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Abstract  
The paper introduces a new reliability Burr Pareto type-II model, showcasing its versatility and effectiveness in 
engineering applications, particularly in analyzing the failure and service times of aircraft windshields. The BUPII 
model's application in failure analysis offers insights into the probabilistic behavior of windshield failures, aiding 
in risk prediction and management. Similarly, its extension to service time analysis demonstrates its utility in 
optimizing maintenance schedules and operational efficiency. Moreover, the paper conducts a rigorous mean-of-
order P analysis under both failure and service time datasets, validating the new model's reliability assessment 
capabilities. Furthermore, employing the peaks over random threshold value at risk analysis highlights the model's 
practical relevance in quantifying financial risks associated with extreme events. Overall, the novel probability 
distribution emerges as a valuable tool for engineers and researchers involved in reliability and risk analysis, 
promising advancements in understanding and managing the reliability of engineering systems. Future research 
could explore broader applications and refined methodologies to further enhance predictive capabilities and 
decision-making support. 
 
Key Words: Mean-of-order P; Pareto type-II; peaks over random threshold value at risk; risk analysis; reliability 
data; optimal order of P. 

 

1. Introduction 

In the realm of reliability engineering, the development of robust probability distributions that accurately assess and 
predict failure probabilities plays a pivotal role in ensuring the safety and longevity of critical systems. In this paper, 
the Burr Pareto type II (BUPII) probability distribution is introduced as a promising addition to this field, offering 
innovative insights into the analysis of mean-of-order P (MOOP) and Peaks Over Random Threshold Value-at-Risk 
(PORT VaR). This probability distribution represents a significant advancement in reliability analysis, providing 
engineers and decision-makers with a powerful toolset to evaluate and mitigate risks associated with complex systems, 
such as aircraft windshields. The BUPII probability distribution distinguishes itself by its capability to handle diverse 
datasets related to reliability, including the complex failure and service times observed in aerospace components like 
aircraft windshields. Through its integration of advanced statistical methodologies and probabilistic frameworks, the 
BUPII probability distribution offers a comprehensive approach to quantify and manage risks associated with 
operational failures. This paper delves into the application of the BUPII probability distribution across MOOP and 
PORT VaR analyses, demonstrating its utility in enhancing decision-making processes within reliability engineering. 
Detailed case studies and empirical analyses showcased in this paper illustrate how the BUPII probability distribution 
enhances predictive accuracy and optimizes maintenance strategies in aerospace applications. By elucidating the 
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probability distribution's theoretical foundations and practical applications, this introduction lays the groundwork for 
an in-depth exploration of its implications in improving reliability assessments across critical infrastructure systems. 
In essence, the BUPII probability distribution represents a significant leap forward in reliability engineering. It offers 
novel perspectives on MOOP and PORT VaR analyses, essential for ensuring the safety, efficiency, and reliability of 
modern technological systems, particularly within the aerospace industry. This paper aims to elucidate the 
transformative potential of the BUPII probability distribution in shaping the future of reliability analysis and fostering 
innovation in engineering practices (for more details see Gomes et al. (2015), Figueiredo et al. (2017), Duthinh et al. 
(2017) and Caeiro et al. (2021)). 
 
In the literature review, the MOOP and PORT VaR are used in many practical fields such as insurance, re-insurance, 
medicine, loss analysis, risk analysis, among others. Klugman et al. (2012) and Embrechts et al. (2013) offer 
fundamental insights into loss modeling and extremal events, respectively, laying the groundwork for understanding 
risk assessments like PORT VaR. Jansen and de Vries (1991) and Poon and Rockinger (2003) explore the frequency 
and distribution of extreme events in financial contexts, relevant to both MOOP and PORT VaR analyses. McNeil et 
al. (2015) and Beirlant et al. (2004) provide advanced methodologies and applications in risk management and extreme 
value theory, crucial for applying MOOP and PORT VaR in practice. Hosking and Wallis (1987) contribute further 
by detailing heavy-tail phenomena and quantile estimation methods essential for assessing tail risks in reliability 
engineering. Together, these references offer a robust foundation for understanding and implementing MOOP and 
PORT VaR in reliability engineering and risk management contexts. Recent advancements in statistical modeling and 
risk analysis have led to the development of several innovative approaches to assess and manage risks in various 
domains, including insurance claims, reliability engineering, and financial forecasting. Models such as the odd log-
logistic Weibull family (Rasekhi et al. (2020 and 2022)) and the compound Lomax probability distribution (Hamed et 
al. (2022)) have expanded the repertoire of tools available for modeling complex data distributions and predicting 
extreme events. These probability distributions incorporate copulas and asymmetric density functions (Shrahili et al. 
(2021); Mohamed et al. (2024)) to enhance accuracy in risk estimation and improve decision-making processes. 
Additionally, novel approaches like the reciprocal Weibull extension (Yousof et al. (2023d)) and the Lindley 
Extension (Hashempour et al., 2023) offer robust frameworks for analyzing extreme values and assessing risk under 
specific data conditions. Furthermore, the application of these probability distributions extends beyond traditional risk 
assessment to include validation testing (Elbatal et al. (2024)), survival analysis (Loubna et al. (2024)), and entropy 
analysis (Elbatal et al. (2024)), providing comprehensive insights into the dynamics of risk in diverse datasets. 
Collectively, these contributions underscore the evolving landscape of risk analysis methodologies, highlighting their 
significance in enhancing predictive capabilities and informing strategic decisions across various sectors. 
 
