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Abstract

The paper introduces a new reliability Burr Pargfme-Il model, showcasing its versatility and effeeness in
engineering applications, particularly in analyzthg failure and service times of aircraft wind$ée The BUPII
model's application in failure analysis offers gids into the probabilistic behavior of windshiédures, aiding
in risk prediction and management. Similarly, ildemsion to service time analysis demonstratesititity in
optimizing maintenance schedules and operatiofiigiezfcy. Moreover, the paper conducts a rigorogamof-
order P analysis under both failure and service tdatasets, validating the new model's reliabdisgessment
capabilities. Furthermore, employing the peaks oardom threshold value at risk analysis highlighesmodel's
practical relevance in quantifying financial riskssociated with extreme events. Overall, the npvabability
distribution emerges as a valuable tool for engmemd researchers involved in reliability and réslalysis,
promising advancements in understanding and magab reliability of engineering systems. Futurseaach
could explore broader applications and refined wdttogies to further enhance predictive capabidlitéand
decisior-making suppor

Key Words: Mean-of-order P; Pareto type-ll; peaks over randorashold value at risk; risk analysis; relialyilit
data; optimal order of

1. Introduction

In the realm of reliability engineering, the dev@itent of robust probability distributions that ately assess and
predict failure probabilities plays a pivotal rateensuring the safety and longevity of criticast®ms. In this paper,
the Burr Pareto type Il (BUPII) probability disttition is introduced as a promising addition to tiééd, offering
innovative insights into the analysis of mean-alesrP (MOOP) and Peaks Over Random Threshold VathiRisk
(PORT VaR). This probability distribution represemt significant advancement in reliability analygsoviding
engineers and decision-makers with a powerful tadtsevaluate and mitigate risks associated vathplex systems,
such as aircraft windshields. The BUPII probabititgtribution distinguishes itself by its capalyilib handle diverse
datasets related to reliability, including the céemfailure and service times observed in aerospacgponents like
aircraft windshields. Through its integration ovadced statistical methodologies and probabilfstimeworks, the
BUPII probability distribution offers a comprehevsiapproach to quantify and manage risks associatdd
operational failures. This paper delves into thpliaption of the BUPII probability distribution axss MOOP and
PORT VaR analyses, demonstrating its utility inamting decision-making processes within reliabiibgineering.
Detailed case studies and empirical analyses shemalda this paper illustrate how the BUPII probiapiistribution
enhances predictive accuracy and optimizes maintenatrategies in aerospace applications. By edtioigl the
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probability distribution's theoretical foundatioasd practical applications, this introduction lélys groundwork for
an in-depth exploration of its implications in inopmg reliability assessments across critical isifinacture systems.
In essence, the BUPII probability distribution repents a significant leap forward in reliabilitygareering. It offers
novel perspectives on MOOP and PORT VaR analysssnéal for ensuring the safety, efficiency, aglthbility of
modern technological systems, particularly withhre taerospace industry. This paper aims to elucidate
transformative potential of the BUPII probabilitisttibution in shaping the future of reliability @algsis and fostering
innovation in engineering practices (for more detas¢e Gomes et al. (2015), Figueiredo et al. (R@uthinh et al.
(2017) and Caeiro et al. (2021)).

In the literature review, the MOOP and PORT VaRuw&ed in many practical fields such as insurare@surance,
medicine, loss analysis, risk analysis, among ethEtugman et al. (2012) and Embrechts et al. (RCif8r
fundamental insights into loss modeling and extieznants, respectively, laying the groundwork fadarstanding
risk assessments like PORT VaR. Jansen and de {2884) and Poon and Rockinger (2003) explore ribguiency
and distribution of extreme events in financial teois, relevant to both MOOP and PORT VaR analydgedleil et
al. (2015) and Beirlant et al. (2004) provide acexhmethodologies and applications in risk managéared extreme
value theory, crucial for applying MOOP and PORTRVa practice. Hosking and Walllis (1987) contribtuether
by detailing heavy-tail phenomena and quantilenestiibn methods essential for assessing tail riskeliability
engineering. Together, these references offer astoloundation for understanding and implementing®® and
PORT VaR in reliability engineering and risk managat contexts. Recent advancements in statistiodeting and
risk analysis have led to the development of sévermvative approaches to assess and manageiniskarious
domains, including insurance claims, reliabilityggreering, and financial forecasting. Models sushte odd log-
logistic Weibull family (Rasekhi et al. (2020 and22)) and the compound Lomax probability distribot{Hamed et
al. (2022)) have expanded the repertoire of towsslable for modeling complex data distributionsdgredicting
extreme events. These probability distribution®iporate copulas and asymmetric density functi@msghili et al.
(2021); Mohamed et al. (2024)) to enhance accunaaysk estimation and improve decision-making @Eses.
Additionally, novel approaches like the reciprod&kibull extension (Yousof et al. (2023d)) and thiadley
Extension (Hashempour et al., 2023) offer robusifeworks for analyzing extreme values and assesskgnder
specific data conditions. Furthermore, the applicedf these probability distributions extends beyéraditional risk
assessment to include validation testing (Elbdtal.g2024)), survival analysis (Loubna et al.Z2}), and entropy
analysis (Elbatal et al. (2024)), providing commesive insights into the dynamics of risk in dieedatasets.
Collectively, these contributions underscore theleng landscape of risk analysis methodologieghlghting their
significance in enhancing predictive capabilitiesl énforming strategic decisions across variousosec

