are assumed to be 

determined. 
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Both the consumer and the maker are exposed to risk as their desires are in conflict. The consumer desires the 

acceptance of low-quality batches with a small probability of 𝜉 and the maker desires the acceptance of high-quality 

batches with a high probability (1 − 𝛿). The refusal probability of a high-quality batch is called the producer’s risk 𝛿, 

and the probability of acceptance to a low-quality batch is called the consumer’s risk 𝜉. The consumer’s risk is 

determined by the consumer’s confidence level. If the consumer’s confidence level is 𝜀∗, then the consumer’s risk will 

be 𝜉 = 1 − 𝜀∗. The consumer’s risk is fixed, i.e., the one for which the real percentile life 𝜇𝜌 is less than the specified 

𝜇𝜌
0 , not exceed 1 − 𝜀∗. The probability distribution of the failure number might be assumed to be the hypergeometric 

distribution. However, the binomial or Poisson distributions can also be used if a batch size 𝑁 is big enough to be 

considered infinite for example 𝛽 𝑁⁄ ≤ 0.10 and if a decision about the batch is either accepted or rejected (see 

Stephens (2001)). In such cases, the binomial distribution can be determined and design the parameters of inspection 
plans in this study. Consequently, the acceptance and rejection standards for the batch are tantamount to judgments of 

accepting or rejecting the hypothesis 𝜇𝜌 ≥ 𝜇𝜌
0. Now, we need to determine the optimal number of groups ℓ such that 

[∑ (
𝓀
𝑣
)𝜋𝑣(1 − 𝜋)𝓀−𝑣

𝑎𝑐
𝑣=0 ]

ℓ

≤ 1 − 𝜀∗,                                                                    (6) 

where 𝜋 is the nonconforming proportion in the group prior to termination time 𝒵0 if the real percentile life equals the 

fixed percentile life (or 𝜇𝜌 = 𝜇𝜌
0) and is given by: 

                           𝜋 = 1 − exp [−𝛽{exp(𝒬(𝓊𝜌)
−𝛾
) − 1}

−𝜎
] .                                                            (7) 

It is evident that 𝜋 relies on the ratio 𝓊𝜌 =
𝒵0

𝜇𝜌
0 and is monotonically increasing function of the ratio. Therefore, just 

this ratio needs to be specified in the experiment. If the number of recorded defectives is at most 𝑎𝑐 , from Eq. (6) we 

can establish with probability 𝜀∗ that 𝐹𝛽,𝛾,𝜎,𝜑(𝓏) ≤ 𝐹𝛽, 𝛾, 𝜎,𝜑0(𝓏) , which implies 𝜑 ≥ 𝜑0 (or 𝜇𝜌 ≥ 𝜇𝜌
0). Thus, the 

percentile lifetime of the items can be assured to be at least equal to their specified value with probability 𝜀∗. The 

optimal values of ℓ satisfying inequality (6) for the S-SGSIP of the WRW distribution with 𝛽 = 0.8, 𝜎 = 0.2 and 𝛾 = 

4 according to  𝑎𝑐= 0 and 1 ; 𝜀∗= 0.75, 0.90, 0.95 0.99; 𝓊𝜌 = 0.6, 1.0, 2.15, 3.8, 5.5 at 𝜌 = 0.25 when 𝓀 = 2 and 4 are 

presented in Table 1. From Table 1, we see that the ℓ decreases as the 𝓀 and 𝓊𝜌 increase. It can be observed that the 

ℓ and average group number (AGN) increase as the 𝑎𝑐  increases from zero to one. Furthermore, as the 𝜀∗ increases, 

so does the AGN. In spite of the S-SGSIP with 𝑎𝑐  = 0 leads to a smaller AGN, it also exhibits undesirable OCs, as we 

will see later. As a result, we consider the S-SGSIP with 𝑎𝑐  = 1 as well. 

Table 1: The number of groups in the S-SGSIP that must be examined for a time 𝒵0 in order to affirm with 

probability 𝜀∗ that 𝜇𝜌 ≥ 𝜇𝜌
0  is given by the entries in this table. 

 

 

𝜀∗ 

 

 

𝓊0.25 

𝓀 = 2 𝓀 = 4 

Single with 𝑎𝑐= 0 Single with 𝑎𝑐= 1 Single with 𝑎𝑐= 0 Single with 𝑎𝑐= 1 

ℓ AGN ℓ AGN ℓ AGN ℓ AGN 

 

 

0.75 

0.6 9 18 120 240 5 20 23 92 

1.0 5 10 28 56 3 12 6 24 

2.15 3 6 9 18 2 8 2 8 

3.8 2 4 6 12 1 4 1 4 

5.5 2 4 5 10 1 4 1 4 

 

 

0.90 

0.6 17 34 199 398 7 28 38 152 

1.0 7 14 47 94 4 16 10 40 

2.15 3 6 15 30 2 8 4 16 

3.8 2 4 10 20 2 8 2 8 

5.5 2 4 8 16 1 4 2 8 

 

 

0.95 

0.6 20 40 259 518 9 36 49 196 

1.0 10 20 61 122 4 16 13 52 

2.15 4 8 20 40 2 8 5 20 

3.8 3 6 13 26 2 8 3 12 

5.5 3 6 10 20 2 8 3 12 

 0.6 27 54 399 798 14 56 75 300 
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0.99 

1.0 12 24 93 186 6 24 19 76 

2.15 6 12 30 60 4 16 7 28 

3.8 4 8 19 38 3 12 5 20 

5.5 4 8 16 32 2 8 4 8 
 

The performance of the inspection plan is interpreted by obtaining the operation characteristic (OC) function. It gauges 

the effectiveness of a statistical hypothesis test used to accept or refuse a batch. The OC function of the S-SGSIP 

(ℓ,𝓀, 𝑎𝑐 , 𝓊𝜌  ) gives the probability of accepting the batch and is represented by  

P1 = Pℓ,𝜋 = [∑ (
𝓀
𝑣
)𝜋𝑣(1 − 𝜋)𝓀−𝑣

𝑎𝑐
𝑣=0 ]

ℓ

,                                                           (8) 

where 𝑣 is the number of nonconforming items in each group and 𝜋 = 𝐹𝛽, 𝛾, 𝜎, 𝜇𝜌(𝓏) is decreasing function of 𝜇𝜌 ≥

𝜇𝜌
0 . The OC function P1 is decreasing function of 𝜋 for fixed time 𝓏0. The OC function of an inspection plan is 

computed using the formula (8). For given 𝓀, 𝜀∗ and 𝓊𝜌 the selection of 𝑎𝑐  and ℓ will be made on the fundament of 

the OC function. Values of OC functions based on formula (8) for the S-SGSIP of the WRW distribution with 𝛽 = 

0.8, 𝜎 = 0.2 and 𝛾 = 4 for various values of percentile ratios 𝜇0.25 𝜇0.25
0⁄ , 𝜀∗, 𝓊0.25 according to  𝑎𝑐= 0 and 1 are 

displayed in Table 2. 

