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Abstract

This paper proposes the 4-parameter odd Lomax generalized exponential distribution for the study of engineering and
COVID-19 data. The statistical and mathematical properties of this distribution such as a linear representation of
the probability density function, survival function, hazard rate function, moments, quantile function, order statistics,
entropy, mean deviation, characteristic function and average residual life function are established. The estimates of
parameters of the proposed distribution are obtained using maximum likelihood estimation (MLE), Maximum product
spacings (MPS), least-square estimation (LSE), and Cramer-Von-Mises estimation (CVME) methods. A Monte-Carlo
simulation experiment is carried out to study the performance of MLEs. The applicability of the proposed distribution
is evaluated using two real datasets related to engineering and COVID-19 death cases. All the computational work
was performed in R programming software.

Key Words: Characteristic function; COVID-19; Generalized exponential distribution; Hazard function; Odd Lomax
family.
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1. Introduction

Statistical models have a crucial role in modeling real-life datasets related to engineering, medicine, life sciences, etc.
However classical probability models are not sufficient to fit the various varieties of the real datasets. Hence we need
a flexible modified model that can address the deficiencies of the classical distributions. Generating a more versatile
model however depends on the choice of base distribution that we want to modify (Lee et al., 2013). In this study, we
have chosen generalized exponential distribution ( Gupta and Kundu, 2001) as a base distribution. This model can be
applied quite efficiently to study the positive lifetime data, especially in the replacement of two-parameter gamma and
two-parameter Weibull distributions. It also can be used in the study of the lifetime of components that are used in
parallel combinations (Gupta and Kundu, 2001). Suppose there are n components in a parallel system i.e. system will
work at least one of the n parts of the system work. The lifetime distribution of n component is

F (t) =
(
1− e−λt

)n
; t > 0

which is the cumulative distribution function of GED for α = n . Further, the shape of the hazard function of GED
is increasing for shape parameter > 1, decreasing for shape parameter < 1 and constant for shape parameter = 1 . In
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the literature we can observe that many authors have created new distribution using this GED distribution such as beta
generalized exponential distribution (Barreto-Souza et al., 2010), exponential extension distribution (Kumar, 2010),
Nadarajah and Haghighi (2011) has introduced an extension of the exponential distribution, exponentiated NH distribu-
tion (Lemonte, 2013), generalized inverted exponential (Singh et al., 2013), odds generalized exponential-exponential
distribution (Maiti and Pramanik, 2015), Weibull generalized exponential distribution (Mustafa et al., 2016) has in-
troduced by computing extended exponential distribution (Gómez et al., 2014) and GED. A 4-parameter modified
exponential distribution was introduced (Rasekhi et al., 2017), alpha power transformed generalized exponential dis-
tribution (Nadarajah and Okorie, 2018), truncated Cauchy power–exponential distribution (Chaudhary et al., 2020a),
truncated Cauchy power–inverse exponential distribution (Chaudhary et al., 2020b), logistic-exponential power distri-
bution (Joshi et al., 2020), and odd generalized exponential Lomax distribution (Mohamed et al., 2022).

The newly generated probability models are also useful to model daily death due to COVID-19 infection such as arc-
sine modified Weibull distribution is used by (Liu et al., 2021) to model the survival time of fifty-three COVID-19
infected patients taken from a hospital in China. Similarly Nagy et al. (2021) have studied the COVID-19 mortality
data in Kingdom of Saudi Arabia and Latvia using new distribution discrete extended odd Weibull exponential distri-
bution. Alsuhabi et al. (2022) have presented a new four-parameter continuous lifetime model with four parameters
by compounding the Lomax and the Weibull distributions called extended odd Weibull Lomax distribution and used
it to model COVID-19 dataset. Furthur an extension of Gumbel distribution has used to fit the two real data sets of
COVID-19 (Hossam et al., 2022) and also applied different estimation methods. In this work we have also used the
proposed distribution to study the COVID-19 death cases worldwide during January 21 to March 27, 2020.
The probability density function (pdf ) and cumulative distribution function (cdf ) of GED defined by (Gupta and
Kundu, 2001) having shape parameter a and scale parameter δ are

g(x ; a, δ) = aδe−δx
(
1− e−δx

)a−1
;x > 0. (1)

G(x ; a, δ) =
(
1− e−δx

)a
;x > 0. (2)

To extend the GED we have used the odd Lomax-G family of distribution defined by (Cordeiro et al., 2019) having
cdf and pdf as