The BUPII probability distribution extends the weBtablished PIl probability distribution, knowrr fts robust right-
heavy-tail properties and wide applicability acrosgious fields such as business, actuarial scjehidogy,

engineering, economics, and more. The PII prokgkdistribution, which is a special case of theBea type VI

distribution and can be seen as a mixture of expisieand gamma distributions, is used in studiesneome and
wealth (Harris, 1968; Atkinson and Harrison, 1978 size (Corbellini et al., 2007), reliabilittHassan and Al-
Ghamdi, 2009), and Hirsch statistics (Glanzel, 3008is noted for its "decreasing" hazard ratection and is a
heavy-tailed alternative to exponential, WeibuhdaGamma distributions (Bryson, 1974). Furtherghts on its
relation to the Burr family and Compound Gamma ptulity distributions can be found in Tadikamall980) and
Durbey (1970). This study aims to enhance the Ribability distribution's flexibility through the Br-G (BU-G)

family, as proposed by Alizadeh et al. (2017). Téwngension seeks to enhance the modeling capabiliti the PlII
distribution, catering to a broader range of datracteristics and practical scenarios. A randonabke (RV)Y has
the PII distribution with parametéy if it has cumulative distribution function (CDFAp( Y > 0) given by

2
Ug,() =1-(y+1) %, 1)
where &; > 0 refers to the shape parameter. Then the corrdgmpprobability density function (PDF) of (1) is

ug () =22 (g + )G @
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According to Alizadeh et al. (2017), the cumulatidistribution function (CDF) of the Burr-G (BU-Gainily is
formulated as follows

ﬁf(,y_)ﬁfz
ey, (9) =1 — & 3
Vet + Ue(g)% ]

where ﬁf(y) =1 - U¢(y). The PDF corresponding to (3) is given by
ﬁf(/y,)flfz_l

Ie1606 W) = E15us (WU ()17 — v 4)
|v: (% + U]
The BUPII CDF is given by:
+1)7¢
Fo@l (W =6,6.6)=1- @ . ) ey 5)
2751 1
“1 —(y+ 1)‘5] +(y+ 1)‘2%}
where é* = Zflfzéi. The PDF corresponding to (5) is given by
27611
[1 -(y+ 1)_5]
fo@) =§ (g + D)7+ (6)

2161 1+82°
”1 —(g+ 1)_5] + (g + 1)—5*}

The asymptotes of the CDF, PDF and HRFgas> 0 are given by

2] 2 (&) 25t
Fy(y) ~ & [1—(y+1) 53] 9= 0.fu) ~ &iba - (g + 1) 3 [1—(y+1) fs] ly =0,

and
2

(&) _2)5t
hy(y) ~ (g +1) s [1 -+ 53] ly 0.
The asymptotes of CDF, PDF and HRF@s-» o are given by

% 2 86

1= Fy(y) ~ E7(g + 1) "5y - oo, f(4) ~ &6, AR %y o o
- - 3
and
2 -1
hy(y) ~ 525_(9’ +1)7 |y - co.
- 3

See Gupta and Gupta (2007) and Gleaton and Lyrid6(2Aboraya et al. (2020), Chesneau et al. (20Bighim et
al. (2021) and Yousof et al. (2021) for more dstdtor simulation of this new probability distrimst, we obtain the
quantile function (QF) ot/ (by inverting (5)), sayy,, = F~1(u), as

&3

g, =11 u($1,$2) 1w =1-1u (7)

1
W 4 u(g,,§,)

1
1\ T

—\s1
whereu(§,,§&,) = (1 - ufz> . Equation (7) is used for simulating the new piolitg distribution.

The HRF for the new probability distribution canderived from f,,(¢)/ [1 — F,p(y,)] . Numerous extensions and

variants of the Pareto type Il (PIl) distributioave been developed by researchers to cater tosdivendeling needs
across various fields. These extensions reflecfléhbility and applicability of the PII distribidn in addressing
specific characteristics of real-world data. Heram expanded overview of some notable Pll extessiound in the
literature, including Weibull PIl distribution byahir et al. (2015), which integrates the PIl framewwith the
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Weibull distribution. One parameter Pll system efsities proposed by Cordeiro et al. (2018), affga simplified
version of the PII probability distribution. Oddgldogistic Pll and Zografos-Balakrishnan PII distriion from Altun
et al. (2018a), introducing alternative forms based specific skewed and symmetric distributions. il
generalized PIl, Rayleigh generalized PIl, and Eqmtial generalized Pll distributions developedHilgiely and
Yousof (2018), which extend the PIl probability tdisution using these well-known distributions. opeone
Poisson PII distribution by Yousof et al. (2019)ruing the PII framework with Poisson processdkirRerse
Rayleigh by Goual and Yousof (2019), offering aweirse Rayleigh distribution within the PII familfjopp-Leone
generated PII probability distribution by Yousofat(2019b), exploring the application of Topp-bedistributions
in the context of PII. Burr type XII PII, Pll Butype XllI, and PII Pl distributions by Gad et a20(9), introducing
variations based on the Burr distribution type Xllew zero-truncated version of the Poisson Pllrithistion by
Yousof et al. (2019a), addressing truncated daaastos within the PII framework. Topp Leone PHtdbution by
Yadav et al. (2020), focusing on the integrationTopp Leone distributions with the PIl probabiliystribution.
Poisson Burr X generalized Pll and Poisson Raylgigmheralized PII distributions by Ibrahim and Youg&020),
extending the PII probability distribution usingngealized forms of Poisson, Burr X, and Rayleigstributions.
Extended Poisson Generalized PII distribution bgalféd Yousof (2021), further expanding the PIl phility
distribution to incorporate generalized Poissonrithistions. These extensions and variants highliglet ongoing
development and refinement of the PII distributienhancing its utility and versatility in statistianodeling across
diverse applications. Each variant offers spedifitvantages suited to different types of data claratics and
modeling requirements in fields such as econongicgineering, actuarial science, and beyond.

