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Abstract

A mathematical model is a mathematical connection that describes some real-life scenario. To handle real-world
problems securely and effectively, simulation modelling is required. In this article, the author investigates the
stochastic regression model scenario in which the dependent and independent variables in a linear regression
model follow a distribution. We assume that the dependent and independent variables both exhibit Type |
Extreme Value Distribution. The estimators are then derived using the Modified Maximum Likelihood (MML)
estimation method. In accordance with this, a hypothesis testing technique is developed.
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1. Introduction

Main focus of univariate regression is to analyze the relationship between a dependent variable and one independent
variable and formulates the linear relation equation between dependent and independent variable (Kinal and
Lahiri,1983; Lai,1994; Magdalinos and kandilorou,2001; Narula, 1974). Regression models with one dependent
variable and more than one independent variables are called multilinear regression. Simultaneously, the conditions
that have to be met for its appropriate use and the situations in which regression analysis may result in disastrously
inaccurate conclusions if these conditions don’t seem to be met (Akkaya and Tiku,2001; Akkaya and Tiku,2005;
Bharali and Hazarika,2019). Providing greater importance to the assumption that the independent variable X is
historically called nonstochastic, it is realized that the assumption of a nonstochastic regressor is not necessarily
plausible; the regressor can be stochastic in nature. It is true for experimental research, in which the experimenter
has power over the independent variables and may evaluate the outcome of the dependent variable continuously for
the same defined values or any of the independent variables assigned values (Reynolds,1982; Sazak et.al,
2006;Tiku,1980). In the social sciences, the independent variables in one equation are often generated as the
outcome variables of other equations that are stochastic in nature (Bharali and Hazarika,2022; Hwang,1980; Judge
et. all,1988). Thus they neither have the same fixed values in repeated samples nor do they have values that
correspond to the investigator’s desired experimental design (Bowden and Turkington,1981; Ehrenberg,1963;
Hooper and Zellner,1961). Thus, the dependent variable is always under the influence of explanatory factors, which
are stochastic in design, in a non-experimental or unregulated environment.

The term stochastic regressor refers that the regressors, i.e. the independent variables,
becoming unpredictable with the time transition. In the case of Stochastic regressors, the basic assumption are: i) X,
Y, & random ii) (X,Y) obtained from i.i.d sampling iii) g(¢|x)=0 iVv) X takes atleast two values

V) Var(e| X)=o? Vi) € is normal. The Variables X is the independent variable, Y dependent variable and ¢ is the error
term.
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However, it has been acknowledged that in numerous applications X may be stochastic, and e the random error term
may not be normal. This may give rise to three problems (a) X is non-stochastic, and e is non-normal. (b) X is
stochastic, and e is normal (c) X is stochastic, and e is non-normal (Islam et al, 2001; Islam et all,2005; Islam et al,
2010, Kerridge,1967; Vaughan and Tiku,200; Tiku et al,2001; Tiku and Suresh, 1992).

2. Preliminaries

We consider a situation where the marginal distribution of X and the conditional distributions of (Y|X=x) are
stochastic in nature. The distribution of variable X is assumed to be Extreme Value Distribution (Type 1) with
probability density function,

(3

{eapd ),

91

900 =—e
o @
and the conditional density function of (Y|X=x) is Extreme Value Distribution (Type I) -
[ Y=t~ p e (X=t4) [ y—/lz—p%(x—#l)J
Lo e )
o,(1- ,02)E 2)
where, -00 <x <o, -0 <y <oo; pg, LER; 01,02 >0and-1<p<1