F (x; δ, θ) = 1− δθ
[
δ +

G (x)

1−G (x)

]−θ
;x > 0, δ > 0, θ > 0. (3)

f (x; δ, θ) =
θδθg(x)

[1−G (x)]
2

[
δ +

G (x)

1−G (x)

]−θ−1

;x > 0. (4)

Ogunsanya et al. (2019) have also defined another format of the odd Lomax-G family and defined the new 3-parameter
model called odd Lomax exponential distribution. We feel that there is a lack of study using the odd Lomax-G family
defined by (Cordeiro et al., 2019) to the best of our knowledge so we are attracted to this family of distribution.
The different sections of the proposed work are presented as follows. The new odd Lomax generalized exponential
distribution is introduced in Section 2. In section 3 we present the properties of the proposed model. To estimate
the parameters of the model under study, we have employed four estimation techniques namely maximum likelihood
estimation (MLE), Maximum product spacings (MPS), least-square estimation (LSE), and Cramer-Von-Mises (CVM)
methods in Section 4. A simulation study for MLEs is carried out in section 5. In Section 6 we have considered two
real datasets to analyze and explore the applications of the proposed distribution. Finally, Section 7 ends up with some
general concluding remarks.

2. The odd Lomax generalized exponential (OLGE) distribution

ConsiderX be a positive continuous random variable. If the random variable X follows OLGE distribution then its
cdf must take the form like (inserting Equation (2) in Equation (3))

F (x; Φ) = 1− δθ
[
δ +

(
1− e−bx

)a
1− (1− e−bx)

a

]−θ
;x > 0,Φ > 0. (5)
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The pdf corresponding to Equation (5) is

f (x; Φ) =
abθδθe−bx

(
1− e−bx

)a−1[
1− (1− e−bx)

a]2
[
δ +

(
1− e−bx

)a
1− (1− e−bx)

a

]−θ−1

;x > 0. (6)

where Φ = (a, b, δ, θ) is a vector of parameter space of OLGE distribution.

2.1. Reliability function

The reliability function of OLEG distribution is

R (x; Φ) = δθ

[
δ +

(
1− e−bx

)a
1− (1− e−bx)

a

]−θ
;x > 0,Φ > 0. (7)

2.2. Hazard function

The hazard function of X reduces to

h (x; Φ) =
abθe−bx

(
1− e−bx

)a−1[
1− (1− e−bx)

a]2
[
δ +

(
1− e−bx

)a
1− (1− e−bx)

a

]−1

;x > 0. (8)

2.3. Reversed hazard rate function

rh (x; Φ) =
abθδθe−bx

(
1− e−bx

)a−1{
1− δθ [A(x)]

−θ
} [

1− (1− e−bx)
a]2 [A(x)]

−θ−1
;x > 0 (9)

here A(x) = δ +
(1−e−bx)

a

1−(1−e−bx)a
. We have shown the various shapes of the pdf , reverse hrf , and hazard rate function

(hrf ) of OLGE distribution for some values of Φ = (a, b, δ, θ) in Figure 1. The hrf can have constant, increasing,
decreasing and increasing and decreasing hazard functions.

3. Properties of OLGE distribution

3.1. Quantile function

The expression for quantile function can be calculated by inverting the cdf Equation (5) as

Q (p) = −1

b

[
log

{
1−

(
z

1− z

)1/a
}]

.

where z =
[{

(1− p) δ−θ
}−1/θ − δ

]
and p ∈ U (0, 1).

3.2. Linear form of OLGE distribution

Using the following two power series expansions we can express the density function of OLGE into a useful linear
form as

(b+ a)
−n

=

∞∑
i=0

(−1)i
(
n+ i− 1

i

)
an−ibi

(1− a)
n

=

∞∑
i=0

(−1)i
(
n
i

)
ai
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Figure 1: Graph of pdf and reverse hazard rate function (first column) and hazard functions (second column).
Hence the pdf define in Equation (6) reduces to

f (x; Φ) =

∞∑
k=0

∞∑
l=0

∞∑
m=0

Zklm e−(1+m)bx (10)

where Zklm = abθδθ+k (−1)
k+l+m

(
θ + k
k

)(
θ + k − 1

l

)(
al − aθ − ak − 1

m

)
. Now the pdf defined in

Equation (10) can be expressed as the linear density of exponential distribution as

f (x; Φ) =

∞∑
k=0

∞∑
l=0

∞∑
m=0

Z∗m f
∗(x; (1 +m)b) (11)
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where f∗(x; (1 + m)b) is the density function of exponential distribution with shape parameter λ = (1 + m)b and

Z∗m = aθ
∞∑
k=0

∞∑
l=0

δθ+k (−1)
k+l+m

(
θ + k
k

)(
θ + k − 1

l

)(
al − aθ − ak − 1

m+ 1

)
.