In modeling failure time data, the BUPII probalyilifistribution stands out favorably when comparea/arious
established extensions of the Pl probability distiion. These include the exponentiated PII, amgtlbgistic PlI,
transmuted Topp-Leone PII, Kumaraswamy PIl, GamihasPecial generalized mixture PIl, Burr Hatke ,Rihd
proportional reversed hazard rate PIl extensiohs.g@robability distribution's performance is evadabusing criteria
such as the consistent-information criterion, Akaikformation criterion, Bayesian information crite, and
Hannan-Quinn information criterion. Similarly, whepplied to service time data, the BUPII probapititstribution
is assessed against the same PII extensions Usiag evaluation metrics. This comparative analyigislights the
BUPII probability distribution’s robustness andxileility, demonstrating its effectiveness as a waéifs tool in
statistical modeling and analysis across diffetgpés of datasets.

2. Properties
Due to Alizadeh et al. (2017), the PDF in (6) carelpressed as
F@ = aWivas, @), ®
a=0
where

. ffza Zo Z( 1)( (1+62)) (—[51(1 :2%1)+1])(51(1+%1K)3+”2+1) (),

and w4, (¢) is the PDF of the PII probability distributiontvipower parametet + a. By integrating Equation
(8), the CDF ofy becomes

F@) =) 6aWisas,®), ©

where Wy, ¢, (¢) is the CDF of the PII distribution with power pareter1 + a. The c*™ ordinary moment ofy
is given by

1oy = E(Y°) = f ¥ F(9)dy,

then we obtain

Hey = ) Y a1+ @1 (5)B((1+a), 1+ 26,5 - Nig>c (10)

a=0b=0
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and
[« 4
4 Fad b 4 2
EQYD =Y ) (1 +a) (1" (§)B((+a@),1+ 285 - 9)] £t
3
a=0 b=0
where E(Y) = u} is the mean ofy. The c¢** incomplete moment, sa¥.(¢), of Y can be expressed, from (9),
as
t . t .....
@ = [ v rway= tio [ Cywann @iy
-® a=0 -®
then

C
ly(®) = X0 Theosa 1+ (D" (1) Be((1 + @), 1+ 2860 = )1 2 > ¢, (11)
where B (1,,1,) = fftffl (1 — )27 1dt. The first incomplete moment given by (11) with= 1 is

[ee]

1
1
Ly(®) = Z Z ¢ (1+a)(—1)P (2) B.((1+a),1+2&(b—1)| z > 1.

a=0b=0
The moment generating function (MGF) can be deriv&dg (8) as

My$) =) > Zi—;ca(l +a)(-1)* () B((1+ ), 1+ 2&(b - 0))] iS >

a=0c=0 b=0
The firstc derivatives of My (), with respect te at ¢+ = 0, yield the firstc moments about the origin, i.e.,
c

Pey = EYC) = WM/y.(t)l(t=0 andc=1,2,3,..)"
The cumulant generating function CGF is the logamiof the MGF. Thus;*"* cumulant, say.y, can be obtained
from

dC [e%e} oo} c tc
Key = 72109 [Z Z Zgga(l +a)(-1)* (1) B((1 + ), 1+ 28 (b — )| £ = 0, andc = 1,23,...

a=0c=0 b=0

3. Comparing probability distributions

The first real dataset (Data Set I) comprises faitimes for 84 aircraft windshields, as documeirgdiurthy et al.
(2004). This dataset provides valuable insights the durability and failure characteristics ofcedft components.
The second dataset (Data Set Il) includes seriroe data for 63 aircraft windshields, also repotgdMurthy et al.
(2004). This dataset is crucial for understandimgdperational lifespan and performance of the saonmgonents in
service conditions. Additionally, several otherrsiigant real-life datasets are available for reskaand analysis.
These datasets are provided in the works of Ndfal.g2016), Aryal et al. (2017), Yousof et al0{®, 2018a,b),
Elbiely and Yousof (2018)Korkmaz et al. (2017, 2019, 2022), Ibrahim and Ydu2020), Yadav et al. (2020),
Mansour et al. (2020e), and Goual et al. (2020gyTdffer a wide range of data suitable for varianalytical and
research applications, expanding the scope ofedutiat can benefit from such empirical evidengehis section,
we demonstrate the versatility and efficacy of BigPIl probability distribution by applying it to ése specific
datasets. We perform a comparative analysis ofBO@Il probability distribution against several ddished
probability distributions, including:
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VI.