Table 2: OC values of inspection plan (ℓ,𝓀, 𝑎𝑐 , 𝓊0.25 ) for a given 𝜀∗, under the WRW distribution 

 

 

𝜀∗ 

 

 

𝓊0.25 

𝑎𝑐  = 0 , 𝓀 = 2 𝑎𝑐  = 0 , 𝓀 = 4 

𝜇0.25 𝜇0.25
0⁄  

2 4 6 8 10 2 4 6 8 10 

 

 

0.75 

0.6 0.749 0.994 1 1 1 0.725 0.994 1 1 1 

1.0 0.464 0.929 0.993 0.999 1 0.437 0.924 0.992 0.999 1 

2.15 0.222 0.486 0.784 0.922 0.973 0.199 0.582 0.834 0.941 0.98 

3.8 0.175 0.394 0.605 0.763 0.864 0.117 0.318 0.539 0.716 0.835 

5.5 0.117 0.255 0.41 0.559 0.684 0.105 0.238 0.392 0.543 0.671 

 

 

0.90 

0.6 0.579 0.989 1 1 1 0.640 0.991 1 1 1 

1.0 0.342 0.902 0.99 0.999 1 0.336 0.901 0.99 0.999 1 

2.15 0.199 0.582 0.834 0.941 0.97 0.106 0.47 0.776 0.918 0.972 

3.8 0.147 0.359 0.575 0.742 0.851 0.069 0.24 0.463 0.66 0.799 

5.5 0.105 0.238 0.392 0.543 0.671 0.048 0.143 0.282 0.438 0.583 

 

 

0.95 

0.6 0.526 0.987 1 1 1 0.559 0.988 1 1 1 

1.0 0.216 0.863 0.986 0.999 1 0.277 0.884 0.988 0.999 1 

2.15 0.116 0.486 0.784 0.922 0.973 0.076 0.422 0.748 0.907 0.968 

3.8 0.073 0.247 0.471 0.666 0.803 0.059 0.221 0.443 0.645 0.789 

5.5 0.062 0.169 0.314 0.47 0.61 0.039 0.125 0.258 0.413 0.562 

 

 

0.99 

0.6 0.424 0.983 1 1 1 0.413 0.982 1 1 1 

1.0 0.152 0.835 0.983 0.998 1 0.181 0.849 0.984 0.998 1 

2.15 0.044 0.351 0.703 0.888 0.961 0.023 0.281 0.653 0.867 0.953 

3.8 0.026 0.141 0.348 0.566 0.736 0.012 0.096 0.282 0.505 0.692 

5.5 0.019 0.08 0.192 0.341 0.495 0.015 0.069 0.176 0.321 0.477 

 𝑎𝑐  = 1 , 𝓀 = 2 𝑎𝑐  = 1 , 𝓀 = 4 

 

 

0.75 

0.6 0.97 1 1 1 1 0.967 1 1 1 1 

1.0 0.858 0.998 1 1 1 0.839 0.998 1 1 1 

2.15 0.592 0.934 0.992 0.999 1 0.563 0.918 0.989 0.999 1 

3.8 0.46 0.773 0.921 0.975 0.993 0.438 0.739 0.901 0.967 0.99 

5.5 0.411 0.662 0.826 0.917 0.962 0.394 0.627 0.793 0.895 0.949 

 

 

0.90 

0.6 0.951 1 1 1 1 0.945 1 1 1 1 

1.0 0.775 0.998 1 1 1 0.748 0.997 1 1 1 

2.15 0.419 0.893 0.987 0.998 1 0.385 0.867 0.982 0.998 1 

3.8 0.276 0.652 0.873 0.959 0.988 0.254 0.605 0.841 0.946 0.983 

5.5 0.229 0.504 0.728 0.866 0.938 0.213 0.46 0.68 0.831 0.917 
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0.95 

0.6 0.936 1 1 1 1 0.93 1 1 1 1 

1.0 0.718 0.997 1 1 1 0.685 0.996 1 1 1 

2.15 0.323 0.862 0.982 0.998 1 0.289 0.831 0.977 0.997 1 

3.8 0.187 0.574 0.838 0.947 0.984 0.168 0.52 0.799 0.93 0.978 

5.5 0.147 0.41 0.661 0.829 0.92 0.133 0.364 0.606 0.786 0.894 

 

 

0.99 

0.6 0.904 1 1 1 1 0.894 1 1 1 1 

1.0 0.601 0.995 1 1 1 0.559 0.994 1 1 1 

2.15 0.176 0.797 0.973 0.997 1 0.148 0.752 0.964 0.996 1 

3.8 0.076 0.426 0.762 0.92 0.975 0.065 0.366 0.708 0.894 0.966 

5.5 0.052 0.254 0.529 0.749 0.879 0.045 0.212 0.463 0.691 0.842 

 

From Table 2, it is noted that, the OC values decrease as the 𝓊𝜌 increase, but the OC values increase to one at a higher 

value of the quality ratio. The OC values decrease as the group size (𝓀) increase from 2 to 4 at the value of 𝑎𝑐 . Also, 

the OC values increase as the 𝑎𝑐  increase from zero to one at the same value of group size (𝓀). The manufacturer may 

be concerned with improving the product's quality so that the acceptance probability exceeds a certain level. For a 

given value of the producer's risk, say 5%, the value of 𝜇𝜌 𝜇𝜌
0⁄  that ensures the producer's risk is 5% or less can be 

obtained by satisfying the following inequality: 

[∑ (
𝓀
𝑣
)𝜋𝑣(1 − 𝜋)𝓀−𝑣

𝑎𝑐
𝑣=0 ]

ℓ

≤ 0.05,                                                            (9) 

where 𝜋 is a function as shown in (5). For a given the parameter of S-SGSIP (ℓ,𝓀, 𝑎𝑐 , 𝓊𝜌  ), at a specified probability 

𝜀∗, the values of 𝜇𝜌 𝜇𝜌
0⁄  satisfying (9) are presented in Table 3. 

Table 3. For a given S-SGSIP (ℓ,𝓀, 𝑎𝑐 , 𝓊0.25 ), the entries in this table give the optimal ratio of 𝜇𝜌 𝜇𝜌
0⁄  in order that 

the lot be accepted with producer’s risk of 5%. 

 

 
 

𝜀∗ 

𝓀 = 2 

𝓊0.25 
0.6 1.0 2.15 3.8 5.5 0.6 1.0 2.15 3.8 5.5 

Single with 𝑎𝑐= 0 Single with 𝑎𝑐= 1 

0.75 2.885 4.307 8.851 13.396 19.390 1.866 2.480 4.275 6.795 9.310 

0.90 3.108 4.594 8.323 13.705 19.618 1.997 2.701 4.756 7.651 10.555 

0.95 3.243 4.747 8.851 14.711 20.62 2.064 2.815 5.003 8.091 11.195 

0.99 3.441 4.992 9.532 15.801 22.275 2.175 3.000 5.407 10.09 12.235 

𝓀 = 4 

0.75 2.939 4.373 8.923 14.067 19.618 1.891 2.555 4.509 7.264 10.028 

0.90 3.210 4.606 8.93 14.779 21.035 2.023 2.78 5.004 8.150 11.318 

0.95 3.294 4.898 9.177 14.96 21.354 2.092 2.896 5.258 8.603 11.979 

0.99 3.457 5.075 9.883 16.392 22.527 2.203 3.084 5.669 12.094 13.047 

 

Table 3 shows that as the termination time ratio and confidence level increase, so does the required optimal ratio. 

Furthermore, the optimal ratio decreases as 𝑎𝑐   increase from 0 to 1 at the same group size (𝓀). At the same value of 

𝑎𝑐 , the optimal ratio increases as the group size (𝓀) increase from 2 to 4. 

4. Design of the two-stage GSIP 
Assuming that 𝑣1 and 𝑣2 denote the number of non-conforming items in the first and second sample. The rules for 

two-stage GSIP (T-SGSIP) are: Take a first sample of size is 𝛽1from a batch, assign 𝓀 item to each of ℓ1 groups; so 

that 𝓃1 = 𝓀ℓ1, accept the batch if 𝑣1 ≤ 𝑎𝑐1,  reject the batch if 𝑣1 ≥ 𝑟𝑒1 and take a second sample of size 𝓃2, assign 

𝓀 item to each of ℓ2 groups; so that 𝓃2 = 𝓀ℓ2 if 𝑎𝑐1 < 𝑣1 < 𝑟𝑒1; accept the batch if 𝑣1 + 𝑣2 ≤ 𝑎𝑐2 and reject 

otherwise. Despite the T-SGSIP is important, yet the number of studies in this area is fewer than the number of studies 

in the S-SGSIP  such as Aslam, et al. (2010)), (Aslam, et al. (2011)), (Mughal, et al. (2011)), (Rao (2013)), (Rao, et 

al. (2014)), (Aslam, et al. (2021)), (Azam, et al. (2015)), (Rao and Rao (2016)), (Prasad, et al. (2018)), (Rao, et al. 