3.3. Moment

The moment of random variable X taken from origin i.e. raw moments can be calculated as

µ
′

r =

∞∫
0

xrf (x) dx

=

∞∑
k=0

∞∑
l=0

∞∑
m=0

Zklm

∞∫
0

xre−(1+m)bxdx

=

∞∑
k=0

∞∑
l=0

∞∑
m=0

Zklm
Γ (r + 1)

[(1 +m)b]
r+1

(12)

where Γ (r + 1) is the gamma function defined as Γ(n+1)
an+1 =

∞∫
0

xn exp {−ax} dx. Now rth central moments can be

calculated as

µr = E
(
X − µ

′

1

)r
=

∞∑
j=0

(−1)j
(
r
j

)
µ
′

1µ
′

r−j .

3.4. Conditional Moment

It can be expressed for OLGE distribution as

µCM = E (Xn/X > x) =
1

R (x)

∞∫
x

tnf (t) dt

=
1

R (x)

∞∑
k=0

∞∑
l=0

∞∑
m=0

Zk lm
Γ ({n+ 1, (1 +m)bx})

[(1 +m)b]
n+1 .

(13)

here R (x) is the reliability function defined in Equation (7).

3.5. Moment generating function

Let Mx (t) denote moment generating function of random variable X of OLGE distribution, and then it can be ex-
pressed as

Mx (t) =

∞∑
n=0

tn

n!
µ
′

r

=

∞∑
k=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

tn

n!
Zklm

Γ (r + 1)

[(1 +m)b]
r+1 .

(14)
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3.6. Characteristic Function

Let X be a random variable that follows OLGE distribution then its characteristic function can be defined as

ΩX(t) = E
(
eitX

)
=

∞∫
0

eitxf (x) dx

=

∞∑
k=0

∞∑
l=0

∞∑
m=0

Zklm

∞∫
0

e−{(1+m)b−it}xdx

=

∞∑
k=0

∞∑
l=0

∞∑
m=0

Zklm
{(1 +m)b− it}

(15)

here i =
√
−1 is a complex number.

3.7. Average Residual Life Function

Let X − x is the expected remaining life of a component or an item given that it has survived up to time x can be
calculated using pdf defined in Equation (10) as

µ (x) =

∞∫
0

x f (x) dx

1− F (x)
− x

=

∞∑
k=0

∞∑
l=0

∞∑
m=0

Zklm
Γ(2)

{(1+m)b}2

1− F (x)
− x

. (16)

3.8. Entropies

Renyi Entropy
Rényi (1961) has introduced the measures of entropy and it can be used to measure the variability of uncertainty and
calculated as

Iρ(X) =
1

1− ρ
log

+∞∫
−∞

{f(x)}ρ dx; ρ > 0 and ρ 6= 1. (17)

After expanding {f(x)}ρ as we expand Equation (10) we get

{f(x)}ρ =

∞∑
k=0

∞∑
l=0

∞∑
m=0

Hk lme
−{(d+m)b}x. (18)

Using Equation (18) in Equation (17) we get

Iρ(X) =
1

1− ρ
log

 ∞∑
k=0

∞∑
l=0

∞∑
m=0

Hk lm

+∞∫
0

e−{(d+m)b}xdx


=

1

1− ρ
log

[ ∞∑
k=0

∞∑
l=0

∞∑
m=0

Hk lm
1

(d+m)b

]

where Hk lm = (abθ)
d
δθd+k (−1)

k+l+m

(
θd+ d+ k − 1

k

)(
θd− d+ k

l

)(
al − ak − aθd− d

m

)
.

q-entropy
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For the random variable X ∼ OLGE (Φ) distribution, the q-entropy is expressed as

Mq(X) =
1

1− q
log

1−
∞∫

0

{f(x)}q dx

 ; q > 0 and q 6= 1. (19)

Using the results of (18) by replacing ρ by q in (19) we can write

Iq(X) =
1

1− q
log

[
1−

∞∑
k=0

∞∑
l=0

∞∑
m=0

Hk lm
1

(d+m)b

]
. (20)

3.9. Mean Deviation

The mean deviation taken from mean (µ) can be obtained as

Z (µ) = E |X − µ|

= 2µF (µ)− 2µ+

∞∫
µ

xf (x) dx

= 2µF (µ)− 2µ+

∞∑
k=0

∞∑
l=0

∞∑
m=0

Zk lm
Γ {2, (1 +m)bµ}

[(1 +m)b]
2 .