VII.

VIII.

Exponentiated PIl (ExpPIl): Introduced by Guptakt(1998), this probability distribution extendet
basic PII distribution to account for more compéiata patterns.

Beta PII (BetaPIl): Proposed by Lemonte and Cood&2013), this probability distribution integrates
the Beta distribution to enhance the modeling ¢é déth varying shapes.

Gamma PII (GamPll): Developed by Cordeiro et 801, this probability distribution incorporategth
Gamma distribution for applications where data kitigamma-like behavior.

Transmuted Topp-Leone PII (TTLPII) and its reduéexdn (RTTLPII): Introduced by Yousof et al.
(2017), these probability distributions providexilglity in handling data with different tail beheors.
Odd Log-Logistic PIl (OLLPII) and its reduced vensi(ROLLPII): Presented by Altun et al. (2018b),
these probability distributions are designed fdadaith log-logistic characteristics.

Reduced Burr-Hatke Pl (RBHPII): Proposed by Youstrdl. (2018), this probability distribution oféer
a variation of the Burr-Hatke distribution for ingwed fit.

Proportional Reversed Hazard Rate PIl (PRHRPII)s Phobability distribution accounts for data with
proportional reversed hazard rates.

Special Generalized Mixture PII (SGMPII): As debed by Chesneau and Yousof (2021), this
probability distribution allows for complex datatfgans through a mixture approach.

To evaluate the performance and appropriatenetsesé probability distributions, we use variousistiaal tools:

Quantile-Quantile (Q-Q) Plots: These plots asdessbrmality of the datasets, comparing the queshtil
of the observed data with the quantiles of a thexaenormal distribution.

Total Time Test (TTT) Plots: TTT plots are useciplore the hazard rate function (HRF) of the data,
providing insights into the risk of failure ovenmg.

Nonparametric Kernel Density Estimation (NKDE): NEDs employed to examine the initial density
shape of the data without assuming a specific patgarform.

Figures 1 and 2 present various visualizationdudiog Q-Q plots, box plots, TTT plots, and NKDE{d for both
datasets. Observations from these figures arellasvio

Figures 7(a) and 8(a): Show near-normality in tleaskets, indicating that the data distribution
approximates a normal distribution.

Figures 1(a, b) and 2(a, b): Reveal the absencsgoificant outliers, suggesting that the data are
relatively clean and free from extreme deviations.

Figures 1(c) and 2(c): Depict a monotonically imsiag hazard rate function, indicating that thk of
failure increases over time.

Figures 1(d) and 2(d): Show a bimodal and neantgragtric density shape, highlighting the complexity
and diversity in the data distribution.

This comprehensive analysis underscores the BUBHagbility distribution’s robustness and adaptépilvalidating
its effectiveness as a versatile tool for modetind analyzing real-life data across different ceiste
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Figure 1: Q-Q plot, box plot, TTT plot and NKDE pfor the failure times.
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Figure 2: Q-Q plot, box plot, TTT plot and NKDE plor the service times.

Parameter estimation for each probability distitruis performed via maximum likelihood using tHeBFGS-B"
method. The goodness-of-fitis evaluated usingredeeteria: Akaike information criterion (AK-ICY;onsistent AK-
IC (CAK-IC), Bayesian IC (BS-IC), Hannan-Quinn IGI@QN-IC), A* and W*. These metrics facilitate a
comprehensive comparison of the probability distiitns' performances, ensuring robust statistictdrence and
probability distribution selection tailored to thlkaracteristics of the data sets.

Table 1 provides the MLEs for the parameters oB0®I1 probability distribution applied to the faile times dataset.
It also includes the standard errors associateld thiése estimates, which quantify the precisiothef parameter
values. The MLEs are the values that maximize itkeditiood function, fitting the probability distriltion to the

observed failure times data. The standard errdpsdeeuge the reliability and stability of theseimsites, indicating
how much the parameter values might vary with diffie samples from the same populatidable 2 reports various
statistics used to assess how well the BUPII pritibabistribution fits the failure times data.iltcludes metrics such
as the Akaike Information Criterion (AIC) and Baiges Information Criterion (BIC), among others, whibelp
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evaluate the probability distribution’s performantéese statistics compare the BUPII probabilistrithution’s fit
against other potential probability distributionmoviding insights into how well it captures thettpans and
characteristics of the failure times data. SimiaTable 1, Table 3 presents the MLEs for the BUsrtibability
distribution parameters when applied to the sertiines dataset. It also lists the standard ermrshiese estimates,
which reflect the precision and reliability of tip@rameter values. The MLEs provide the best estisnaf the
probability distribution parameters for the sentioees data, while the standard errors indicatéethel of uncertainty
associated with these estimates. Table 4 provitegadodness-of-fit statistics for the BUPII probigpidistribution
applied to the service times data. It includesossifit indices, such as AIC and BIC, which aredugeevaluate how
well the probability distribution describes thedee times data. These statistics help determiaattequacy of the
BUPII probability distribution in capturing the @& underlying distribution compared to other prubty
distributions.