The BUPII probability distribution extends the well-established PII probability distribution, known for its robust right-
heavy-tail properties and wide applicability across various fields such as business, actuarial science, biology, 
engineering, economics, and more. The PII probability distribution, which is a special case of the Pearson type VI 
distribution and can be seen as a mixture of exponential and gamma distributions, is used in studies on income and 
wealth (Harris, 1968; Atkinson and Harrison, 1978), firm size (Corbellini et al., 2007), reliability (Hassan and Al-
Ghamdi, 2009), and Hirsch statistics (Glanzel, 2008). It is noted for its "decreasing" hazard rate function and is a 
heavy-tailed alternative to exponential, Weibull, and Gamma distributions (Bryson, 1974). Further insights on its 
relation to the Burr family and Compound Gamma probability distributions can be found in Tadikamalla (1980) and 
Durbey (1970). This study aims to enhance the PII probability distribution's flexibility through the Burr-G (BU-G) 
family, as proposed by Alizadeh et al. (2017). This extension seeks to enhance the modeling capabilities of the PII 
distribution, catering to a broader range of data characteristics and practical scenarios. A random variable (RV) � has 
the PII distribution with parameter �� if it has cumulative distribution function (CDF) (for  � > 0 ) given by ���	
� = 1 − 	
 + 1�� ��� ,                                                                   (1) 

where  �� > 0  refers to the shape parameter. Then the corresponding probability density function (PDF) of (1) is ��� 	
� = 2 ��� 	
 + 1�� �����.                                                               (2) 
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According to Alizadeh et al. (2017), the cumulative distribution function (CDF) of the Burr-G (BU-G) family is 
formulated as follows 

���,��,�	
� = 1 − ��	
�����
���	
��� + ��	
��� ��� ,                                                    	3� 

where  ��	
� = 1 − ��	
�.  The PDF corresponding to (3) is given by 

���,��,�	
� = ������	
���	
����� ��	
�������
���	
��� + ��	
��� �� �� .                                     	4� 

The BUPII CDF is given by: 

"#	
�| %& = ��, ��, ��' = 1 − 	
 + 1���∗

)*1 − 	
 + 1�� ��� +�� + 	
 + 1�������,�� ,                                      	5� 

where  �∗ = 2���� ��� . The PDF corresponding to (5) is given by 

.#	
� = �∗	
 + 1��	� �∗� *1 − 	
 + 1�� ���+����

)*1 − 	
 + 1�� ��� +�� + 	
 + 1���∗,� �� .                                      	6� 

The asymptotes of the CDF, PDF and HRF as  
 → 0  are given by 

"#	
� ∼ �� *1 − 	
 + 1�� ���+�� |
 → 0, .#	
� ∼ ���� 2�� 	
 + 1��2 ��� �3 *1 − 	
 + 1�� ��� +���� |
 → 0, 
and 

                 ℎ#	
� ∼ �∗	
 + 1��2 ��� �3 *1 − 	
 + 1�� ���+���� |
 → 0. 
The asymptotes of CDF, PDF and HRF as  
 → ∞  are given by 1 − "#	
� ∼ ����	
 + 1������� |
 → ∞, .#	
� ∼ ������ 2�� 	
 + 1���������|
 → ∞ 

and               ℎ#	
� ∼ �� 2�� 	
 + 1���|
 → ∞. 
See Gupta and Gupta (2007) and Gleaton and Lynch (2006, Aboraya  et al. (2020), Chesneau et al. (2021), Ibrahim et 
al. (2021) and Yousof et al. (2021) for more details. For simulation of this new probability distribution, we obtain the 
quantile function (QF) of � (by inverting (5)), say  
6 = "��	��, as  


6 = ⎩⎨
⎧:1 − �	��, ���

�∗
����� + �	��, ���;

��� − 1⎭⎬
⎫ |�∗ = 1 − �,                                         	7� 

where �	��, ��� = @1 − �∗
���A ���

. Equation (7) is used for simulating the new probability distribution. 

The HRF for the new probability distribution can be derived from  .#	
�/ �1 − "#	
�� . Numerous extensions and 

variants of the Pareto type II (PII) distribution have been developed by researchers to cater to diverse modeling needs 
across various fields. These extensions reflect the flexibility and applicability of the PII distribution in addressing 
specific characteristics of real-world data. Here is an expanded overview of some notable PII extensions found in the 
literature, including Weibull PII distribution by Tahir et al. (2015), which integrates the PII framework with the 
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Weibull distribution. One parameter PII system of densities proposed by Cordeiro et al. (2018), offering a simplified 
version of the PII probability distribution. Odd log-logistic PII and Zografos-Balakrishnan PII distribution from Altun 
et al. (2018a), introducing alternative forms based on specific skewed and symmetric distributions. Weibull 
generalized PII, Rayleigh generalized PII, and Exponential generalized PII distributions developed by Elbiely and 
Yousof (2018), which extend the PII probability distribution using these well-known distributions. Topp Leone 
Poisson PII distribution by Yousof et al. (2019), blending the PII framework with Poisson processes. PII inverse 
Rayleigh by Goual and Yousof (2019), offering an inverse Rayleigh distribution within the PII family. Topp-Leone 
generated PII probability distribution by Yousof et al. (2019b), exploring the application of Topp-Leone distributions 
in the context of PII. Burr type XII PII, PII Burr type XII, and PII PII distributions by Gad et al. (2019), introducing 
variations based on the Burr distribution type XII. New zero-truncated version of the Poisson PII distribution by 
Yousof et al. (2019a), addressing truncated data scenarios within the PII framework. Topp Leone PII distribution by 
Yadav et al. (2020), focusing on the integration of Topp Leone distributions with the PII probability distribution. 
Poisson Burr X generalized PII and Poisson Rayleigh generalized PII distributions by Ibrahim and Yousof (2020), 
extending the PII probability distribution using generalized forms of Poisson, Burr X, and Rayleigh distributions. 
Extended Poisson Generalized PII distribution by Elsayed Yousof (2021), further expanding the PII probability 
distribution to incorporate generalized Poisson distributions. These extensions and variants highlight the ongoing 
development and refinement of the PII distribution, enhancing its utility and versatility in statistical modeling across 
diverse applications. Each variant offers specific advantages suited to different types of data characteristics and 
modeling requirements in fields such as economics, engineering, actuarial science, and beyond. 
 