Similarly, the mean deviation from the median (Md) is

Z (Md) = E |X −Md|

= MdF (Md)−Md − µ+ 2

∞∫
Md

x f (x) dx

= MdF (Md)−Md − µ+ 2

∞∑
k=0

∞∑
l=0

∞∑
m=0

Zk lm
Γ ({2, (1 +m)bMd})

[(1 +m)b]
2 .

here µ and Md are the values of the mean and median.

4. Estimation Methods

4.1. Maximum Likelihood Estimation (MLE) Method

To estimate the parameters of the OLGE distribution, we have used the MLE method. Let, x1, ..., xn be a random
sample from OLGE (Φ) and the likelihood function L (a, b, δ, θ) is given by,

L (x ; Φ) =
(
abδθθ

)n n∏
i=1

exp (−bxi)
{1− exp (−bxi)}a−1

[1− {1− exp (−bxi)}a]
2

[
δ +

{1− exp (−bxi)}a

1− {1− exp (−bxi)}a
]−θ−1

(21)

Now log-likelihood density of Equation (21) is

` = n log
(
abδθθ

)
−b

n∑
i=1

xi+

n∑
i=1

log {T (xi)}a−1
+2

n∑
i=1

log {1− T (xi)}−(θ + 1) log

[
δ +

{T (xi)}a

1− {T (xi)}a
]

(22)

where T (xi) = 1 − exp (−bxi) To get the MLEs of the proposed distribution analytically we have to maximize
Equation (22) with respect to model parameters.

Application of Engineering and COVID-19 data by using Odd Lomax Generalized Exponential Distribution 889



Pak.j.stat.oper.res. Vol.18 No.4 2022 pp 883-900 DOI: https://dx.doi.org/10.18187/pjsor.v18i4.4149

4.2. Maximum Product of Spacings (MPS) estimation method

The MPS estimation method can be used as a substitute for the MLE method introduced by (Cheng and Amin, 1983)
for the parameter estimation of continuous univariate probability models. Let x1 < ... < xn be an ordered random
sample from OLGE distribution then the uniform spacings of that random sample can be calculated as

Di(Φ) = F
(
x(i),Φ

)
− F

(
x(i−1),Φ

)
= δθ

[
δ +

(
1− e−bx(i−1)

)a
1−

(
1− e−bx(i−1)

)a
]−θ
− δθ

[
δ +

(
1− e−bx(i)

)a
1−

(
1− e−bx(i)

)a
]−θ

, i = 1... (n+ 1)
(23)

where F (x0 :n |Φ) = 0, F (xn+1 :n |Φ) = 1 and
n+1∑
i=1

Di(Φ) = 1. To obtain the MPS estimators we have to minimize

the following function with respect to parameters as K (Φ) = 1
n+1

n+1∑
i=1

log [Di(Φ)].

4.3. Method of Least-Square Estimation (LSE)

The ordinary least square estimates for the OLGE distribution can be obtained by minimizing

K (X; Φ) =

n∑
i=1

[
F (X(i); Φ)− i

n+ 1

]2

(24)

with respect to underlying parameters Φ = (a, b, δ, θ) .
Consider the ordered random variables X(1) < . . . < X(n) where X = {X1, . . . , Xn} is a random sample of size
n and F (Xi) denotes the distribution function. The least-square estimators of Φ = (a, b, δ, θ) can be obtained by
minimizing the Equation (25)

K (x; Φ) =

n∑
i=1

1− δθ
[
δ +

(
1− e−bx(i)

)a
1−

(
1− e−bx(i)

)a
]−θ

− i

n+ 1

2

(25)

4.4. Method of Cramer-Von-Mises estimation (CVME)

The Cramer-Von-Mises estimates Φ = (a, b, δ, θ) are obtained by minimizing the function

W (X; Φ) =
1

12n
+

n∑
i=1

[
F (xi:n|Φ)− 2i− 1

2n

]2

=
1

12n
+

n∑
i=1

1− δθ
[
δ +

(
1− e−bx(i)

)a
1−

(
1− e−bx(i)

)a
]−θ
− 2i− 1

2n

2 (26)