Based on results of Tables 2 and 4, it is notetitt@aBUPII probability distribution has the lowestlues of AK-IC,
CAK-IC, BS-IC, HQN-IC, A* and W*. For failure times data? = — 134.35841, AK-IC=274.71692, CAK-
IC=275.01693, BS-IC=282.00931, HQN-IC=277.64842= 0.94444 andW* = 0.10053.For service times dafa:
=—104.42582, AK-1C=214.85170, CAK-IC=215.25841, B3=P21.28114, HQN-IC=217.38044"; = 1.28202 and
W* = 0.21151. Conducting thorough probability distribatdiagnostics, including residual analysis anksgeity
testing, can validate the assumptions underlyind®?Byrobability distribution. This step ensures ustmess and
enhances confidence in using these probabilityidigions for forecasting and risk assessmentricrait windshield
maintenance.

Aircraft windshield companies should prioritize BUBrobability distribution for its capability tocaurately predict
failure times. These probability distributions carpport proactive maintenance strategies, minim@entime, and
enhance overall operational efficiency and safésijroraft fleets. In conclusion, BUPII probabilitistribution offers
strong statistical performance and practical ytifiir aircraft windshield companies seeking relkabhethods to
forecast failure times and optimize maintenanceedates. Figure 3 presents the fitted PDF and CE gbr the
failure data. Figure 4 gives the fitted PDF and Gib#ts for the service data.

Table T MLEs and SEs for failure times data.

Probability
distribution Estimates
BUPII(&,, &5, &5) 3.54705433 30.6535444  4.1176853
(0.3112534) (53.271554) (1.662294)
TTLPI (v,&4,&,,&3) —0.8075241 2.4766249 15608.2133  38628.32

(0.1396013)  (0.541798)  (1602.3665)123.9362)
Beta Pll §,&,,&,, &) 3.6035923  33.638665  4.8307014 118.83731
(0.618723)  (63.714513) (9.2382024)428.9271)
PRHRPII €,,&,,&5) 3.744x16 4.708x10  4.543x16
1.035x16  (0.0000129)  37.146484
RTTLPI (61, &,, &) -0.847325 5.5206043  1.15682533
(0.1001143)  (1.184842)  (0.095974)

SGMPII ¢4, &,, &) -1.044x 16¢ 9.835x16  1.207x10
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RBUPII (§1,$2,$3)

OLLPII (81, $2,¢5)

GamPll €;,¢;,¢3)

EXpPIl ¢4, ¢2,€3)

ROLLPII (¢4, &)

RBHPIIPII (¢4,¢,)

PIl (§1,$2)

(0.1223142)
3.5479249
(0.314148)
2.3264032

(2.144x 10%)

3.58761423

(0.5134239)
3.6261133
(0.623721)

3.89056342

(0.3652323)

1080175.18

(983309.27)

51425.3529

(5933.4945)

(4843.353)
30.6374234

(55.840454)
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(501.0453)
0.24294543

(0.102664)

(7.187 x Bp (2.344x 16)

(1.207 x 16) (2.604 x 18)

52001.564
(7955.1643)
20074.5034
(2041.8324)
0.57315948

(0.0194426)

51367189.25

(232322.25)
131789.746

(296.12946)

37029.742
(81.16970)
26257.743

(99.742)

Table 2:2 and goodness-of-fits statistics for failure timesad

Probability

distribution -7 AK-IC CAK-IC BS-IC HQN-IC A W
BUPII 134.35841 27471692  275.01693  282.00931 B4R 0.94444  0.10053
OLLPII 134.42354 274.84703  275.14709  282.13943  277.77854 0.94897  0.10099
ExpPlI 141.39973 288.79949  289.09571  296.12734  291.74699 1.74357  0.21964
GamPll 138.40424 282.80835  283.10463  290.13635  285.75596 1.36666  0.16188
BetaPIl 138.71773 285.43544  285.93548  295.20607 .3B534 1.40854  0.16880
PlI 164.98848 333.97679  334.12303  338.86230 339341 1.39756  0.16645
ROLLPII 142.84529 289.69048  289.83854  294.55208 .@BA75 1.95696  0.25554
SGMPII 143.08745 29217475  292.47470  299.46726  1D@R7 1.34687  0.15798
PRHRPII 162.87704 331.75404  332.05402  339.04644 .68548 1.36752  0.16039
RTTLPII 153.98093 313.96185  314.26182  321.25426 .GA%34 3.75297  0.55942
TTLPII 135.57009 279.14009  279.64641  288.86331 (4372 1.12587  0.12710
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RBHPII 168.60405 34120814  341.35624  346.06976  1BMI4 1.67151  0.20699

Table 3: MLEs and SEs for service times data.

Probability
distribution Estimates
BUPII(¢,, €5, &3) 2.3584632 22.9719743 4.92505312

(0.2419440) (41.777686)  (3.2902342)
PRHRPI(&,, &,,65)  1.6044x 10P 3.933x 10° 1.3146¢ 10°
2.0257x 10° 0.0033x 101 0.944% 1(f
RTTLPI(E, &, &)  —0.671560  2.7449749 1.01238434
(0.1874784)  (0.669874) (0.1141242)
RBUPII(E,, &5, &5) 2.3583644  23.139994 0.2024549
(0.241343)  (41.181349)  (0.132959)
OLLPII(,, &5, &) 16641944  6.348 10° 2.0254x 10P
(1.824¢ 10Y) (1.743x 10)  7.2354x 1(P
ROLLPII(E,, &,) 2.3723345  0.69109134
(0.2682535)  (0.0449233)
RBHPII(Z,, &) 1405552.33 53203423.46
(422.00545)  (28.523276)
P&y, &) 99269.7823  207019.365