(2019)) and (Kanaparthi (2020). When 𝑎𝑐1 = 𝑎𝑐2, the T-SGSIP turns into S-SGSIP. The two-stage group sampling 

plan (T-SGSIP) tends to be an ordinary double sampling plan when 𝓀 = 1.  The number of groups in each of the T-
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SGSIP will be the key design parameter of the suggested plan. It is to be noticed that the group size 𝓀 will be given 

by the type of testers to be used. The proposed plan involves the parameters of ℓ1, ℓ2, 𝑎𝑐1 and 𝑎𝑐2 where 𝑎𝑐1 < 𝑎𝑐2 , 

then, the OC function for T-SGSIP is determined by 

 

P2 = [∑ (
𝓀

𝑣1
) 𝜋𝑣1(1 − 𝜋)𝓀−𝑣1

𝑎𝑐1

𝑣1=0
]
ℓ1

+ [∑ (
𝓀

𝑣1
) 𝜋𝑣1(1 − 𝜋)𝓀−𝑣1

𝑎𝑐2

𝑣1=𝑎𝑐1+1
]
ℓ1
[∑ (

𝓀

𝑣2
) 𝜋𝑣2(1 − 𝜋)𝓀−𝑣2

𝑎𝑐2−𝑣1

𝑣2=0
]
ℓ2

,       (10) 

 

where 𝜋 is the probability that any item in any group will not work out before the termination time 𝒵0. The first part 

in Eq. (10) provides the batch acceptance probability from the first stage of the T-SGSIP, while the second part 

indicates the acceptance probability for the second sample. When zero and two failure techniques, i.e., 𝑎𝑐1= 0 and 𝑎𝑐2, 

= 2, the probability that the batch is accepted, can be gotten as 

P2 = (1 − 𝜋)
𝓀.ℓ1 [

𝓀(𝓀 − 1)𝜋2(1 − 𝜋)𝓀−2

2
+ 𝓀𝜋(1 − 𝜋)𝓀−1]

ℓ1

[(1 − 𝜋)𝓀 + 𝓀𝜋(1 − 𝜋)𝓀−1]ℓ2 . 

Consumers favor a sampling technique with fewer examination limits, thus we are interested in the status when 𝑎𝑐1= 

0 and 𝑎𝑐2= 1. Consequently, the batch acceptance probability of Eq. (10) becomes 

P2 = (1 − 𝜋)
𝓀.ℓ1 + (𝓀𝜋).ℓ1(1 − 𝜋)(𝓀−1).ℓ1+𝓀ℓ2 .                                              (11)  

Then, the optimal number of groups ℓ1 and ℓ2 ensuring 𝜇𝜌 ≥ 𝜇𝜌
0  at the consumer's confidence level 𝜀∗ can be 

established by disbanding the inequality below 

P2 ≤ 1− 𝜀
∗,                                                                              (12) 

where 𝜋 is the failure probability at  𝜇𝜌 = 𝜇𝜌
0   and is given by Eq. (7). There may be numerous solutions for the number 

of groups from fulfilling Eq. (12), so it must be reducing the AGN to determine them by putting the condition ℓ1 ≥
ℓ2. The AGN is the average number of group units inspected per lot to access the decision to accept or refuse. It is 

noted that the AGN in the S-SGSIP with parameters 𝓀, ℓ, 𝑎𝑐  is 𝐴𝐺𝑁 = 𝓀. ℓ. For a T-SGSIP, the AGN is given by 

𝐴𝐺𝑁 = 𝓀ℓ1 + 𝓀ℓ2(1 − 𝜓),                                                            (13) 

where 𝜓 is the probability of making a decision on the first sample. Note that for given group size and number of 

groups, the number of units examined before making a decision is either 𝓀ℓ1 or (𝓀ℓ1 +𝓀ℓ2). There is a probability 

𝜓 that a decision will be made after examining 𝓀ℓ1 units; the probability of examining (𝓀ℓ1 +𝓀ℓ2) units prior to 

making a decision is (1 − 𝜓). This is the rationale behind the form of Eq. (13). The probability 𝜓 can be expressed as 

𝜓 = 𝑃 (batch accepted on first sample) + 𝑃 (batch rejected on first sample), 

then, 

  𝜓 = 𝑃(𝑣 ≤ 𝑎𝑐1) + 𝑃(𝑣 ≥ 𝑟𝑒1) = 1 − 𝑃(𝑎𝑐1 < 𝑣1 ≤ 𝑎𝑐2), 

which can be expressed as  

𝜓 = 𝑃(𝑣 ≤ 𝑎𝑐1) + 𝑃(𝑣 ≥ 𝑟𝑒1) = 1 − [ ∑ (
𝓀
𝑣1
)𝜋𝑣1(1 − 𝜋)𝓀−𝑣1

𝑎𝑐2

𝑣1=𝑎𝑐1+1

]

ℓ1

, 

for 𝑎𝑐1 = 0 and 𝑎𝑐2 = 1, Eq. (13) becomes 

𝐴𝐺𝑁 = 𝓀ℓ1 +𝓀ℓ2[𝓀𝜋(1 − 𝜋)
𝓀−1]

ℓ1
. 

Consequently, the optimal number of groups ℓ1 and ℓ2 for 𝑎𝑐1 = 0 and 𝑎𝑐2 = 1 in T-SGSIP will be determined by 

solving the following optimization problem: 

                    Minimize 𝐴𝐺𝑁 = 𝓀ℓ1 + 𝓀ℓ2[𝓀𝜋(1 − 𝜋)
𝓀−1]

ℓ1
,                                       (14) 

                           subject to 

P2 ≤ 1− 𝜀
∗ ,                                                                          (15) 

                                         ℓ1 ≥ ℓ2 ≥ 1,                                                                          (16) 
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                                                           ℓ1 and ℓ2 positive integers.    

The constraint in Eq. (16) is specified because it may not be desirable if the number of groups in the second stage is 

large than that in the first stage. Table 4 shows the optimal number of groups required for the two-stage group sampling 

plan under the WRW distribution with 𝛽 = 0.8, 𝜎 = 0.2 and 𝛾 = 4; 𝜀∗= 0.75, 0.90, 0.95 and 0.99; 𝓊𝜌 = 0.6, 1.0, 2.15, 

3.8 and 5.5 at 𝜌 = 0.25 when 𝓀 = 2 and 4, as mentioned earlier for 𝑎𝑐1= 0 and 𝑎𝑐2 = 1 in all cases.  

Table 4: The optimal number of groups in T-SGSIP with 𝑎𝑐1 = 0  

and 𝑎𝑐2 = 1 for the WRW distribution with 𝛽 = 0.8, 𝜎 = 0.2 and 𝛾 = 4. 

 

𝜀∗ 
 

𝓊0.25 
𝓀 = 2 𝓀 = 4 

ℓ1 ℓ2 AGN ℓ1 ℓ2 AGN 

 

 

0.75 

0.6 8 3 15.43 4 2 16.06 

1.0 4 2 8.60 3 2 10.74 

2.15 3 2 5.57 2 2 8.726 

3.8 2 2 4.96 1 1 6.23 

5.5 2 1 4.52 1 1 5.51 

 

 

0.90 

0.6 11 7 21.92 6 4 24.05 

1.0 6 5 11.09 3 2 12.88 

2.15 3 3 6.39 2 2 8.81 

3.8 2 2 5.25 2 1 7.05 

5.5 2 1 5.28 1 1 6.16 

 

 

0.95 

0.6 15 9 30.45 8 7 31.57 

1.0 7 5 13.77 4 4 14.95 

2.15 4 3 7.43 2 2 9.35 

3.8 3 3 6.23 2 1 6.98 

5.5 3 1 6.06 2 1 7.10 

 

 

0.99 

0.6 18 9 47.70 12 12 49.28 

1.0 10 6 19.492 5 5 20.76 

2.15 6 5 11.399 3 3 12.64 

3.8 4 4 8.518 2 2 9.41 

5.5 4 2 8.065 2 1 8.98 
 

After obtaining the number of groups ℓ1 and ℓ2, one may be concerned with determining the probability of accepting 

the batch when the quality of an item is sufficient. As previously stated, an item is considered conforming if the 𝜇𝜌 ≥

𝜇𝜌
0 . Table 5 displays the OC values according to Eq. (11) for a given proposed T-SGSIP (𝓀, ℓ1, ℓ2, 𝓊𝜌) and 𝜀∗. 