5. Simulation Study

In this section, we have presented the Monte-Carlo simulation to study the performance of MLEs using the tools bias
and mean square error (MSE). R programming language is used to perform the Monte-Carlo experiment. In this study,
we have considered different sample sizes and different values of the parameter of OLGE distribution. By repeating
1000 times we have generated 20 samples from OLGE distribution of size n = (50, 100, 150, 200, 250, 300, 350, 400,
450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000) and we have chosen two sets of actual parameter values
as set1 : (a = 1, b = 0.5, δ = 2, θ = 0.5) and set2 : (a = 2, b = 0.25, δ = 0.5, θ = 1.5). The average values,
biases and MSEs are reported in Appendix (A.1 to A.6) and also we have presented the results obtained via graphs (
see Figures 2 and 3). We observed that the estimated values are nearly close to the actual parameter values as the size
of the samples increases and also biases and MSEs are decreased as the sample size increases.
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Figure 2: Bias and MSE for set 1
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Figure 3: Bias and MSE for set 1
6. Illustration with Engineering and COVID-19 datasets

The capability of fit and flexibility of the proposed model is verified using two sets of real data by comparing it with
some distributions that already exist in the literature.

6.1. Exploratory data analysis (EDA) of engineering dataset

The engineering dataset consists of 25(100cm) specimens of yarn, which were tested at a certain strain level, and it rep-
resents the number of cycles to failure (Lawless, 2011; Elshahhat and Elemary, 2021). The data are: 20, 15, 61, 38, 98,
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42, 86, 76, 146, 121, 157, 149, 175, 180, 176, 180, 220, 198, 224, 264, 251, 282, 325, 321, 653. The summary statistics
of the dataset is presented in Table 1 and histogram and total time on test (TTT) plots are also displayed in Figure 4.

Table 1: Summary statistics of engineering dataset
Min. First Quartile median mean Third Quartile Max. Skewness Kurtosis
15.0 86.0 175.0 178.3 224.0 653.0 1.627292 3.78314
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Figure 4: Histogram and TTT plots of engineering dataset.

6.2. EDA of COVID-19 dataset

The second dataset represents the daily death of COVID-19 across the world between January 21 to March 27, 2020,
recorded from (Worldometers, 2020) for sixty-seven days. The data are 3, 3, 8, 16, 15, 24, 26, 26, 38, 43, 46, 45, 58, 64,
66, 73, 73, 86, 89, 97, 108, 97, 146, 122, 143, 143, 106, 98, 136, 117, 121, 113, 100, 158, 81, 64, 37, 58, 65, 54, 73, 67,
85, 83, 102, 107, 105, 228, 198, 271, 332, 353, 447, 405, 687, 642, 817, 972, 1079, 1356, 1625, 1629, 1873, 2381, 2388,
2791, 3271.
The summary statistics of the dataset are presented in Table 2 and histogram and TTT plots are also displayed in Figure
5.

Table 2: Summary statistics of the COVID-19 dataset
Min. First Quartile median mean Third Quartile Max. Skewness Kurtosis

3 64 102 408 301.5 3271 2.362177 4.858592

6.3. Estimation of the Unknown Parameters

In this study, four estimation methods are utilized to estimate the parameters of the proposed model and we have
presented MLEs, MPS, LSEs, and CVMEs for OLGE distribution (see Table 3 and Table 4) for both datasets using
the maxLik() function (Henningsen and Toomet, 2011) in R software (R Core Team, 2022) and (Lander, 2014). For
both data sets, MLE performs better than MPS, LSE and CVME methods (see Figure 6).

6.4. Validity Test of the OLGE distribution

To test the validity of the proposed model we have presented the Kolmogorov-Smirnov (KS) test and found the values
of test statistic 0.10788(0.9331) and 0.1213(0.2775) with p− value in parenthesis respectively for both datasets also
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Figure 5: Histogram and TTT plots of COVID-19 dataset.