In modeling failure time data, the BUPII probability distribution stands out favorably when compared to various 
established extensions of the PII probability distribution. These include the exponentiated PII, odd log-logistic PII, 
transmuted Topp-Leone PII, Kumaraswamy PII, Gamma PII, special generalized mixture PII, Burr Hatke PII, and 
proportional reversed hazard rate PII extensions. The probability distribution's performance is evaluated using criteria 
such as the consistent-information criterion, Akaike information criterion, Bayesian information criterion, and 
Hannan-Quinn information criterion. Similarly, when applied to service time data, the BUPII probability distribution 
is assessed against the same PII extensions using these evaluation metrics. This comparative analysis highlights the 
BUPII probability distribution’s robustness and flexibility, demonstrating its effectiveness as a versatile tool in 
statistical modeling and analysis across different types of datasets. 

2. Properties 
Due to Alizadeh et al. (2017), the PDF in (6) can be expressed as 

.	
� = C DE
F

EGH I� E,�� 	
�,                                                          	8� 

where 

DE = ����1 + K C C 	−1�L� L� EF
L�GE

F
L�,L�GH 2−	1 + ���M� 3 2−N��	1 + M�� + 1OM� 3 2��	1 + M�� + M� + 1M� 3 %M�K ', 

and  I� E,�� 	
�  is the PDF of the PII probability distribution with power parameter  1 + K. By integrating Equation 

(8), the CDF of  �  becomes  

"	
� = C DE
F

EGH P� E,�� 	
�,                                                                        	9� 

where  P� E,�� 	
�  is the CDF of the PII distribution with power parameter  1 + K. The  RST  ordinary moment of  �  

is given by  UV,�W = X	�V� =   Z 
VF
�F .	
�[
, 

then we obtain  

UV,�W = C C DE
V

\GH
F

EGH 	1 + K�	−1�\ %RK' ]^	1 + K�, 1 + 2��	_ − R�`| 2�� > R,                            	10� 
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where  ]	a�, a�� = b ⬚�H Sd���	1 − S�d���[S.  Setting  R = 1,2,3and  4  in (10), we have 

X	�� = C ⬚F
EGH C DE

�
\GH 	1 + K�	−1�\ %1_' ]^	1 + K�, 1 + 2��	_ − 1�`| 2�� > 1, 

X	��� = C ⬚F
EGH C DE

�
\GH 	1 + K�	−1�\ %2_' ]^	1 + K�, 1 + 2��	_ − 2�`| 2�� > 2, 

X	��� = C ⬚F
EGH C DE

�
\GH 	1 + K�	−1�\E %3_' ]^	1 + K�, 1 + 2��	_ − 3�`| 2�� > 3, 

and  

X	�e� = C ⬚F
EGH C DE

e
\GH 	1 + K�	−1�\ %4_' ]^	1 + K�, 1 + 2��	_ − 4�`| 2�� > 4, 

where  X	�� = U�W   is the mean of  �.  The  RST  incomplete moment, say  fV	S�, of  �  can be expressed, from (9), 
as  

fV,�	S� = Z 
VS
�F .	
�[
 = C ⬚F

EGH DE Z ⬚S
�F 
VI	� E�,��	
�[
 

then fV,�	S� = ∑ ∑ DEV\GHFEGH 	1 + K�	−1�\ %R_' ]S^	1 + K�, 1 + 2��	_ − R�`| ��� > R,   (11) 

where  ]
	a�, a�� = b Sd���
H 	1 − S�d���[S.  The first incomplete moment given by (11) with  R = 1  is  

f�,�	S� = C C DE
�

\GH
F

EGH 	1 + K�	−1�\ %1_' ]S^	1 + K�, 1 + 2��	_ − 1�`| 1�� > 1. 
The moment generating function (MGF) can be derived using (8) as  

h�	S� = C C C SVR!
V

\GH
F

VGH
F

EGH DE	1 + K�	−1�\ %R_' ]^	1 + K�, 1 + 2��	_ − R�`| 1�� > R. 
The first R derivatives of  h�	S�, with respect to S at  S = 0, yield the first  R  moments about the origin, i.e., UV,�W = X	�V� = [V[SV h
	S�|	SGH and VG�,�,�,...�. 
The cumulant generating function CGF is the logarithm of the MGF. Thus, RST  cumulant, say jV,�, can be obtained 

from 

jV,� = [V[SV kl� mC C C SVR!
V

\GH
F

VGH
F

EGH DE	1 + K�	−1�\ %R_' ]^	1 + K�, 1 + 2��	_ − R�`n |S = 0, and R = 1,2,3, . .. 
 