h(y|x) =

3. Modified Maximum Likelihood Estimator (MMLE) and it’s Properties:

While doing parameter estimations, sometimes the solutions may have no explicit solutions. Solving them by
iteration can be a difficult task as is determining the properties of the resulting estimators, especially for small
samples. However, there are some fundamental difficulties with iterative solutions. In such cases maximum
likelihood doesn’t work, and a modification was suggested over simple maximum likelihood method so that
modified equation has a explicate solution. A modified method over Maximum Likelihood Estimation (MLE)
Method called Modified Maximum Likelihood Estimation (MMLE) Method was introduced and developed by Tiku
in 1967. Further, Mehrotra and Nanda 1974; Pearson and Rootzen 1977; Tiku and Suresh 1992; Rosaiah et al.
1993a; Rosaiah et al. 1993b; Kantam and Srinivasa Rao 1993; Kantam and Srinivasa Rao 2002; Kantam and Sriram
2003 and the references therein are some of the works in this direction. The MMLE method expresses likelihood
equations in terms of order statistics and then linearizes the intractable terms. The resulting estimators are called
Modified Maximum Likelihood (MML).
The following properties are known to have under the usual regularity conditions for the existence of
maximum likelihood estimators (Vaugan and Tiku 2000).
a. asymptotically, MML estimators are efficient i.e. they are unbiased and their variances are equal to the
Minimum Variance Bounds (MVB).
b. for small samples, the MML estimators are almost fully efficient i.e. they have no or unimportant bias and
their variances are only marginally, if at all, greater than the MVB.
c. the MML estimators are explicit functions of sample interpretation and are easy to compute and their
properties are uncomplicated to determine.
Moreover, the MML estimators are numerically very close to the ML estimates for all sample sizes. This
method can be utilized to estimate the parameters in the bivariate distribution with density g(x,y).
g(x,y)= 9(x)g(ylx)
where g(x) is the distribution of X and g(y|x) is conditional distribution of (y|x) respectively.

3.1. Estimation Procedure of MMLE:

Suppose, we consider the three parameter log normal distribution with parameter (4, u, 02), where A is the

location parameter, p is the scale parameter and o? is the shape parameter. Accordingly, pdf is given by-
———exXpL[In(Xx-A) -y’ , A < x<0,6° > 0,~0< <

f(X;ﬁ”IJ,Uz): Z”UZ(X—A) 20 a

0, elsewhere
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The estimators for three unknown parameters (4, x4, ), for lognormal distribution can be obtained by using
the following algorithm:
Step 1: Get the likelihood of the given distribution.
Step 2: Take the natural log of the likelihood function obtain in step 1.
Step 3: Find the partial derivatives of the log-likelihood with respect to the three unknown parameters.
Step 4: Equate the derivatives in step 3 with zero and solve for p and ¢°.
Step 5: To obtain the MML estimators, which have all the properties, first order the values xi, 1<i < n, (in
ascending order) of magnitude. The equations reduce to a new form.
Step 6: Solving the new transform equations are difficult, so linearize the function by using the first two
terms of Taylor Series expansion around tg) = E(Z).
Step 7: Substitute the terms of the tailor series expansion in the equations and estimated the parameters from
the new set of equations.
MML estimators are asymptotically equivalent to the ML estimators, their asymptotic variances and the
covariance are given by where is the Fisher information matrix.
The method can solve particularly two problems of likelihood function:
When the value of any ordered sample Xj, Xz,...Xn will not tend to oo as (A,u,6%) approaches (X, -oo, o), this
method can be utilized for any sample sizes. It avoids the problem of convergence in Newton-Raphson iteration
method which produces no solutions for A, when sample size is very small (n<10) (Colin Chen, 2005). However,
this method also has some disadvantages. Some information about the sample is lost since the smallest value of x
is not included in the formulation to calculate the estimate values of p and 6.
4. Estimation of Parameters

The likelihood function based on the marginal distribution of X and the conditional distribution of (Y|X=x) as the
Extreme Value Distribution of Type I is as follows,

L, :H (X 1,,0,) :Glfn EXDZ{(Xi _ﬂl]_exp (Xi _ﬂl}}
i=1 i=1 01 01

and |

" =E[ f (6 Y; 4 145,041,065, p)
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Lwo, "o, "(l-p°)2 exp{zn:z,—zn:expz +Z(

i=1 i=1 i=1

After taking log both sides,

InL——nInal—nIno-21+ZZ Zexpz +Z(

i=1 i=1 =1

"J ©)

031

where —oo <z <oo; —co<e<o; u, i, €R; 0,,0,,>0
X, — i o —
and % —(0_1} & =(Yi —0% — 1), H:p;z,/jz_l:,uz—ﬁ,ul, Oy =0, 1_p2
1