Table 3: Estimated values via MLE, MPS, LSE and CVME Methods (Engineering data)

Estimation Method a b δ θ AIC BIC

MLE 1.3396 0.0135 3.248 0.724 312.2311 317.1066
MPS 0.73 0.0156 4.9703 0.509 313.058 317.9335
LSE 2.0422 0.011 1.4127 0.7944 312.8834 317.7589
CVME 2.2581 0.0239 1.5752 0.2921 313.4652 318.3407
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Figure 6: Comparison of the MLE, MPS, LSE and CVME Methods for engineering data (left panel) and COVID-19
data (right panel).
we have plotted KS plot and Q-Q plot (see Figures 7 and 8). These results support that the OLGE distribution fits data
very well.
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Table 4: Estimated values via MLE, MPS, LSE and CVME Methods (COVID-19 data)

Estimation Method a b δ θ AIC BIC

MLE 1.8458 0.0018 0.0121 0.4233 897.6426 906.4613
MPS 0.5805 0.0024 0.5634 0.5392 925.8073 934.6261
LSE 2.1056 0.0528 0.9203 0.1335 NA NA
CVME 2.0497 0.0458 1.4566 0.1779 NA NA
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Figure 7: KS plot (left panel) and Q-Q plot (right panel) for the engineering dataset.
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Figure 8: KS plot (left panel) and Q-Q plot (right panel) for the COVID-19 dataset.
6.5. Model Selection

To compare the performance of OLGE distribution with some modified form of exponential and generalized expo-
nential distributions such as the odd generalized exponential Lomax (OGEL) distribution (Mohamed et al., 2022),
generalized inverted exponential (GIE) distribution (Singh et al., 2013), odd Lomax exponential (OLE) distribu-
tion (Ogunsanya et al., 2019), exponential extension (EE) distribution (Kumar, 2010) and generalized exponential
(GE) distribution (Gupta and Kundu2001). Some goodness of fit statistics such as maximum log-likelihood (LL),
Kolmogorov-Smirnov (KS), Cramer-von Mises (W ), and Anderson-Darling (A2) tests are used for each model and
results are presented in Table 5 and Table 6 for both datasets. It is observed that the OLGE distribution gets the mini-
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mum value of the test statistic and a higher p-value hence the proposed model is the best among five competing models
for the both datasets. Further, this result has also been verified by the graphical method (see Figures 9 and 10).

Table 5: The goodness-of-fit statistics (engineering data)

Model LL KS(p-value) W (p-value) A2(p-value)

OLGE -152.1155 0.10788(0.9331) 0.2576(0.966) 0.0360(0.9556)
OGEL -152.4016 0.1307(0.7866) 0.3344(0.9094) 0.0532(0.8605)
GIE -158.091 0.2907(0.0293) 1.6802(0.1391) 0.3179(0.1201)
OLE -154.6487 0.2633(0.0625) 1.1807(0.2745) 0.2244(0.2254)
EE -153.2891 0.146(0.6609) 0.5608(0.6841) 0.0921(0.6292)
GE -152.4905 0.1441(0.6773) 0.3877(0.8596) 0.0667(0.7765)

Table 6: The goodness-of-fit statistics (COVID-19 data)

Model LL KS(p-value) W(p-value) A2(p-value)

OLGE -444.8213 0.1213(0.2775) 0.9072(0.4095) 0.161(0.3584)
OGEL -448.8046 0.2741(0.1602) 1.4377(0.1921) 0.1496(0.0999)
GIE -460.3788 0.2971(0.00001) 3.5612(0.0144) 0.6634(0.0154)
OLE -451.1612 0.3256(1.354e-06) 2.3541(0.0593) 0.4704(0.0471)
EE -450.3552 0.3808(0.0810) 1.927(0.101) 0.1708(0.0402)
GE -460.076 0.2644(0.0001) 4.6557(0.0042) 0.9857(0.0025)
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Figure 9: The Histogram and density function of fitted distributions and fitted CDF ( for engineering data)

6.6. Prediction of Mortality Rates

The mortality rate of death cases in the world due to COVID-19 during the period January 21 to March 27, 2020, has
been predicted based on MLEs using the OLGE distribution and reported in (Table 7).

Table 7: Prediction of Deaths
No. of Death 0-500 500-1000 1000-1500 1500-2000 2000-2500 2500-3000 3000 and above
Probability 0.8153 0.0829 0.0372 0.0219 0.0141 0.0093 0.0193
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Figure 10: The Histogram and density function of fitted distributions and fitted CDF ( for CVOID-19 data)
7. Conclusion