Table 5: The OC values of the T-SGSIP for the WRW distribution with 𝛽 = 0.8, 𝜎 = 0.2 and 𝛾 = 4. 

 

 

𝜀∗ 

 

 

𝓊0.25 

𝓀 = 2 𝓀 = 4 

𝜇0.25 𝜇0.25
0⁄  

2 4 6 8 10 2 4 6 8 10 

 

 
0.75 

0.6 0.781 0.995 1 1 1 0.773 0.995 1 1 1 

1.0 0.519 0.939 0.994 0.999 1 0.479 0.929 0.993 0.999 1 

2.15 0.287 0.641 0.859 0.95 0.983 0.154 0.54 0.803 0.927 0.974 

3.8 0.206 0.421 0.614 0.762 0.861 0.134 0.393 0.642 0.798 0.885 

5.5 0.196 0.337 0.473 0.597 0.705 0.11 0.286 0.488 0.661 0.782 

 

 
0.90 

0.6 0.703 0.99 1 1 1 0.680 0.992 1 1 1 

1.0 0.428 0.922 0.992 0.999 1 0.397 0.914 0.991 0.999 1 

2.15 0.225 0.598 0.84 0.943 0.981 0.149 0.533 0.8 0.925 0.974 

3.8 0.182 0.401 0.603 0.756 0.857 0.085 0.302 0.541 0.716 0.828 

5.5 0.13 0.243 0.373 0.51 0.637 0.075 0.222 0.405 0.572 0.699 

 
 

0.95 

0.6 0.602 0.989 1 1 1 0.575 0.99 1 1 1 

1.0 0.335 0.884 0.988 0.999 1 0.276 0.9 0.99 0.999 1 

2.15 0.156 0.53 0.807 0.931 0.976 0.125 0.495 0.78 0.918 0.971 

3.8 0.106 0.297 0.514 0.695 0.821 0.089 0.309 0.549 0.723 0.833 

5.5 0.087 0.177 0.299 0.442 0.582 0.046 0.159 0.315 0.472 0.605 
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0.99 

0.6 0.453 0.983 1 1 1 0.436 0.984 1 1 1 

1.0 0.224 0.867 0.986 0.999 1 0.207 0.86 0.986 0.999 1 

2.15 0.049 0.362 0.711 0.892 0.962 0.042 0.343 0.695 0.884 0.96 

3.8 0.031 0.156 0.365 0.58 0.745 0.024 0.145 0.356 0.567 0.731 

5.5 0.024 0.078 0.18 0.322 0.476 0.019 0.086 0.198 0.334 0.473 

 

Consider that the manufacture now wishes to achieve what the optimal product quality level will be in order to 

maintain the producer's risk at the identified level. At the producer's risk of 𝜏 the optimal ratio 𝜇𝜌 𝜇𝜌
0⁄  can be obtained 

by solving 

P2 ≤ 𝜏,                                                                                 (17) 

where 𝜋 is given by Eq. (5), ℓ1 and ℓ2 are chosen according to the consumer's risk 1 − 𝜀∗ when 𝜇𝜌 𝜇𝜌
0 = 1⁄ . The 

optimal values of the ratio 𝜇𝜌 𝜇𝜌
0⁄  satisfying inequality (17) are computed and presented in Table 6.  

Table 6: The optimal ratio of 𝜇𝜌 𝜇𝜌
0⁄  in order that the lot accepted with the  

producer's risk of 5% for the WRW distribution with 𝛽 = 0.8, 𝜎 = 0.2 and 𝛾 = 4. 

𝜀∗ 𝓊0.25, 𝓀 = 2 𝓊0.25, 𝓀 = 4 

0.6 1.0 2.15 3.8 5.5 0.6 1.0 2.15 3.8 5.5 

0.75 2.806 4.174 8.000 13.066 17.172 2.825 4.311 8.743 13.53 19.36 

0.90 2.986 4.393 8.671 13.609 19.927 3.033 4.478 8.775 14.528 20.354 

0.95 3.172 4.613 8.771 14.375 21.122 3.217 4.748 8.95 14.435 21.552 

0.99 3.4 4.876 9.476 15.657 22.546 3.425 4.92 9.602 15.953 23.065 

 

5. Design of the multiple GSIP with three-stage  

A normal extension of the double inspection plan is to permit more extra samples to be drawn to accomplish even 

greater discrimination in the disposition of a batch. Such treatments are called multiple sampling plans when, as with 

double sampling, the last sample is built to impose a decision at that stage. That is, for a specified last specimen (say, 

the 𝑥th sample), the arrangement is such that 𝑟𝑒𝑥 = 𝑎𝑐𝑥 + 1, where 𝑟𝑒𝑥 is the rejection limit and 𝑎𝑐𝑥is the examination 

limit. Thus, double sampling plan is a special case of the multiple sampling plan where 𝑥 = 2.  Multiple-stage group 

sampling plans (M-SGSIP) provide even more elasticity and reduce the average number of groups even further than 

T-SGSIP, but they are frequently found to be difficult to administer due to the complexity of handling and recording 

all of the samples/groups required. 

Many studies have been conducted to investigate the effects of S-SGSIP and T-SGSIP, but research into M-SGSIP is 

uncommon. As a result, a multiple GSIP with three stages based on an amputated life test is provided assuming that 

the lifetime of an item follows the WRW distribution with known shape parameters. Furthermore, zero, one and two 

failure techniques are provided. To accomplish this, the optimal number of groups are found at given group size 𝓀, 

consumer’s risk and time ratio. The procedure of this plan is explained below: 

Stage one:   

i. A random sample of size 𝓃1 = 𝓀. ℓ1 is extracted from the submitted batch by selected number of groups 

ℓ1 and the predefined group size 𝓀. Then, the items of each group are put in a tester. 

ii. The life test for ℓ1 groups is performed till the specified experiment time 𝒵0 is reached and count the 

number of defective, 𝑣1, in this stage. 

{

If 𝑣1 ≤ 𝑎𝑐1 , Accept the batch.

If 𝑣1 > 𝑟𝑒1 , terminate the test and reject the batch.

If 𝑎𝑐1 < 𝑣1 < 𝑟𝑒1 go to the stage two,
 

Stage two:   

i. A random sample of size 𝓃2 = 𝓀. ℓ2 is extract from the same batch by determined number of groups ℓ2 
and the assign group size 𝓀. Then, the items of each group are put in a tester. 

ii. The life test for ℓ2 groups is performed till the specified experiment time 𝒵0 is reached and count the 

cumulative number of defective, 𝑉1, in this stage.  
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{

If 𝑉1 ≤ 𝑎𝑐2 , Accept the batch.

If 𝑉1 > 𝑟𝑒2 , terminate the test and reject the batch.

If 𝑎𝑐2 < 𝑉1 < 𝑟𝑒2 go to the stage three,
 

Stage three:  

i. A random sample of size 𝓃3 = 𝓀. ℓ3 is extracted from the same batch by determined number of groups 

ℓ3 and the assign group size 𝓀. Then, the items of each group are put in a tester. 

ii. The life test for ℓ3 groups is performed till the specified experiment time 𝒵0 is reached and count the 

cumulative number of defectives, 𝑉2, in this stage.  

 {
If 𝑉2 = ∑ 𝑣𝑖

3
𝑖=1 ≤ 𝑎𝑐3 accept the batch.