3. Comparing probability distributions 
The first real dataset (Data Set I) comprises failure times for 84 aircraft windshields, as documented by Murthy et al. 
(2004). This dataset provides valuable insights into the durability and failure characteristics of aircraft components. 
The second dataset (Data Set II) includes service time data for 63 aircraft windshields, also reported by Murthy et al. 
(2004). This dataset is crucial for understanding the operational lifespan and performance of the same components in 
service conditions. Additionally, several other significant real-life datasets are available for research and analysis. 
These datasets are provided in the works of Nofal et al. (2016), Aryal et al. (2017), Yousof et al. (2016, 2018a,b), 
Elbiely and Yousof (2018), Korkmaz et al. (2017, 2019, 2022), Ibrahim and Yousof (2020), Yadav et al. (2020), 
Mansour et al. (2020e), and Goual et al. (2020). They offer a wide range of data suitable for various analytical and 
research applications, expanding the scope of studies that can benefit from such empirical evidence. In this section, 
we demonstrate the versatility and efficacy of the BUPII probability distribution by applying it to these specific 
datasets. We perform a comparative analysis of the BUPII probability distribution against several established 
probability distributions, including: 
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I. Exponentiated PII (ExpPII): Introduced by Gupta et al. (1998), this probability distribution extends the 
basic PII distribution to account for more complex data patterns. 

II. Beta PII (BetaPII): Proposed by Lemonte and Cordeiro (2013), this probability distribution integrates 
the Beta distribution to enhance the modeling of data with varying shapes. 

III.  Gamma PII (GamPII): Developed by Cordeiro et al. (2015), this probability distribution incorporates the 
Gamma distribution for applications where data exhibit gamma-like behavior. 

IV.  Transmuted Topp-Leone PII (TTLPII) and its reduced form (RTTLPII): Introduced by Yousof et al. 
(2017), these probability distributions provide flexibility in handling data with different tail behaviors. 

V. Odd Log-Logistic PII (OLLPII) and its reduced version (ROLLPII): Presented by Altun et al. (2018b), 
these probability distributions are designed for data with log-logistic characteristics. 

VI.  Reduced Burr-Hatke PII (RBHPII): Proposed by Yousof et al. (2018), this probability distribution offers 
a variation of the Burr-Hatke distribution for improved fit. 

VII.  Proportional Reversed Hazard Rate PII (PRHRPII): This probability distribution accounts for data with 
proportional reversed hazard rates. 

VIII.  Special Generalized Mixture PII (SGMPII): As described by Chesneau and Yousof (2021), this 
probability distribution allows for complex data patterns through a mixture approach. 

 
To evaluate the performance and appropriateness of these probability distributions, we use various statistical tools: 

I. Quantile-Quantile (Q-Q) Plots: These plots assess the normality of the datasets, comparing the quantiles 
of the observed data with the quantiles of a theoretical normal distribution. 

II. Total Time Test (TTT) Plots: TTT plots are used to explore the hazard rate function (HRF) of the data, 
providing insights into the risk of failure over time. 

III.  Nonparametric Kernel Density Estimation (NKDE): NKDE is employed to examine the initial density 
shape of the data without assuming a specific parametric form. 

 
Figures 1 and 2 present various visualizations, including Q-Q plots, box plots, TTT plots, and NKDE plots for both 
datasets. Observations from these figures are as follows: 

I. Figures 7(a) and 8(a): Show near-normality in the datasets, indicating that the data distribution 
approximates a normal distribution. 

II. Figures 1(a, b) and 2(a, b): Reveal the absence of significant outliers, suggesting that the data are 
relatively clean and free from extreme deviations. 

III.  Figures 1(c) and 2(c): Depict a monotonically increasing hazard rate function, indicating that the risk of 
failure increases over time. 

IV.  Figures 1(d) and 2(d): Show a bimodal and nearly symmetric density shape, highlighting the complexity 
and diversity in the data distribution. 

 
This comprehensive analysis underscores the BUPII probability distribution’s robustness and adaptability, validating 
its effectiveness as a versatile tool for modeling and analyzing real-life data across different contexts. 
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Figure 1: Q-Q plot, box plot, TTT plot and NKDE plot for the failure times. 
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Figure 2: Q-Q plot, box plot, TTT plot and NKDE plot for the service times. 

 
Parameter estimation for each probability distribution is performed via maximum likelihood using the "L-BFGS-B" 
method. The goodness-of-fit is evaluated using several criteria: Akaike information criterion (AK-IC), Consistent AK-
IC (CAK-IC), Bayesian IC (BS-IC), Hannan-Quinn IC (HQN-IC), o∗   and  P∗ . These metrics facilitate a 
comprehensive comparison of the probability distributions' performances, ensuring robust statistical inference and 
probability distribution selection tailored to the characteristics of the data sets. 
 
Table 1 provides the MLEs for the parameters of the BUPII probability distribution applied to the failure times dataset. 
It also includes the standard errors associated with these estimates, which quantify the precision of the parameter 
values. The MLEs are the values that maximize the likelihood function, fitting the probability distribution to the 
observed failure times data. The standard errors help gauge the reliability and stability of these estimates, indicating 
how much the parameter values might vary with different samples from the same population. Table 2 reports various 
statistics used to assess how well the BUPII probability distribution fits the failure times data. It includes metrics such 
as the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), among others, which help 
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evaluate the probability distribution’s performance. These statistics compare the BUPII probability distribution’s fit 
against other potential probability distributions, providing insights into how well it captures the patterns and 
characteristics of the failure times data. Similar to Table 1, Table 3 presents the MLEs for the BUPII probability 
distribution parameters when applied to the service times dataset. It also lists the standard errors for these estimates, 
which reflect the precision and reliability of the parameter values. The MLEs provide the best estimates of the 
probability distribution parameters for the service times data, while the standard errors indicate the level of uncertainty 
associated with these estimates. Table 4 provides the goodness-of-fit statistics for the BUPII probability distribution 
applied to the service times data. It includes various fit indices, such as AIC and BIC, which are used to evaluate how 
well the probability distribution describes the service times data. These statistics help determine the adequacy of the 
BUPII probability distribution in capturing the data’s underlying distribution compared to other probability 
distributions. 
 