We suggest a univariate continuous probability distribution having four parameters named odd Lomax generalized
exponential distribution. Some significant statistical properties of the OLGE distribution are discussed such as a linear
mixture of exponential densities, moment and moment generating function, mean deviation, entropy and characteristic
function. The parameters of the proposed distribution are estimated by using maximum likelihood estimation (MLE),
Maximum product spacings (MPS), least-square estimation (LSE), and Cramer-Von-Mises estimation (CVME) meth-
ods. A Monte-Carlo simulation experiment is carried out to study the behavior of MLEs and we found that bias and
MSEs decrease as the sample size increases this indicates that MLEs are asymptotically unbiased and consistent. The
two real datasets related to engineering and death cases of COVID-19 are analyzed to explore the potentiality and
suitability of the proposed model and observed that the presented model is quite better than five other existing models
taken for illustration. We expect this model can be used in the field of survival analysis, engineering, applied statistics,
and probability theory. Bayesian Analysis and time series regression analysis can be performed for further study using
this model.
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Table A.1: Estimates for set1
n a = 1 b = 0.5 δ = 2 θ = 0.5
50 1.3295814 0.5923795 4.753318 2.8617164

100 1.0871675 0.5115287 3.5234137 2.594559
150 1.0421402 0.5161087 3.0194602 2.333846
200 1.0282517 0.5017459 2.6876562 1.9522008
250 1.0237234 0.5134218 2.5586245 1.6499123
300 1.0216291 0.4925625 2.428145 1.592046
350 1.0196297 0.4863902 2.3642415 1.4371739
400 1.013246 0.493893 2.325024 1.33077
450 1.0111406 0.4906614 2.2988432 1.2682909
500 1.013646 0.484208 2.234005 1.160491
550 1.0113526 0.4858464 2.1943205 1.0754713
600 1.00978 0.4914759 2.1894946 1.0369218
650 1.0093922 0.4900785 2.1547149 0.935341
700 1.0109245 0.4872083 2.1430901 0.9873087
750 1.0083527 0.4886213 2.1351356 0.922056
800 1.0074945 0.4892342 2.1132166 0.8503103
850 1.0065793 0.4870848 2.1148698 0.8674024
900 1.0078942 0.4846366 2.1034206 0.8182404
950 1.0063818 0.4836907 2.0971905 0.8168285
1000 1.0037205 0.4893072 2.0946992 0.7556323

Table A.2: Bias for set1
n a = 1 b = 0.5 δ = 2 θ = 0.5
50 0.3295814 0.0923795 2.753318 2.3617165

100 0.0871675 0.0115287 1.5234137 2.094559
150 0.0421403 0.0161087 1.0194602 1.833846
200 0.0282517 0.0017459 0.6876562 1.452201
250 0.0237234 0.0134218 0.5586245 1.1499123
300 0.0216291 -0.0074375 0.428145 1.092046
350 0.0196297 -0.0136098 0.3642415 0.9371739
400 0.0132461 -0.006107 0.3250241 0.8307703
450 0.0111406 -0.0093386 0.2988432 0.7682909
500 0.0136463 -0.015792 0.2340046 0.660491
550 0.0113526 -0.0141536 0.1943206 0.5754713
600 0.00978 -0.0085241 0.1894946 0.5369218
650 0.0093922 -0.0099215 0.1547149 0.435341
700 0.0109245 -0.0127917 0.1430901 0.4873087
750 0.0083527 -0.0113787 0.1351356 0.422056
800 0.0074945 -0.0107658 0.1132166 0.3503103
850 0.0065793 -0.0129152 0.1148698 0.3674024
900 0.0078942 -0.0153634 0.1034206 0.3182404
950 0.0063818 -0.0163093 0.0971905 0.3168285
1000 0.0037205 -0.0106928 0.0946992 0.2556323
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Table A.3: Mean square errors set1
n a = 1 b = 0.5 δ = 2 θ = 0.5
50 1.211596 0.2144661 45.009518 55.519472

100 0.1957614 0.1340271 12.308519 19.12876
150 0.1246451 0.1217517 5.3600766 10.668457
200 0.0830171 0.0987142 2.9023194 7.215288
250 0.0684513 0.0910644 2.4594024 6.3852757
300 0.0507718 0.0824469 1.4892253 5.0236602
350 0.0440997 0.0763008 1.477688 4.8204124
400 0.0368833 0.0733858 1.1771981 4.4022705
450 0.0339244 0.0678648 1.2616456 4.4081753
500 0.0317175 0.0605511 0.781347 3.7333608
550 0.0268312 0.0602028 0.5539991 3.3869608
600 0.0245975 0.0566879 0.5580211 3.376505
650 0.0234139 0.0530465 0.4503567 3.1645013
700 0.0239104 0.0516685 0.4329501 3.1122205
750 0.0219878 0.0482927 0.4060388 3.0614456
800 0.02078 0.0476411 0.3375802 2.9272299
850 0.0201333 0.0457505 0.3299239 2.9245333
900 0.0189145 0.0426188 0.3207862 2.881048
950 0.0188624 0.0402541 0.2908654 2.832437
1000 0.0171926 0.0393464 0.2690358 2.803133