If 𝑉2 = ∑ 𝑣𝑖
3
𝑖=1 ≥ 𝑟𝑒3 reject the batch,

 

 

where 𝑟𝑒𝑥 = 𝑎𝑐𝑥 + 1 and the cumulative number of defective, 𝑉1 = (𝑣1 + 𝑣2). The 𝑥 parameter is related to 𝑥 stages 

of the sampling plan. Of course, 𝑎𝑐1 < 𝑎𝑐2 < 𝑎𝑐3, and we may observe that if 𝑎𝑐1 = 𝑎𝑐2 = 𝑎𝑐3, we have a S-SGSIP. 

In general, the proposed multiple GSIP is determined by (ℓ𝑥 , 𝓀, 𝑎𝑐𝑥 , 𝑟𝑒𝑥) where 0 ≤ 𝑎𝑐1 < ⋯ < 𝑎𝑐𝑥 and 1 ≤ 𝑟𝑒1 <

⋯ < 𝑟𝑒𝑥. The OC function for multiple group inspection sampling is determined by  

 

P𝑖,𝑖=1,2,…,𝑥 =  

𝐵(𝒶𝒞1|𝓀ℓ1) + ∑ 𝑏(𝑣1|𝓀ℓ1) ∑ 𝑏(𝑣2|𝓀ℓ2)

𝑟𝑒2−1

𝑣2=𝒶𝒞2+𝑣1+1

𝐵(𝒶𝒞3−𝑉1|𝓀ℓ3)

𝑟𝑒1−1

𝑣1=𝒶𝒞1+1

+ ∑ 𝑏(𝑣1|𝓀ℓ1)

𝑟𝑒1−1

𝑣1=𝒶𝒞1+1

∑ 𝑏(𝑣2|𝓀ℓ2)

𝑟𝑒2−1

𝑣2=𝒶𝒞2+𝑣1+1

∑ 𝑏(𝑣3|𝓀ℓ3)𝐵(𝒶𝒞4−𝑉2|𝓀ℓ3)

𝑟𝑒3−1

𝑣3=𝒶𝒞3−𝑉1+1

+ ⋯

+ ∑ 𝑏(𝑣1|𝓀ℓ1)

𝑟𝑒1−1

𝑣1=𝒶𝒞1+1

∑ 𝑏(𝑣2|𝓀ℓ2)

𝑟𝑒2−1

𝑣2=𝒶𝒞2+𝑣1+1

∑ 𝑏(𝑣3|𝓀ℓ3)

𝑟𝑒3−1

𝑣3=𝒶𝒞3−𝑉1+1

… ∑ 𝑏(𝑣𝑗|𝓀ℓ𝑗)

𝑟𝑒𝑗−1

𝑣𝑗=𝒶𝒞𝑗−𝑉𝑗−1+1

𝐵(𝒶𝒞𝑥−1 − 𝑉𝑥−2|𝓀ℓ𝑥−1)

+ ∑ 𝑏(𝑣1|𝓀ℓ1)

𝑟𝑒1−1

𝑣1=𝒶𝒞1+1

∑ 𝑏(𝑣2|𝓀ℓ2)

𝑟𝑒2−1

𝑣2=𝒶𝒞2+𝑣1+1

∑ 𝑏(𝑣3|𝓀ℓ3)

𝑟𝑒3−1

𝑣3=𝒶𝒞3−𝑉1+1

 

… ∑ 𝑏(𝑟𝓀|𝛽𝓀)

𝑟𝑒𝑗−1

𝑣𝑗=𝒶𝒞𝑗−𝑉𝑗−1+1

∑ 𝑏(𝑣𝑥−1|𝓀ℓ𝑥−1) (𝐵(𝒶𝒞𝑥 − 𝑉𝑥−1|𝓀ℓ𝑥))

𝑟𝑒𝑥−1−1

𝑟𝑥−1=𝒶𝒞𝑥−1−𝑅𝑥−2+1

,                                (18) 

                                                                                                                                                                                                                                                  

when the proposed multiple group M-SGSIP is characterized by (ℓ𝑖 ,𝓀, 𝑎𝑐𝑖 , 𝑟𝑒𝑖) , 𝑖 = 1, 2, 3, the probability of 

acceptance is given by  

 

P3 = [∑ (
𝓀
𝑣1
)𝜋𝑣1(1− 𝜋)𝓀−𝑣1

𝑎𝑐1

𝑣1=0

]

ℓ1

+ [ ∑ (
𝓀
𝑣1
)𝜋𝑣1(1 − 𝜋)𝓀−𝑣1

𝑟𝑒1−1

𝑣1=𝑎𝑐1+1

]

ℓ1

 

×

(

 
 
 
 

[∑ (
𝓀
𝑣2
)𝜋𝑣2(1− 𝜋)𝓀−𝑣2

𝑎𝑐2−𝑣1
𝑣2=0

]
ℓ2

+

{
 
 

 
 [∑ (

𝓀
𝑣2
)𝜋𝑣2(1− 𝜋)𝓀−𝑣2

𝑟𝑒2−1

𝑣1=𝑎𝑐2−𝑣1+1
]
ℓ2

× [∑ (
𝓀
𝑣3
)𝜋𝑣3(1− 𝜋)𝓀−𝑣3

𝑎𝑐3−𝑉1
𝑣3=0

]
ℓ3

}
 
 

 
 

)

 
 
 
 

 .                      (19) 

The first expression in Eq. (19) reflects the acceptance probability from the first stage, while the second expression 

represents the acceptance probability combined from the second and third stages. As an illustration of the application 

of these formulas, consider the following techniques: 

Stage 𝑎𝑐𝑖 𝑟𝑒𝑖 

1 0 2 
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2 1 3 

3 2 3 

 

A probability tree, as shown in Figure 1, is perhaps the best way to describe the evaluation of M-SGSIP. 

Stages:                                                                    Start 

 

1        0                                                                      1                                                                     ≥ 2         

       𝑏(0|𝓀ℓ1) = 𝑝01                                             𝑏(1|𝓀ℓ1) = 𝑝11                                                   𝐸(1|𝓀ℓ1) = 𝑝21             

 

 

 

2                              1                                                2                                                ≥ 3 
                          𝑝11𝑏(0|𝓀ℓ2) = 𝑝12                    𝑝11𝑏(1|𝓀ℓ2) = 𝑝22                   𝑝11𝐸(1|𝓀ℓ2) = 𝑝32         

         

 

 

3                                                2                                                               ≥ 3       

                                            𝑝22𝑏(0|𝓀ℓ3) = 𝑝23                                   𝑝22𝐸(0|𝓀ℓ3) = 𝑝33  

                                                   

 

                                                                 

Figure 1 : Control Chart 

where 

𝐸(∅|𝓃(.)) = [1 − 𝐵(∅|𝓃(.))], 

𝐵(∅|𝓃(.)) =∑(
𝓃(.)
𝑣
)𝜋∅(1− 𝜋)𝓃(.)−∅ 

∅

𝑣=0

, 

are defined as the probability that the binomially distributed random variable is larger than or equal to ∅. The results 

of Figure 1 give the following probabilities. 

Table 7: Quality Control table 

Stages 1 2 3 

Accept, 𝐴𝑐𝑖 𝐴𝑐1 = 𝑝
01

 𝐴𝑐2 = 𝑝
12

 𝐴𝑐3 = 𝑝
23

 

Reject, 𝑅𝑒𝑖 𝑅𝑒1 = 𝑝
21

 𝑅𝑒2 = 𝑝
32

 𝑅𝑒3 = 𝑝
33

 

Terminate, 𝑇𝑖   𝐴𝑐1 + 𝑅𝑒1 𝐴𝑐2 + 𝑅𝑒2 𝐴𝑐3 + 𝑅𝑒3 

No decision, 𝐷𝑖 𝐷1 = 𝑝11 𝐷2 = 𝑝22 0 

Accept Indecision Reject 

Accept Indecision Reject 

Accept Reject 
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Table 7 introduces the probabilities related to Figure 1 showing the probability of accepting (𝐴𝑐𝑖), rejecting (𝑅𝑒𝑖), 

terminating (𝑇𝑖) and no decision (𝐷𝑖) at each stage. The probabilities of acceptance and rejection are the sum of the 

probabilities shown in Table 7 leading to acceptance and rejection , and are defined by 

𝑃(𝐴𝑐𝑖)
= 𝐴𝑐1 +𝐴𝑐2+𝐴𝑐3,     

and   
𝑃(𝑅𝑒𝑖)

= 𝑅𝑒1 +𝑅𝑒2 +𝑅𝑒3 , 

the probability of making no decision is the sum of the probabilities displayed in Table 7. 