Based on results of Tables 2 and 4, it is noted that the BUPII probability distribution has the lowest values of AK-IC, 
CAK-IC, BS-IC, HQN-IC,  o∗  and  P∗. For failure times data: ℓq = − 134.35841, AK-IC=274.71692, CAK-
IC=275.01693, BS-IC=282.00931, HQN-IC=277.64842, o∗ = 0.94444 and  P∗ = 0.10053.For service times data: ℓq 
= − 104.42582, AK-IC=214.85170, CAK-IC=215.25841, BS-IC=221.28114, HQN-IC=217.38047, o∗ = 1.28202 and  P∗ = 0.21151. Conducting thorough probability distribution diagnostics, including residual analysis and sensitivity 
testing, can validate the assumptions underlying BUPII probability distribution. This step ensures robustness and 
enhances confidence in using these probability distributions for forecasting and risk assessment in aircraft windshield 
maintenance.  
 
Aircraft windshield companies should prioritize BUPII probability distribution for its capability to accurately predict 
failure times. These probability distributions can support proactive maintenance strategies, minimize downtime, and 
enhance overall operational efficiency and safety of aircraft fleets. In conclusion, BUPII probability distribution offers 
strong statistical performance and practical utility for aircraft windshield companies seeking reliable methods to 
forecast failure times and optimize maintenance schedules. Figure 3 presents the fitted PDF and CDF plots for the 
failure data. Figure 4 gives the fitted PDF and CDF plots for the service data.  

Table 1: MLEs and SEs for failure times data. 
         Probability 
distribution            Estimates  
      

BUPII(��, ��, ��)  3.54705433 30.6535444 4.1176853  

       (0.3112534) (53.271554) (1.662294)  

TTLPII (r, ��, ��, ��) −0.8075241 2.4766249 15608.2133 38628.32 

       (0.1396013) (0.541798) (1602.3665) (123.9362) 

Beta PII (r, ��, ��, ��)  3.6035923 33.638665 4.8307014 118.83731 

       (0.618723) (63.714513) (9.2382024) (428.9271) 

PRHRPII (��, ��, ��) 3.744×106    4.708×10-1 4.543×106  

 1.035×106 (0.0000129) 37.146484  

RTTLPII (��, ��, ��) −0.847325 5.5206043 1.15682533  

       (0.1001143) (1.184842) (0.095974)  

SGMPII (��, ��, ��) −1.04 4× 10-1 9.835×106 1.207×107  
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       (0.1223142) (4843.353) (501.0453)  

RBUPII (��, ��, ��) 3.5479249 30.6374234 0.24294543  

       (0.314148) (55.840454) (0.102664)  

OLLPII (��, ��, ��) 2.3264032 (7.187 × 105) (2.344× 106)  

       (2.144× 10- 1) (1.207 × 104) (2.604 × 101)  

GamPII (��, ��, ��) 3.58761423 52001.564 37029.742  

       (0.5134239) (7955.1643) (81.16970)  

ExpPII (��, ��, ��)  3.6261133 20074.5034 26257.743  

       (0.623721) (2041.8324) (99.742)  

ROLLPII (��, ��)  3.89056342 0.57315948   

       (0.3652323) (0.0194426)   

RBHPIIPII (��, ��)   1080175.18 51367189.25   

       (983309.27) (232322.25)   

PII (��, ��)    51425.3529 131789.746   

       (5933.4945) (296.12946)   
               

 
Table 2: ℓq and goodness-of-fits statistics for failure times data.            

         

Probability 

distribution −ℓq  AK-IC CAK-IC BS-IC HQN-IC A* W*

BUPII 134.35841 274.71692 275.01693 282.00931 277.64842 0.94444 0.10053 

OLLPII 134.42354 274.84703 275.14709 282.13943 277.77854 0.94897 0.10099 

ExpPII 141.39973 288.79949 289.09571 296.12734 291.74699 1.74357 0.21964 

GamPII 138.40424 282.80835 283.10463 290.13635 285.75596 1.36666 0.16188 

BetaPII 138.71773 285.43544 285.93548 295.20607 289.36544 1.40854 0.16880 

PII 164.98848 333.97679 334.12303 338.86230 335.94173 1.39756 0.16645 

ROLLPII 142.84529 289.69048 289.83854 294.55208 291.64475 1.95696 0.25554 

SGMPII 143.08745 292.17475 292.47470 299.46726 295.10627 1.34687 0.15798 

PRHRPII 162.87704 331.75404 332.05402 339.04644 334.68558 1.36752 0.16039 

RTTLPII 153.98093 313.96185 314.26182 321.25426 316.89334 3.75297 0.55942 

TTLPII 135.57009 279.14009 279.64641 288.86331 283.04872 1.12587 0.12710 



Pak.j.stat.oper.res.  Vol.20  No. 3 2024 pp 383-407  DOI: http://dx.doi.org/10.18187/pjsor.v20i3.4151 

 

  

A New Pareto Model: Risk Application, Reliability MOOP and PORT Value-at-Risk Analysis 393 

 

RBHPII 168.60405 341.20814 341.35624 346.06976 343.16244 1.67151 0.20699 
           

 
 
 
 

Table 3: MLEs and SEs for service times data. 
  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4:  ℓq  Table 
and goodness-of-fits statistics for the service times data.  