(11863.515) (301.23721)

Table 4: 7
and goodness-of-fits statistics for the servicesirdata.
Probabilty R AK-IC CAK-IC BS-IC HON-IC A’ W
distributior -7
BUPII 104.42582  214.85170 215.25841 221.28114 217.38047 1.28202 0.21151
OLLPII 104.90414  215.80829 216.21505 222.23764 218.33693 0.94248 0.15456

ROLLPII 110.72873  225.45739 225.65753 229.7436227.14311 2.34729 0.39089
PRHRPII 109.29865 22459735 225.0045 231.02672 227.1260 1.12640 0.18613
RTTLPII 112.18555 230.37105 230.77777 236.80044 232.89974 2.68757 0.45326

PlI 109.29883 22259763 222.79767 226.88388 224.28345 1.12655 0.18613

A New Pareto Model: Risk Application, Reliability®DP and PORT Value-at-Risk Analysis 393



Pak.j.stat.oper.res. Vol.20 No. 3 2024 pp 383-407 DOI: http://dx.doi.org/10.18187/pjsor.v20i3.4151

RBHPII 112.60056 229.20119 229.40118 233.48726 230.88699 1.39843 0.23169
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Figure 3: The fitted PDF and CDF plots for theded! data.
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Figure 4: The fitted PDF and CDF plots for the sardata.

4. MOOP analysis

The MOOP analysis holds significant importancedwcraft windshield companies in understanding arathaging

the service and failure times of their productse MiOOP analysis helps in identifying the mean senénd failure
times across different order levels (P). This ihsig crucial for aircraft windshield companiesunderstand the
typical lifespan of their products before failuBy. analyzing MOOP over time, companies can estalel@ély warning

systems for potential failures. This allows proaetmaintenance and replacement scheduling, redegaational

disruptions and safety risks. The MOOP analysidifaies predictive maintenance strategies. By kinowhe average
service life at various P levels, companies caedale maintenance interventions effectively, mizimg downtime

and associated costs. Aircraft windshields musttsteiegent safety standards. MOOP analysis supporpliance
by providing data-driven insights into product adlility and lifespan, crucial for regulatory appads:

4.1 MOORP for thefailuretimes
By understanding failure times, companies can mitigsafety risks associated with windshield fagutaring flight
operations, ensuring passenger and aircraft safatye 5 below presents the MOOP analysis undefiathee times
data for P=1,2,3,4 and 5.

Table 5: MOOP analysis under the failure times data

P 1 2 3 4 5
TRM 2.557452
MOOP 0.04 0.1705 0.2166667 0.30175 0.43
MSE 6.337566 5.697542 5.479278 5.088193 4.526054
Bias 2.517452 2.386952 2.340786 2.255702 2.127452
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Based on Table 5, it is seen that the true medardatime of the aircraft windshields is
approximately 2.557452 units. The initials for M®OP, MSE, and Bias are provided farito

P=5. MOOP represents the average of the smaHemidered values of the failure times. As
increases from 1 to 5, MOOP increases gradualljyicating that the average of the smallest
ordered values increases with more data pointsidemsl. MSE quantifies the average squared
difference between the estimated mean (MOOP) amdrtle mean. Ag increases from 1 to 5,
MSE decreases, suggesting that the estimatioreaintlan becomes more accurate as more data
points are included. Moreover, Bias measures th@atlen between the estimated mean (MOOP)
and the true mean. Like MSE, the Bias decreasesraseases, indicating that the estimation of
the mean becomes less biased with more data points.

Recommendations for aircraft windshield companies:

l. Companies should recognize that the true meanréailme of aircraft windshields is
around 2.557452 units. This value serves as a besnghfor evaluating the reliability
and longevity of their products

. Monitoring MOOP across differemt values (from 1 to 5) provides insights into the
average failure times of aircraft windshields undtious scenarios.

[11.  Companies can use MOOP to assess the averagenpamnice of their windshields in
terms of failure times and compare it against the imean for accuracy.

IV. The decrease in MSE and Bias with increasingdicates improved estimation of the
true mean.

V. Companies should aim to collect sufficient datanmi(increasing?) to reduce the
variance in estimating the mean failure time, thgrenhancing reliability assessments.

VI. Based on the observed MOOP, MSE, and Bias treraiapanies could refine their
design and testing protocols for aircraft windsitsel

VII. This includes incorporating data-driven insights dptimize material selection,
manufacturing processes, and maintenance scheufestentially extend the failure
times beyond the current average.

VIII. Implementing continuous monitoring and analysis fafure times using similar
statistical techniques can provide ongoing feedlmackhe performance and reliability
of aircraft windshields.

IX.  This proactive approach helps in identifying poit@nissues early, improving product

quality, and enhancing customer satisfaction afetysa
By leveraging these insights and recommendatiarsat windshield companies can strengthen thedpct
development strategies, enhance reliability assestanand potentially extend the operational liéespf their
products. These actions contribute to overall gadatl cost-effectiveness in the aviation industry.
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Figure 5: MOOP, MSE and Bias across the order fof fhe failure times.