A.4: Estimates set2
n a = 2 b = 0.25 δ = 0.5 θ = 1.5
50 3.1177063 0.6711956 1.4157631 2.4721277

100 2.4570414 0.5370403 0.8565649 1.970193
150 2.3242213 0.5000795 0.6994618 1.6357556
200 2.2610228 0.470992 0.6259053 1.5343338
250 2.2403475 0.456084 0.6043913 1.5393505
300 2.212038 0.4420504 0.5884175 1.4565349
350 2.1828094 0.4256901 0.5911937 1.4462613
400 2.1744221 0.4198937 0.5785921 1.441012
450 2.1582356 0.4147477 0.5703443 1.4670874
500 2.1424863 0.3975438 0.5678462 1.461286
550 2.1364442 0.397737 0.5687254 1.4348304
600 2.1240121 0.3794616 0.5516165 1.4695137
650 2.12497 0.3891445 0.5595599 1.4644239
700 2.1186386 0.3806773 0.5554503 1.4501559
750 2.1091821 0.3732648 0.5508524 1.4745983
800 2.1063297 0.3757564 0.5576492 1.4576827
850 2.1030752 0.3695668 0.5507369 1.4522757
900 2.0995089 0.3675717 0.5521869 1.4559166
950 2.0936721 0.3568325 0.5441705 1.4710771
1000 2.0907246 0.3565701 0.5461962 1.4852708
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Table A.5: Bias set2
n a = 2 b = 0.25 δ = 0.5 θ = 1.5
50 1.1177063 0.4211956 0.9157631 0.972127

100 0.4570414 0.2870403 0.3565649 0.470193
150 0.3242213 0.2500795 0.1994618 0.1357556
200 0.2610228 0.220992 0.1259053 0.0343337
250 0.2403475 0.206084 0.1043913 0.0393505
300 0.212038 0.1920504 0.0884175 -0.0434651
350 0.1828094 0.1756901 0.0911937 -0.0537387
400 0.1744221 0.1698937 0.0785921 -0.0589881
450 0.1582356 0.1647477 0.0703443 -0.0329126
500 0.1424863 0.1475438 0.0678462 -0.038714
550 0.1364442 0.147737 0.0687254 -0.0651696
600 0.1240121 0.1294616 0.0516165 -0.0304863
650 0.12497 0.1391445 0.0595599 -0.0355761
700 0.1186386 0.1306773 0.0554503 -0.0498441
750 0.1091821 0.1232648 0.0508524 -0.0254018
800 0.1063297 0.1257564 0.0576492 -0.0423173
850 0.1030752 0.1195668 0.0507369 -0.0477243
900 0.0995089 0.1175717 0.0521869 -0.0440834
950 0.0936722 0.1068325 0.0441705 -0.0289229
1000 0.0907246 0.1065701 0.0461962 -0.0147293

Table A.6: Mean square errors set2
n a = 2 b = 0.25 δ = 0.5 θ = 1.5
50 8.1772258 0.6929987 8.6196629 7.7881367

100 1.3400216 0.3904067 1.7621869 2.0490572
150 0.7920442 0.2888463 0.4983121 1.0993885
200 0.5092755 0.24603 0.2406515 0.9888409
250 0.4355471 0.2251577 0.2580189 1.0492362
300 0.2990486 0.1861827 0.1530715 0.9762365
350 0.2271321 0.1582706 0.1524354 0.970048
400 0.2071816 0.1531205 0.1263929 0.9692087
450 0.1750197 0.1496214 0.1207365 0.980048
500 0.1596171 0.1288027 0.1086715 0.9729792
550 0.1400643 0.124998 0.1080503 0.970599
600 0.1204872 0.1068673 0.0968028 0.9935698
650 0.1208916 0.1194807 0.0985731 0.9794532
700 0.1146175 0.107546 0.0952925 0.9843919
750 0.1045939 0.1046591 0.0873012 0.9855964
800 0.0973783 0.1028302 0.0864718 0.9711735
850 0.0941655 0.096507 0.0823667 0.9808929
900 0.089781 0.0957085 0.0790988 0.974725
950 0.0914647 0.0888862 0.0737782 0.9854371
1000 0.0869548 0.0904649 0.0735407 0.9811482
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