Probability 
distribution −ℓq  

AK-IC CAK-IC BS-IC HQN-IC A*  W*  

BUPII 104.42582 214.85170 215.25841 221.28114 217.38047 1.28202 0.21151 

OLLPII 104.90414 215.80829 216.21505 222.23764 218.33693 0.94248 0.15456 

ROLLPII 110.72873 225.45739 225.65753 229.74363 227.14311 2.34729 0.39089 

PRHRPII 109.29865 224.59735 225.0045 231.02672 227.1260 1.12640 0.18613 

RTTLPII 112.18555 230.37105 230.77777 236.80044 232.89974 2.68757 0.45326 

PII 109.29883 222.59763 222.79767 226.88388 224.28345 1.12655 0.18613 

 
Probability 
distribution   Estimates        

           

 BUPII(��, ��, ��) 2.3584632 22.9719743  4.92505312      

   (0.2419440) (41.777686)  (3.2902342)      

 PRHRPII(��, ��, ��) 1.6044 × 106 3.933 × 10-1 1.3146× 106    

   2.0257 × 103 0.0033 × 10-1 0.9442× 106    

 RTTLPII(��, ��, ��) −0.671560 2.7449749  1.01238434      

   (0.1874784) (0.669874)  (0.1141242)     

 RBUPII(��, ��, ��) 2.3583644 23.139994  0.2024549      

   (0.241343) (41.181349)  (0.132959)      

 OLLPII(��, ��, ��) 1.6641944 6.343× 105  2.0254 × 106    

   (1.824× 10-1) (1.743 × 104) 7.2354 × 106    

 ROLLPII(��, ��) 2.3723345 0.69109134         

   (0.2682535) (0.0449233)         

 RBHPII(��, ��) 1405552.33 53203423.46        

   (422.00545) (28.523276)         

 PII(��, ��)  99269.7823 207019.365         

   (11863.515) (301.23721)         
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RBHPII 112.60056 229.20119 229.40118 233.48726 230.88699 1.39843 0.23169 

 

 
Figure 3: The fitted PDF and CDF plots for the failure data.  
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Figure 4: The fitted PDF and CDF plots for the service data. 

 

4. MOOP analysis 
The MOOP analysis holds significant importance for aircraft windshield companies in understanding and managing 
the service and failure times of their products. The MOOP analysis helps in identifying the mean service and failure 
times across different order levels (P). This insight is crucial for aircraft windshield companies to understand the 
typical lifespan of their products before failure. By analyzing MOOP over time, companies can establish early warning 
systems for potential failures. This allows proactive maintenance and replacement scheduling, reducing operational 
disruptions and safety risks. The MOOP analysis facilitates predictive maintenance strategies. By knowing the average 
service life at various P levels, companies can schedule maintenance interventions effectively, minimizing downtime 
and associated costs. Aircraft windshields must meet stringent safety standards. MOOP analysis supports compliance 
by providing data-driven insights into product reliability and lifespan, crucial for regulatory approvals.  
 
4.1 MOOP for the failure times 
By understanding failure times, companies can mitigate safety risks associated with windshield failures during flight 
operations, ensuring passenger and aircraft safety. Table 5 below presents the MOOP analysis under the failure times 
data for P=1,2,3,4 and 5.  

Table 5: MOOP analysis under the failure times data. 
P 1 2 3 4 5 

TRM  2.557452 
MOOP 0.04  0.1705 0.2166667 0.30175 0.43 
MSE 6.337566  5.697542 5.479278 5.088193 4.526054 
Bias 2.517452  2.386952 2.340786 2.255702 2.127452 
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Based on Table 5, it is seen that the true mean failure time of the aircraft windshields is 
approximately 2.557452 units. The initials for the MOOP, MSE, and Bias are provided for P=1 to 
P=5. MOOP represents the average of the smallest P ordered values of the failure times. As P 
increases from 1 to 5, MOOP increases gradually, indicating that the average of the smallest 
ordered values increases with more data points considered. MSE quantifies the average squared 
difference between the estimated mean (MOOP) and the true mean. As P increases from 1 to 5, 
MSE decreases, suggesting that the estimation of the mean becomes more accurate as more data 
points are included. Moreover, Bias measures the deviation between the estimated mean (MOOP) 
and the true mean. Like MSE, the Bias decreases as P increases, indicating that the estimation of 
the mean becomes less biased with more data points. 
 
Recommendations for aircraft windshield companies: 

I. Companies should recognize that the true mean failure time of aircraft windshields is 
around 2.557452 units. This value serves as a benchmark for evaluating the reliability 
and longevity of their products 

II. Monitoring MOOP across different P values (from 1 to 5) provides insights into the 
average failure times of aircraft windshields under various scenarios. 

III. Companies can use MOOP to assess the average performance of their windshields in 
terms of failure times and compare it against the true mean for accuracy. 

IV. The decrease in MSE and Bias with increasing P indicates improved estimation of the 
true mean. 

V. Companies should aim to collect sufficient data points (increasing P) to reduce the 
variance in estimating the mean failure time, thereby enhancing reliability assessments. 

VI. Based on the observed MOOP, MSE, and Bias trends, companies could refine their 
design and testing protocols for aircraft windshields. 

VII. This includes incorporating data-driven insights to optimize material selection, 
manufacturing processes, and maintenance schedules to potentially extend the failure 
times beyond the current average. 

VIII. Implementing continuous monitoring and analysis of failure times using similar 
statistical techniques can provide ongoing feedback on the performance and reliability 
of aircraft windshields. 

IX. This proactive approach helps in identifying potential issues early, improving product 
quality, and enhancing customer satisfaction and safety. 