4.2 MOORP for the servicetimes
Table 6 provides the MOOP analysis under the senuices data for P=1,2,3,4 and 5. Both TablegHistresults of
the True mean (TRM), MOOP, the mean squared eM&H) and the Bias for each data.

Table 6: MOOP analysis under the service times. data

P 1 2 3 4 5
True mean 2.08527
MOOP 0.046 0.093 0.112 0.146 0.1728
MSE 4,158621 3.969139 3.893794 3.760768 3.657541
Bias 2.03927 1.99227 1.97327 1.93927 1.91247

According to Table 6, the true mean service timehef aircraft windshields is approximately 2.08582Wts. The
initials for the Mean of Order P (MOOP), MSE, and®are provided for P=1 to P=5. MOOP represematterage
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of the smallest P ordered values of the servicegims P increases from 1 to 5, MOOP increasegdtidg that the
average of the smallest ordered values increasksware data points considered. MSE quantifiesitteeage squared
difference between the estimated mean (MOOP) aedrtle mean. As P increases from 1 to 5, MSE dsesca
suggesting that the estimation of the mean beconogs accurate as more data points are includeds Beasures
the deviation between the estimated mean (MOOPjtenttue mean. Similar to MSE, Bias decreasesiasrases,
indicating that the estimation of the mean becolees biased with more data points.

Recommendations for aircraft windshield compankesuathe problem of the service times:

l. Companies should acknowledge that the true meaicsdime of aircraft windshields is
around 2.08527 units. This serves as a referenice fow evaluating the reliability and
longevity of their products.

. Monitoring MOOP across differeptvalues (from 1 to 5) provides insights into therage
service times of aircraft windshields under varisasnarios.

[11.  Companies can use MOOP to assess the averagenpanice of their windshields in terms
of service times and compare it against the truemfier accuracy.

IV. The decrease in MSE and Bias with increagimydicates improved estimation of the true
mean service time.

V. Companies should aim to gather sufficient datatgdimcreasing) to reduce variability
in estimating the mean service time, thereby enhgneliability assessments.

VI. Based on observed MOOP, MSE, and Bias trends, aoiegpaould enhance their design
and maintenance strategies for aircraft windshields

VII. This includes leveraging data-driven insights tdimze materials, manufacturing
processes, and maintenance intervals to potenéiaifnd service times beyond the current
average.

VIII. Implementing continuous improvement initiativesdma®sn statistical analyses of service

times helps in identifying potential areas for emtement.
IX.  This proactive approach supports maintaining heyels of customer satisfaction, safety,
and operational efficiency within the aviation sect

By implementing these recommendations, aircrafidsfrield companies can strengthen their productldpreent

strategies, improve reliability assessments, andntially increase the service life of their prottudhese actions
contribute to enhancing overall safety and openatieffectiveness in the aviation industry.
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Figure 4: MOOP, MSE and Bias across the order fof Fhe services times.

5. PORT VaR analysis

The PORT analysis, particularly in the context aflié-at-Risk (VaR), holds significant importance &ircraft
windshield companies when analyzing the service faildre times of their products. It identifies agdantifies
extreme events in service and failure times thaked a predetermined threshold. For aircraft wiredds, these
extreme events could indicate critical failuresinusually long service times that may impact openal safety and
maintenance schedules. Also, PORT VaR analysisgee\nsights into tail risks associated with sezvénd failure
times of aircraft windshields. It helps in undensting the potential financial and operational intpaaf rare but
severe events, such as unexpected failures duigig bperations. By identifying peaks in failurenes through
PORT analysis, companies can implement proactiviater@ance strategies. This includes schedulingeictipns,
replacements, or repairs based on identified hisdsholds, thereby minimizing the likelihood ofasttophic failures.
Aircraft windshields must adhere to stringent safetgulations. PORT analysis aids in ensuring cianpk by
quantifying and managing risks associated with e failures, thereby contributing to overall ation safety.
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Understanding the likelihood and severity of exteeavents through PORT VaR analysis enables conpanie
allocate resources effectively. This includes btidgeor maintenance, insurance coverage, andrgaticy planning
to mitigate financial impacts from unexpected fegki Table 7 presents the PORT VaR analysis inojuthie Min.,
15t Qu., Median, Mean,8Qu., Max. under the failure times data. Tableév@gthe PORT VaR analysis under the
service times data.
Table 7: PORT VaR analysis under the failure tihas.
CL N. Peaks Min.  1%Qu. Median Mean 3 Qu. Max.

50% 42 2.385 2.910 3.409 3.475 4.155 4.663
70% 59 1.912 2.264 2.962 3.085 3.739 4.663
90% 74 1.303 2.017 2.639 2.793 3.475 4.663
99% 83 0.301 1.871 2.385  2.588 3.409 4.663

Table 8: PORT analysis under the service times. data
CL N. Peaks Min.  1%Qu. Median Mean 3 Qu. Max.

50% 31 2.117 2.450 2.820 3.086 3.561 5.140
70% 44 1.249 2.034 2.503 2.684  3.152 5.140
90% 56 0.487  1.393 2.152 2.318 2.896 5.140
99% 62 0.140 1.160 2.091 2.118 2.820 5.140

The analysis in Table 7 and Table 8 provides redattdifferent confidence levels (CL): 50%, 70%9%8, and 99%.
These levels indicate the probability of exceedirggrtain threshold value. As the confidence levaleases (from
50% to 99%), the threshold value decreases, iridggaigher confidence in capturing extreme evepéaks). The
number of peaks (extreme events) identified in@sas the confidence level (CL) increases. Thigestg that at
higher confidence levels, more extreme failure &v@oeaks) are observed in the failure times afraft
windshields.