𝑃(𝐷𝑖) = 𝐷1+𝐷2+𝐷3,  

where 𝐷𝑖 = ∑ [(
𝓀
𝑣
)𝜋𝑣(1 − 𝜋)𝓀−𝑣]

ℓ𝑖𝑟𝑒𝑖
−1

𝑣=𝑎𝑐𝑖+1
, 𝑖 = 1,… , 𝑥 − 1,   𝐷0 = 1 and 𝐷𝑥 = 0. Accordingly, the probability of 

acceptance for multiple-group sampling with three- stage based on our techniques can be obtained as follows: 

 P3 = [(1− 𝜋)𝓀]
ℓ1 + (𝓀.𝜋)ℓ1(1−𝜋)𝓀.(ℓ1+ℓ2)−ℓ1 + [𝓀.𝜋(1− 𝜋)𝓀−1]

ℓ1+ℓ2[(1− 𝜋)𝓀]
ℓ3.                   (20)    

Using the following inequality, the optimal number of groups ℓ1, ℓ2 and ℓ3 to ensure 𝜇𝜌 ≥ 𝜇𝜌
0  at the risk of the 

customer (1 − 𝜀∗) may then be determined as 

[(1 − 𝜋)𝓀]
ℓ1
+ (𝓀. 𝜋)ℓ1(1 − 𝜋)𝓀.(ℓ1+ℓ2)−ℓ1 + [𝓀. 𝜋(1 − 𝜋)𝓀−1]

ℓ1+ℓ2
[(1 − 𝜋)𝓀]

ℓ3
≤ 1 − 𝜀∗,          (21) 

where 𝜋 is the failure probability at  𝜇𝜌 = 𝜇𝜌
0   and is given by Eq. (7). There may be many of solutions for the number 

of groups from fulfilling Eq. (21), so we want to reduce the AGN to acquire the suitable solution by imposing the 

condition ℓ3 ≤ ℓ2 ≤ ℓ1. Generally, the AGN for multiple-GSIP can be defined as follows: 

𝐴𝐺𝑁 =∑∑𝓃𝑗𝑇𝑖 ,

𝑖

𝑗=1

𝑥

𝑖=1

 

where 𝑇𝑖 = (𝑃(𝐴𝑐𝑖)
+ 𝑃(𝑅𝑒𝑖)

) is the probability of termination on the 𝑖th stage and 𝓃𝑗 = 𝓀. ℓ𝑗 . Simply, the AGN for 

multiple-GSIP with three stages for our techniques we can get immediately as follows 

𝐴𝐺𝑁 = 𝓀ℓ1 +𝐷1[𝓀ℓ2 +𝐷2(𝓀ℓ3)],                                                  (22) 

where 𝐷𝑖 = (1 − 𝑇𝑖) is the probability no decision on the 𝑖th stage. The probabilities 𝐷1 and 𝐷2 can be found 

respectively by using Figure 1 as follows: 

𝐷1 = [𝓀𝜋(1 − 𝜋)
𝓀−1]

ℓ1
 ,                                                               (23) 

and 

𝐷2 = [𝓀𝜋(1 − 𝜋)
𝓀−1]

ℓ1+ℓ2
.                                                           (24) 

Many sampling strategies described in the literature aim to reduce the AGN. in general, each sampling strategy with 

a minimum AGN would always be desirable because when the AGN is minimum, examination cost and examination 
time will be lessened. We also try to minimize the AGN of the proposed multiple-stage sampling inspection plan for 

the WRW distribution under amputated life tests. To specify the optimal number of groups for our techniques, we 

employ the following optimization problem that minimizes the AGN:  

                   Minimize 𝐴𝐺𝑁 = 𝓀ℓ1 +𝐷1[𝓀ℓ2 +𝐷2(𝓀ℓ3)].                                                      (25) 

                               Subject to 

P3  ≤ 1− 𝜀
∗                                                                                (26) 

                                         ℓ1 ≥ ℓ2 ≥ ℓ3 ≥ 1                                                                         (27) 

                                                       ℓ1 , ℓ2 and ℓ3 positive integer  

The optimal number of group for ℓ1, ℓ2 and ℓ3 and AGN for the M-SGSIP under the WRW distribution with 𝛽 = 0.8, 

𝜎 = 0.2 and 𝛾 = 4; 𝑎𝑐1= 0, 𝑎𝑐2=1, 𝑎𝑐3= 2 and 𝑟𝑒1= 2, 𝑟𝑒2= 𝑟𝑒3= 3; 𝜀∗= 0.75, 0.90, 0.95 0.99; 𝓊𝜌 = 0.6, 1.0, 2.15, 3.8, 

5.5 at 𝜌 = 0.25 when 𝓀 = 2 and 4 are show in Table 8.  

 

Table 8: The optimal number of M-SGSIP with three-stage under 𝑎𝑐1= 0, 𝑎𝑐2=1, 𝑎𝑐3= 2  

and 𝑟𝑒1= 2, 𝑟𝑒2= 𝑟𝑒3= 3 for the WRW distribution with 𝛽 = 0.8, 𝜎 = 0.2 and 𝛾 = 4. 

 

𝜀∗ 
 

𝓊0.25 
𝓀 = 2 𝓀 = 4 

ℓ1 ℓ2 ℓ3 AGN ℓ1 ℓ2 ℓ3 AGN 

 

 

0.6 6 5 5 12.65 3 3 3 14.02 

1.0 4 2 2 7.13 2 2 2 10.24 
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0.75 2.15 2 2 1 5.19 2 1 1 7.26 

3.8 2 2 1 4.98 1 1 1 5.56 

5.5 2 2 1 4.65 1 1 1 5.33 

 

 

0.90 

0.6 10 10 6 20.68 6 6 3 22.99 

1.0 5 4 4 9.68 3 2 2 11.78 

2.15 3 3 3 5.97 2 2 2 7.49 

3.8 2 2 2 5.23 1 1 1 6.26 

5.5 2 2 1 5.09 1 1 1 5.38 

 

 

0.95 

0.6 13 6 6 26.54 7 3 3 27.15 

1.0 6 4 4 12.61 3 3 3 13.99 

2.15 3 3 3 7.23 2 2 2 9.16 

3.8 3 2 2 6.13 2 2 2 6.97 

5.5 3 2 1 5.88 2 2 1 6.78 

 

 

0.99 

0.6 21 12 12 42.22 11 11 4 45.50 

1.0 9 7 7 18.64 5 5 5 19.82 

2.15 5 4 4 10.15 3 3 3 11.41 

3.8 4 3 3 8.36 2 2 2 9.11 

5.5 4 2 2 7.74 2 2 1 8.04 

From Tables 4 and 8 it can be observed that number of groups decrease as the group size 𝓀 increase, whereas the 

AGN increase as the group size 𝓀 increase. The number of groups decreases as the termination time ratio 𝓊0.25 
increases. Also, the number of groups increase as the consumer's confidence level 𝜀∗ increases. The OC values 

according to Eq. (20) for a given sampling plan (𝓀, ℓ𝑖 , 𝑎𝑐𝑥 , 𝑟𝑒𝑥 , 𝓊𝜌), 𝑖 = 1, …, 𝑥, 𝑥 = 3, 𝜇𝜌 𝜇𝜌
0⁄  and 𝜀∗ are exhibited in 

Table 9. 

Table 9: The OC values of three-stage GSIP for the WRW distribution  

with 𝛽 = 0.8, 𝜎 = 0.2 and 𝛾 = 4. 