By leveraging these insights and recommendations, aircraft windshield companies can strengthen their product 
development strategies, enhance reliability assessments, and potentially extend the operational lifespan of their 
products. These actions contribute to overall safety and cost-effectiveness in the aviation industry. 
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Figure 5: MOOP, MSE and Bias across the order of P for the failure times. 

 
4.2 MOOP for the service times 
Table 6 provides the MOOP analysis under the service times data for P=1,2,3,4 and 5. Both Tables list the results of 
the True mean (TRM), MOOP, the mean squared error (MSE) and the Bias for each data. 
 

Table 6: MOOP analysis under the service times data. 
P 1 2 3 4 5 

True mean 2.08527 
MOOP 0.046  0.093 0.112 0.146 0.1728 
MSE 4.158621  3.969139 3.893794 3.760768 3.657541 
Bias 2.03927  1.99227 1.97327 1.93927 1.91247 

 
According to Table 6, the true mean service time of the aircraft windshields is approximately 2.08527 units. The 
initials for the Mean of Order P (MOOP), MSE, and Bias are provided for P=1 to P=5. MOOP represents the average 
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of the smallest P ordered values of the service times. As P increases from 1 to 5, MOOP increases, indicating that the 
average of the smallest ordered values increases with more data points considered. MSE quantifies the average squared 
difference between the estimated mean (MOOP) and the true mean. As P increases from 1 to 5, MSE decreases, 
suggesting that the estimation of the mean becomes more accurate as more data points are included.  Bias measures 
the deviation between the estimated mean (MOOP) and the true mean. Similar to MSE, Bias decreases as P increases, 
indicating that the estimation of the mean becomes less biased with more data points. 
Recommendations for aircraft windshield companies about the problem of the service times: 
I. Companies should acknowledge that the true mean service time of aircraft windshields is 

around 2.08527 units. This serves as a reference point for evaluating the reliability and 
longevity of their products. 

II. Monitoring MOOP across different P values (from 1 to 5) provides insights into the average 
service times of aircraft windshields under various scenarios. 

III. Companies can use MOOP to assess the average performance of their windshields in terms 
of service times and compare it against the true mean for accuracy. 

IV. The decrease in MSE and Bias with increasing P indicates improved estimation of the true 
mean service time. 

V. Companies should aim to gather sufficient data points (increasing P) to reduce variability 
in estimating the mean service time, thereby enhancing reliability assessments. 

VI. Based on observed MOOP, MSE, and Bias trends, companies could enhance their design 
and maintenance strategies for aircraft windshields. 

VII. This includes leveraging data-driven insights to optimize materials, manufacturing 
processes, and maintenance intervals to potentially extend service times beyond the current 
average. 

VIII. Implementing continuous improvement initiatives based on statistical analyses of service 
times helps in identifying potential areas for enhancement. 

IX. This proactive approach supports maintaining high levels of customer satisfaction, safety, 
and operational efficiency within the aviation sector. 

 
By implementing these recommendations, aircraft windshield companies can strengthen their product development 
strategies, improve reliability assessments, and potentially increase the service life of their products. These actions 
contribute to enhancing overall safety and operational effectiveness in the aviation industry. 
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Figure 4: MOOP, MSE and Bias across the order of P for the services times. 

 
 
5. PORT VaR analysis 
The PORT analysis, particularly in the context of Value-at-Risk (VaR), holds significant importance for aircraft 
windshield companies when analyzing the service and failure times of their products. It identifies and quantifies 
extreme events in service and failure times that exceed a predetermined threshold. For aircraft windshields, these 
extreme events could indicate critical failures or unusually long service times that may impact operational safety and 
maintenance schedules. Also, PORT VaR analysis provides insights into tail risks associated with service and failure 
times of aircraft windshields. It helps in understanding the potential financial and operational impacts of rare but 
severe events, such as unexpected failures during flight operations. By identifying peaks in failure times through 
PORT analysis, companies can implement proactive maintenance strategies. This includes scheduling inspections, 
replacements, or repairs based on identified risk thresholds, thereby minimizing the likelihood of catastrophic failures. 
Aircraft windshields must adhere to stringent safety regulations. PORT analysis aids in ensuring compliance by 
quantifying and managing risks associated with potential failures, thereby contributing to overall aviation safety. 
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Understanding the likelihood and severity of extreme events through PORT VaR analysis enables companies to 
allocate resources effectively. This includes budgeting for maintenance, insurance coverage, and contingency planning 
to mitigate financial impacts from unexpected failures. Table 7 presents the PORT VaR analysis including the Min., 
1st Qu., Median, Mean, 3rd Qu., Max.  under the failure times data. Table 8 gives the PORT VaR analysis under the 
service times data. 

Table 7: PORT VaR analysis under the failure times data. 
CL N. Peaks Min.     1st Qu.   Median Mean 3rd Qu.    Max. 

50% 42 2.385    2.910    3.409    3.475    4.155    4.663 
70% 59 1.912     2.264    2.962      3.085     3.739    4.663    
90% 74 1.303    2.017    2.639    2.793    3.475    4.663 
99% 83 0.301    1.871 2.385    2.588    3.409    4.663 

 
Table 8: PORT analysis under the service times data. 