Recommendations for aircraft windshield companhkesuathe failure and the service times:

I.  Understand the Peaks Over Random Threshold Valuskatesults at different confidence levels (50B6%,
90%, 99%) to assess the likelihood of extreme faikvents in aircraft windshields. Companies shouiloritize
risk management strategies based on these ins@htiigate potential failures and their impacts.

II. Consider adjusting the threshold values based end#sired confidence level and risk tolerance. etigh
confidence levels (e.g., 99%) provide a more caradiMe estimate of extreme events but may requiogem
stringent mitigation strategies.

[11. Implement monitoring systems that track failure @gmin real-time or through periodic inspectionsrifea
detection of potential peaks can help in proaatantenance and replacement of aircraft windshjeldseby
minimizing operational disruptions and safety risks

IV. Use the Peaks Over Random Threshold Value-at-niglysis iteratively to refine design, manufacturing
processes, and materials selection for aircraftishirelds. Incorporate lessons learned from extreveats to
enhance product durability and reliability overéim

V. Ensure compliance with aviation safety regulatioagarding failure prediction and prevention. Maimta
transparent reporting practices on failure times aisk assessment outcomes to stakeholders, imgjudi
regulatory bodies and customers.

V1. By applying these recommendations, aircraft winelshcompanies can enhance their understandingilofea

risks, improve operational resilience, and uphadfghistandards of safety and reliability in the &ioia industry.

This proactive approach contributes to maintainiimgt among stakeholders and ensuring long-terroesscin

the market.

.Finally, by implementing these recommendations;raft windshield companies can effectively managlksr

associated with service times, enhance operatiesgience, and uphold safety standards in thetiavigndustry.

This proactive approach not only mitigates potéritidures but also contributes to maintaining onsér trust

and satisfaction.

VI
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7. Conclusions

The paper introduces a novel probability distribntcalled the Burr Pareto type-Il (BUPII) probatyildistribution,
and explores its applications in engineering casteéocusing specifically on the failure and seeviitnes of aircraft
windshields. Through rigorous analysis, the studyndnstrates the applicability and effectivenesshef BUPII
probability distribution in both scenarios. Firstthe BUPII probability distribution is applied tmalyze the failure
times of aircraft windshields. By leveraging itetinetical foundation and computational framewadhle, probability
distribution provides insights into the probabitisiehavior of failures, offering engineers valwataols for predicting
and managing risks associated with windshield béditg. Secondly, the paper extends the applicatbthe BUPII
probability distribution to analyze the service ¢igrof aircraft windshields. This application shogesthe versatility
of the probability distribution in different engieeng domains, where understanding the distributand
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characteristics of service times is crucial forimi#ing maintenance schedules and operationalieffay. Moreover,
the paper includes a comprehensive reliability tluthe mean-of-order P (MOOP) analysis under batlure and
service time datasets. This analysis not only addisl the BUPII probability distribution's perforneanbut also
highlights its robustness in assessing reliabitigtrics essential for engineering decision-makiragtly, the paper
incorporates a PORT (Peaks Over Random Threshaddy Walue-at-Risk) analysis, underscoring the BUPII
probability distribution's utility in risk managemie within the context of aircraft windshield opeoais. By
quantifying the potential financial impacts asstaiawith extreme events, this analysis further usciwes the
probability distribution's practical relevance aal-world applications. The BUPII probability disution presented
in this paper emerges as a valuable addition téathi&it of engineers and researchers involveceliability and risk
analysis. Its demonstrated efficacy in analyzinlyifa and service times of aircraft windshieldsypled with robust
MOOP and PORT VaR analyses, positions it as a miamiframework for advancing the understanding and
management of engineering systems' reliability @gid Future research avenues could explore broguldications
across other engineering disciplines and furthéneeits methodologies to enhance predictive cdjtiasi and
decision support tools.

In future research, we aim to enhance the validatioright-censored distributions using advanceddy@ss-of-fit
tests tailored for the Burr Pll probability distuifion. These tests include the Nikulin-Rao-Robsoodness-of-fit test
statistic, modified Nikulin-Rao-Robson goodnesdibétatistic test, Bagdonavicius-Nikulin goodnexsfit statistic

test, and modified Bagdonavicius-Nikulin goodnegéitstatistic test. These methods have been ssfally applied
by researchers such as Alizadeh et al. (2023, 20),8arahim et al. (2019), Goual et al. (2019, @)Falah et al.
(2020), Mansour et al. (2020a, d), Ibrahim et 2020), Yadav et al. (2020), Goual and Yousof (2@21b), Aidi

et al. (2021), Shehata and Shehata (2021 and 282R)prshedy et al. (2021), Shehata et al. (2024 2622),

Elgohari, and Yousof (2020 and 2021a,b) and Elgaddtaal. (2021) among others. These efforts wiltcibute to a
comprehensive evaluation of the Burr PII probapiliistribution's performance and its applicability diverse

practical scenarios.
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