 

 

𝜀∗ 

 

 

𝓊0.25 

𝓀 = 2 𝓀 = 4 

𝜇0.25 𝜇0.25
0⁄  

2 4 6 8 10 2 4 6 8 10 

 

 

0.75 

0.6 0.816 0.996 1 1 1 0.801 0.996 1 1 1 

1.0 0.584 0.95 0.995 1 1 0.513 0.935 0.994 0.999 1 

2.15 0.352 0.688 0.878 0.957 0.985 0.283 0.677 0.865 0.948 0.981 

3.8 0.233 0.444 0.631 0.773 0.867 0.224 0.558 0.8 0.91 0.954 

5.5 0.215 0.377 0.522 0.644 0.743 0.138 0.351 0.583 0.758 0.864 

 

 

0.90 

0.6 0.717 0.993 1 1 1 0.691 0.993 1 1 1 

1.0 0.478 0.932 0.993 0.999 1 0.441 0.922 0.992 0.999 1 

2.15 0.263 0.628 0.854 0.948 0.982 0.259 0.661 0.86 0.946 0.981 

3.8 0.196 0.414 0.611 0.761 0.86 0.151 0.436 0.67 0.803 0.879 

5.5 0.158 0.304 0.45 0.585 0.698 0.133 0.343 0.573 0.748 0.854 

 

 

0.95 

0.6 0.653 0.991 1 1 1 0.647 0.991 1 1 1 

1.0 0.381 0.912 0.991 0.999 1 0.365 0.907 0.991 0.999 1 

2.15 0.169 0.544 0.814 0.933 0.977 0.139 0.513 0.788 0.921 0.972 

3.8 0.115 0.295 0.505 0.688 0.816 0.094 0.329 0.572 0.738 0.841 

5.5 0.094 0.201 0.334 0.477 0.611 0.051 0.177 0.355 0.523 0.655 

 

 

0.99 

0.6 0.508 0.986 1 1 1 0.482 0.985 1 1 1 

1.0 0.239 0.872 0.987 0.999 1 0.224 0.866 0.986 0.999 1 

2.15 0.069 0.406 0.739 0.903 0.966 0.063 0.392 0.725 0.897 0.964 

3.8 0.035 0.157 0.365 0.58 0.745 0.028 0.163 0.378 0.584 0.742 

5.5 0.027 0.089 0.199 0.344 0.497 0.022 0.101 0.237 0.393 0.538 

From Tables 5 and 9, the main properties of OC function are (i) decreasing in 𝓊𝜌, (ii) decreasing in ℓ𝑖,  (iii) increasing 

in 𝜇𝜌 𝜇𝜌
0⁄  , (iv) decreasing in 𝓀, (v) increasing in 𝑎𝑐𝑖 and 𝑟𝑒𝑖. The producer’s risk is the probability of refusal of the 

batch when it is conforming (𝜇𝜌 > 𝜇𝜌
0). For a given value of the producer’s risk 𝜏, We are concerned in learning what 
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value of 𝜇𝜌 𝜇𝜌
0⁄  will guarantee that the producer's risk is less than or equal to 𝜏. Notice that 𝜋 is a function of 𝜇𝜌 𝜇𝜌

0⁄  

as indicated in Eq. (5), then 𝜇𝜌 𝜇𝜌
0⁄  is the smallest positive number for which 𝜋 satisfies the following inequality  

P3 ≤ 𝜏 .                                                                           (28)   

Thus, for a given the proposed plan (𝓀, ℓ𝑖 , 𝑎𝑐𝑥 , 𝑟𝑒𝑥 , 𝓊𝜌), 𝑖 = 1, 2 and 3 at the specified value of 𝜀∗, the values of 𝜇𝜌 𝜇𝜌
0⁄  

satisfying inequality (28) are presented in Table 10. 

Table 10: The optimal ratio of 𝜇𝜌 𝜇𝜌
0⁄  in order that the lot accepted with the 

producer's risk of 5% for the WRW distribution with 𝛽 = 0.8, 𝜎 = 0.2 and 𝛾 = 4. 

𝜀∗ 𝓊0.25, 𝓀 = 2 𝓊0.25, 𝓀 = 4 

0.6 1.0 2.15 3.8 5.5 0.6 1.0 2.15 3.8 5.5 

0.75 2.705 4.006 7.72 13.382 18.686 2.749 4.238 8.092 9.727 13.996 

0.90 2.956 4.275 8.072 13.542 19.415 3.01 4.387 8.141 13.436 14.527 

0.95 3.084 4.504 8.545 14.464 20.7 3.095 4.547 8.882 14.284 20.744 

0.99 3.321 4.838 9.256 15.659 22.272 3.359 4.878 9.379 15.815 22.237 

 

From Tables 6 and 10, it can be seen that the optimal ratio of 𝜇𝜌 𝜇𝜌
0⁄  required for a given 𝜏 = 5% increases as the 

consumer's confidence level 𝜀∗ increases for a fixed termination time ratio. As the group size 𝓀 increases from 2 up 

to 4 the optimal ratio increases.  

6. Numerical illustrations and assessment 

The first example:  

Suppose that the lifetime (𝒵0) of an item follows the WRW distribution with parameters 𝛽 = 0.8, 𝜎 = 0.2 and 𝛾 = 4. 

A fitter intends to demonstrate that the real unknown 25th percentile lifetime for the mechanical components is at least 

1000h (𝜑0) with probability 𝜀∗= 0.90 and that the life test will be terminated at 𝒵0= 600h using testers equipped with 

4 items each. This leads to the termination time ratio 𝓊0.25= 0.6. Then, for examination limit 𝑎𝑐= 0, the required ℓ is 

found in Table 1 to be 7. It should be noted that if the optimal sample size is desired, 𝛽 = 𝓀. ℓ can provide it. As 

result, we’ll draw a random sample of size 𝛽 = 28 items and allocate 4 items to each of the 7 groups to put on test for 

600h. The batch is accepted, if no failure items occur during 600h, and the experimenter can assert with a confidence 

limit of 90% that the 25th percentile is at least 1000h. Otherwise, stop the experiment and reject the lot. For the S-

SGSIP (𝓀, ℓ, 𝑎𝑐  and 𝓊0.25) = (4, 7, 0, 0.6) at 𝜀∗= 0.90, the OC values from Table 2 are as follows: 

𝜇0.25 𝜇0.25
0⁄  2 4 6 8 10 

OC value 0.640 0.991 1 1 1 
 

This shows that if the real 25th percentile is twice the fixed 25th percentile 𝜇0.25 𝜇0.25
0⁄  = 2 the producer’s risk is about 

0.36, while it is almost to be zero when 𝜇0.25 𝜇0.25
0⁄ ≥ 6. Table 3 can be used to get the value of 𝜇0.25 𝜇0.25

0⁄  for various 

choices of (𝓀, 𝑎𝑐 , and 𝓊0.25) such that the producer’s risk may not exceed 5%. For example, the value of 𝜇0.25 𝜇0.25
0⁄  

is 3.210 for 𝓀 = 4, 𝑎𝑐  = 0, 𝓊0.25 = 0.6 and 𝜀∗= 0.90. This means that the product should have 25th percentile life of 

3.210 times the specified 25th percentile life for the lot to be accepted with a confidence limit of 𝜀∗= 0.90. 

The second example:  

Postulate the product lifespan follows the WRW distribution with 𝛽 = 0.8, 𝜎 = 0.2 and 𝛾 = 4. Postulate that an inspector 

would like to apply a T-SGSIP to test the real unknown 25th percentile lifetime of the product under inspection is at 

least 1000 hours with confidence limit of 𝜀∗= 0.90 under 𝑎𝑐1 = 0 and 𝑎𝑐2  = 1. An examiner wants to stop an experiment 

at 600 hours using testers (group size) equipped with 4 items. Based on this data, it is found that 𝓊0.25 = 0.60. Then, 

from Table 4, the optimum number of groups required are ℓ1= 6 and ℓ2 = 4. This plan will be implemented as follows: 

The first sample of size 𝓃1 = 24 is drawn and distribute 4 items into each of 6 tester and the product will be accepted 

if no failure occurs during the experiment. The product is refused if more than one failure occurs before 600 hours. 