CL N. Peaks Min.     1st Qu.   Median Mean 3rd Qu.    Max. 
50% 31 2.117      2.450 2.820    3.086    3.561    5.140 
70% 44 1.249    2.034    2.503   2.684    3.152    5.140 
90% 56 0.487    1.393    2.152     2.318 2.896    5.140 
99% 62 0.140    1.160    2.091    2.118    2.820    5.140 

 
 

The analysis in Table 7 and Table 8 provides results for different confidence levels (CL): 50%, 70%, 90%, and 99%. 
These levels indicate the probability of exceeding a certain threshold value. As the confidence level increases (from 
50% to 99%), the threshold value decreases, indicating higher confidence in capturing extreme events (peaks). The 
number of peaks (extreme events) identified increases as the confidence level (CL) increases. This suggests that at 
higher confidence levels, more extreme failure events (peaks) are observed in the failure times of aircraft 
windshields. 

Recommendations for aircraft windshield companies about the failure and the service times: 
I. Understand the Peaks Over Random Threshold Value-at-risk results at different confidence levels (50%, 70%, 

90%, 99%) to assess the likelihood of extreme failure events in aircraft windshields. Companies should prioritize 
risk management strategies based on these insights to mitigate potential failures and their impacts. 

II. Consider adjusting the threshold values based on the desired confidence level and risk tolerance. Higher 
confidence levels (e.g., 99%) provide a more conservative estimate of extreme events but may require more 
stringent mitigation strategies. 

III. Implement monitoring systems that track failure times in real-time or through periodic inspections. Early 
detection of potential peaks can help in proactive maintenance and replacement of aircraft windshields, thereby 
minimizing operational disruptions and safety risks. 

IV. Use the Peaks Over Random Threshold Value-at-risk analysis iteratively to refine design, manufacturing 
processes, and materials selection for aircraft windshields. Incorporate lessons learned from extreme events to 
enhance product durability and reliability over time. 

V. Ensure compliance with aviation safety regulations regarding failure prediction and prevention. Maintain 
transparent reporting practices on failure times and risk assessment outcomes to stakeholders, including 
regulatory bodies and customers. 

VI. By applying these recommendations, aircraft windshield companies can enhance their understanding of failure 
risks, improve operational resilience, and uphold high standards of safety and reliability in the aviation industry. 
This proactive approach contributes to maintaining trust among stakeholders and ensuring long-term success in 
the market. 

VII. Finally, by implementing these recommendations, aircraft windshield companies can effectively manage risks 
associated with service times, enhance operational resilience, and uphold safety standards in the aviation industry. 
This proactive approach not only mitigates potential failures but also contributes to maintaining customer trust 
and satisfaction. 
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Histogram of failures with peaks above VaR & CL=50%, 70%, 90% and 99%. 
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Histogram of service-times with peaks above VaR & CL=50%, 70%, 90% and 99%. 
 

7. Conclusions 
The paper introduces a novel probability distribution called the Burr Pareto type-II (BUPII) probability distribution, 
and explores its applications in engineering contexts, focusing specifically on the failure and service times of aircraft 
windshields. Through rigorous analysis, the study demonstrates the applicability and effectiveness of the BUPII 
probability distribution in both scenarios. Firstly, the BUPII probability distribution is applied to analyze the failure 
times of aircraft windshields. By leveraging its theoretical foundation and computational framework, the probability 
distribution provides insights into the probabilistic behavior of failures, offering engineers valuable tools for predicting 
and managing risks associated with windshield reliability. Secondly, the paper extends the application of the BUPII 
probability distribution to analyze the service times of aircraft windshields. This application showcases the versatility 
of the probability distribution in different engineering domains, where understanding the distribution and 
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characteristics of service times is crucial for optimizing maintenance schedules and operational efficiency. Moreover, 
the paper includes a comprehensive reliability due to the mean-of-order P (MOOP) analysis under both failure and 
service time datasets. This analysis not only validates the BUPII probability distribution's performance but also 
highlights its robustness in assessing reliability metrics essential for engineering decision-making. Lastly, the paper 
incorporates a PORT (Peaks Over Random Threshold) VaR (Value-at-Risk) analysis, underscoring the BUPII 
probability distribution's utility in risk management within the context of aircraft windshield operations. By 
quantifying the potential financial impacts associated with extreme events, this analysis further underscores the 
probability distribution's practical relevance in real-world applications. The BUPII probability distribution presented 
in this paper emerges as a valuable addition to the toolkit of engineers and researchers involved in reliability and risk 
analysis. Its demonstrated efficacy in analyzing failure and service times of aircraft windshields, coupled with robust 
MOOP and PORT VaR analyses, positions it as a promising framework for advancing the understanding and 
management of engineering systems' reliability and risk. Future research avenues could explore broader applications 
across other engineering disciplines and further refine its methodologies to enhance predictive capabilities and 
decision support tools. 
 
In future research, we aim to enhance the validation of right-censored distributions using advanced goodness-of-fit 
tests tailored for the Burr PII probability distribution. These tests include the Nikulin-Rao-Robson goodness-of-fit test 
statistic, modified Nikulin-Rao-Robson goodness-of-fit statistic test, Bagdonavicius-Nikulin goodness-of-fit statistic 
test, and modified Bagdonavicius-Nikulin goodness-of-fit statistic test. These methods have been successfully applied 
by researchers such as Alizadeh et al. (2023, 2018a,b), Ibrahim et al. (2019), Goual et al. (2019, 2020), Salah et al. 
(2020), Mansour et al. (2020a, d), Ibrahim et al. (2020), Yadav et al. (2020), Goual and Yousof (2020, 2021b), Aidi 
et al. (2021), Shehata and Shehata (2021 and 2022), El-Morshedy et al. (2021), Shehata et al. (2021 and 2022), 
Elgohari, and Yousof (2020 and 2021a,b) and Elgohari et al. (2021) among others. These efforts will contribute to a 
comprehensive evaluation of the Burr PII probability distribution's performance and its applicability in diverse 
practical scenarios. 
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