When there is exactly one failure observed, the second sample of size 𝓃2 = 16 is drawn and distribute 4 items into 

each of 4 tester and put them on the same test. Accept the product if a total number of failures are one or fewer are 

recorded otherwise refuse the product. For 𝑎𝑐1 = 0 and 𝑎𝑐2  = 1, the OC values for T-SGSIP under the WRW 

distribution is (𝓀, ℓ1, ℓ2and 𝓊0.25) = (4, 6, 4 and 0.60) with 𝜀∗ = 0.90 is as follows: 

𝜇0.25 𝜇0.25
0⁄  2 4 6 8 10 

OC value 0.680 0.992 1 1 1 
 



Pak.j.stat.oper.res.  Vol.18  No. 4 2022 pp 995-1013  DOI: http://dx.doi.org/10.18187/pjsor.v18i4.4190 

 

 
Amputated Life Testing for Weibull-Fréchet Percentiles: Single, Double and Multiple Group Sampling Inspection Plans with Applications  1010 

 

This implies that the batch is accepted with a probability of 68% if the real 25th percentile of the units in the batch is 

twice the identified 25th percentile life, and the producer's risk will be 0.32. The probability of accepting the batch 

increases up to 100% if the real 25th percentile life is 6 times the identified life. To know the optimal ratio 

corresponding to the producer's risk of 5%, can be found in Table 6. For instance, the optimal ratio of 𝜇0.25 𝜇0.25
0⁄   is 

3.033. Therefore, the real 25th percentile life wanted of the product should be at least 3033h. 

The third example:  

Let's say a manufacturer wants to check the incoming batch of mechanical components using a multi-group sample 

plan with three stages. Let's say also that the life of this product follows WRW distribution with 𝛽 = 0.8, 𝜎 = 0.2 and 

𝛾 = 4. Multi-item testers with group size 𝓀 = 4 will be used. It is known that the specified 25th percentile life of 

interested is 1000h. The test time was specified 600h with confidence limit of 𝜀∗= 0.90 under examination limit 𝑎𝑐1 = 

0, 𝑎𝑐2  = 1, 𝑎𝑐3= 2 and rejection limit 𝑟𝑒1= 2, 𝑟𝑒2= 𝑟𝑒3=3. This leads to the experiment termination multiplier, 𝓊0.25 = 

0.60. For the problem under consideration Table 8 gives the optimal number of three-stage group sampling plan with 

ℓ1= 6, ℓ2= 6 and ℓ3 = 3. This plan is put into operation as follows: A sample of size 𝓃1 = 24 is chosen and allocated 

to 6 testers. If no nonconforming items are found in stage one, the batch is accepted. If two or more nonconforming 

items are found, the batch is refused. If one nonconforming item is found, a second sample of size 𝓃2 = 24 is extracted 

and distributed into 6 testers. If the combined number is one or less in stages one and two, the batch is accepted. If 

combined number of nonconforming items is three or more, the batch is refused. If the combined number of 

nonconforming items is two, a third sample of size 𝓃3 = 12 is selected and assigned to 3 testers. If the combined 
number is two or less in stages two and three, the batch is accepted. If combined number of nonconforming items is 

three or more, the batch is refused. 

 

For 𝑎𝑐1 = 0, 𝑎𝑐2  = 1 and 𝑎𝑐3= 2, the OC values for three-stage GSIP under the WRW distribution is (𝓀, ℓ1, ℓ2, ℓ3 and 

𝓊0.25) = (4, 6, 6, 3 and 0.60) with probability 𝜀∗ = 0.90 is as follows:  

𝜇0.25 𝜇0.25
0⁄  2 4 6 8 10 

OC value 0.691 0.993 1 1 1 
 

We find from the above-tabulated values of the OC function that the associated producer's risk is approximately 0.31 

or less if the real 25th percentile life is twice the specified lifetime (𝜇0.25 𝜇0.25
0⁄ = 2), while it is about to be zero when 

(𝜇0.25 𝜇0.25
0⁄ ≥ 6). As a result, the risk for the producer tends to be lower for greater values of the 𝜇0.25 𝜇0.25

0⁄ . For 𝑎𝑐1 

= 0, 𝑎𝑐2  = 1, 𝑎𝑐3= 2 and rejection limit 𝑟𝑒1= 2, 𝑟𝑒2= 𝑟𝑒3=3 and hence of ℓ1, ℓ2, ℓ3 Table 10 gives the optimal ratio of 

𝜇0.25 𝜇0.25
0⁄  in order that the producer's risk may not override 5%. Thus, the value of 𝜇0.25 𝜇0.25

0⁄  for 𝓀 = 4, 𝓊0.25 = 

0.60 and 𝜀∗= 0.90 is 3.01; this means that the item should have 25th percentile life of at least 3.01 times of the specified 

25th percentile life of 1000h in order that the batch will be accepted with probability 0.90.    

7. Comparisons of one-stage and iterative GSIP 

The minimizing of the projected sample size under extreme (very good or very terrible) lot quality is the purpose of 

iterative sampling. One can compare the ASN functions of single and iterative plans that are matched to have roughly 

the same OC function for a straightforward quantitative comparison. In this section, a comparison is made between 

the S-SGSIP, T-SGSIP, and M-SGSIP. This comparison is made based on the AGN and OC values needed for types 

of group sampling plans. For example, if the product lifetime follows the WRW distribution, the next step would be 

to decide whether to use S-SGSIP, T-SGSIP or use M-SGSIP, which will have a maximum OC and a minimum AGN. 

Here we compare type of proposed plans for 𝓊0.25= 0.6, 𝜀∗= 0.90 and 25th percentile lifetime quality level 𝜇𝜌 𝜇𝜌
0⁄  = 

2. Table 11 provides the values of OC and ASN for S-SGSIP, T-SGSIP and M-SGSIP, where the presumed group 

size was set as 𝓀 = 4.  

Table 11: Summarizing of OC and AGN values for types of GSIPs 

Type of plan OC AGN 

Single- stage with 𝑎𝑐= 0 0.640 28 

Two- stage 0.680 24.05 

Three- stage 0.691 22.99 

It has been witnessed from the table that the multiple GSIPs with three-stage (M-SGSIP) are better than the S-SGSIP 

and two-stage GSIPs in terms of AGN and the OC values. Despite this, there are a number of drawbacks to multiple 

sampling: administrative challenges; system complicated and needs a great administrative effort; inspectors' inability 

to appropriately apply the algorithm; and multiple sampling costs are high. If the product quality history inspires data-
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based confidence that batch quality is really on one of the extreme sides, should multiply sample methods be 

recommended over single sampling. 

8. Conclusion 

This research presents single-stage group sampling inspection plans; two-stage group sampling inspection plans; and 

multiple group sampling inspection plans with three stages for deciding upon the batch acceptance of manufactured 

parts under an amputated life test. Amputated testing is frequently adopted by parts manufacturers to reduce testing 

time. For some types of group sampling inspection plans, the optimal number of groups was determined for the WRW 

distribution with known shape parameters when the consumer’s risk and other parameters are determined. The 

operating characteristic function values and related producer risk have also been evaluated. The minimum sample 

sizes for the first, second, and third samples that must be used to make sure that the product's specified mean and 

median lifetimes are attained at a particular level of customer confidence. The operational characteristic values and 

producer risk for the indicated example plans are provided. Some few real-life examples have been looked at in order 

to demonstrate how the recommended methodologies based on the mean and median life spans of the product may 
operate in exercise. For designing the two-stage group sampling inspection plans and multiple group sampling 

inspection plans, a nonlinear optimization problem of minimizing the average group number is considered with 

constraints on acceptance probabilities. To reduce the number of groups, the multiple group sampling inspection plans 

are preferred to the single-stage group sampling inspection plans and two-stage group sampling inspection plans. 

Types of proposed plans are explained with the help of numerical cases and tables. 
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