1

€& =Y~ K, _p%(xi — ) =Y —O% —p,, where g, , =, — O
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Likelihood equations w.r.t the parameters x, o, 11,,,0,,and @ are—

aillnL:—Or_11+;1iZ:expzi =0 (4)
iI L_—;1 ;.an:z'+ 2Zexpz =0 ©®)
6,52_1 = —G—Zl + iZl:exp( :ZJ =0 (6)
o, InL= —0—21— 0_2112 ge, +— 5 Zexp( J(e )=0 (7
%In L:—a:1 ;z +Gzllgexp( J(z )=0 ®)

5. The Modified Maximum Likelihood (MML) Estimators

MMLE provides a framework to handle missing data more effectively by integrating over the missing values. This
can lead to more accurate parameter estimates and better model fit. It allows for the incorporation of prior
knowledge and this is particularly useful in Bayesian modeling, where prior information about the parameters can be
combined with the observed data to obtain more informative estimates. MLE assumes that the observed data follow
a specific probability distribution. While this assumption is often reasonable, it can limit the flexibility of the model.
On the other hand, MMLE allows for more flexible modeling assumptions by considering a wider class of
probability distributions or using nonparametric methods. This can be beneficial when the data do not adhere strictly
to the assumed distribution. Though MMLE involves additional computational steps, it is helpful in the case of

relatively complex situations. In this research work, because of the functions e(az-1 )ei and e(ajzi , in the above

equations (4) to (8) are almost impossible to solve. Hence, we use Modified Maximum Likelihood (MML) Method
to solve the above equations.

To find the MML estimators, we define, w, =y, -6

We order the values xiand wi, 1<i < n, in ascending order of magnitude as
Xgy SXg £ X £ < Xy

Wiy < Wy < W) <...S W, )

Then, €y =Wgy — oy = (¥; _@(l)_uzllhas the same order with W) since ,,is a constant and 2, :[X(i) —#1Jhas
1 61

the same order with X, since £ is a constant and o is positive.

We also define, 5 _ & sothat a, _ & _Wo " Ha
1
021 021 01

. Xi —lu . -
Now, Woy = Vi — 0% 0 (X ym)and 2 :( [16 1Jare the concomitants of Wiy -
1

Since complete sums are invariant to ordering, the likelihood equations can be written as g,(z) =e* and 92(@) =¢*

0 s )
O L= z O ,___7_7 =0
6/11 InL o, +— o, 5 g1(z(|)) 0 aO'l o, ;Z(I) z ;911(2(1))

0 1 @

InL_——+ a; )=0 InL———— e, a; leq, =0

Ha1 Oa1 292( ()) a0'2.1 021 5212 ,2_1: 52.12 iZ:l:gZ( ()) © > (10
0 o
@'nb—fﬁm pn Zgz(a(,)) 25 =0

21 i=l 2.1 i=l J
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To derive the MML estimators, we linearize the function 9:(2¢) and 9,(ag) by using the first two terms of Taylor
Series Expansion around E(Z(i)) :tl(i)and E(zg) =t

91(Z(i)) = gl(tl(i)) +[Z(i) _tl(i)](% gl(z(i)»

2(1)

_ali (1 _ iy _
20ty el tl(i))+ € =0, + By Zi (11)

where o =e"" (1-t,;) and B, =e""

0,(80) = 9 (te)) +[ag) ~to (& 9,(a0))). | =€ @A-t,) +aue™ =a, + B, a,

T (12)
where «; =e"0 (1_t2(i))1 Pai ="
Substituting the values (11) and (12) to (10),
0
b= 4, 7) =0
Oy o, o 21: i £(0) \
iln L= Z:Z(' Z(a +5i 7)) =0
aal 1 i=1 1 i=1
0
InL*=-— —+7 (a+ﬁlzl) 0
Oty 021 021 |Zl: 2% > )
0 InL*= Ze(,) Ze (@ + By a“)) 0
021 621 0'21 i1 0,
8
In L*= —722(0 sz(“ + Bydg) =0 )
021 i Oy it

The equations have explicit solutions which are the following MML estimators:

,LAﬁ:Kl"'UAlDl

(14)
A B, +4B +4nC,
o = AT NP T
! 2n (15)
N A Xi A o_/\
/Uzl Y~ m, 21 (16)
. —-B++/B*+4nc
“ 2n 17)
é =K,-D, O'Az.l
(18)

where  m, =Zn:ﬂ1iv m, :iﬂzir A, =Zn:(l—ai)

L >4 )0y, )
:aZﬁhxm ; K, ==
o Zﬂm /ul

> -a)x - 1)

7(2“ ' DZ - :n
My i Zﬂzi(xi_:ul)z
L ZﬂZiy(i) s Zﬁzix(i) n
Yu = |=1n v Xy = .=1n and B =Z{(1_ai)(y[i] -0 X 1)}
S5, 34,
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6. Conditional and Marginal Likelihood function
All the estimators are very difficult than those based on a bivariate normal distribution. It is, therefore very

important to recognize the true underlying distribution. In order to develop the estimation procedure for the
parameters ., o, 1,,0,and p directly, we consider the likelihood function.

L=o,"0,"(1-p°)* exp{Zz —Zexpz +Z( J—Zn:exp( i H
i=1 i i=1\O21/) 2 031
InL=-nlno, - nlno-z——ln(l p)+ZZ —Zexpz +Z[ J Zexp( J
R ! ! 2 (19)

The likelihood equations for estimating the parameters 1., o, 4,,0,and p grq

0 n 1< [a 1 J \
—IhL=——+— ez'+7 gLt L
a,ul O, 61; O'lqll p ;
. =
InL=—"_ Z,+ z, &% Z,+ )y 2,7 PIl=0

0 o, 51; 1; \ll p ; z
o . . (5]
—~ InL=———~=—1In- AR
O, " 0'2\/1—,02 {n ;e } (20)
S Ze e["2 1,0} Zz +Zz e["2 1”] =0
ep 0 o, \/1 p’ o, J1- O'Z\ll p’ |
0 np P : p \ [nﬂ] [ mJ
—InL= + Y e -———— ) ee” Z,+) 1,€ it =0
o =P o-p) T 0-p) V—p Z Z J
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e () g 2 1 81 d)
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Thus, the likelihood equations reduces to-
0
=" e
oy 0 ‘71; (21)

13 13
—I L=-"_ = z,+—>z, €%
Jo, o, 0'1,21: 01,21: 22)
N e[GZ\/lI*?]
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i|n|_: npz 4 P - ei Zee[o'z 1PJ_
ap 1-p%) o,0-p?) T 02(1 Py (29)

Because of the intractable function Z ¢4 and Ze[czﬂ J in equations (21) and (25) respectively cannot be solved.
i=1

Hence, we use MML method to solve the equations (21) and (25).
To find the MML estimators, we define w, = (y, -pZx)

We order the values X; and W, (fora given@), 1<i<n, inascending order of magnitude as-

Xa < X2 <..< Xny

Wy W, <. SW, (26)
Thus, e, =w, — (1, - PE ) has the same order as Wj;, since (., — PE ) is a constant and Zo) = _ (o= #4) pas
O-l
the same order as X, since £ isa constantand o, is positive.
We also write, 5 _ &
o, 1-p°
Thus we have,
a. — € _ {W(i) = (1 _P%%ﬁ)}
(ONa -
o,\1-p° 0,1- p?
Where,
Wiy =Y, —pﬂx
O == A
(O~ £4) i
(X, Ygy) and zg = L2 are the concomitants of W, .
1
Since complete sums are invariant to ordering, the likelihood equations can be written as-
LIS T
o 0 0 Izll \
iInL_——— Zz(,) Zz,)e
a0-1 1 i=l 1 i=1
0 n Zn:eam
7'” L:* 2 + =L > :o
6ﬂz 0'2\/1*,0 0'2\/17,0 > (27)
0 n 1 : 1 . a
—InL=——-- e + e;e " =0
oo, o, 0-22,/1—/02 ; o o'zzall—pz lzzll o
a np p n n a
—InL= + Y ey > ™ =
op -, o,0-p°) Z v oz(l— 7 Z v

If we write,
n Za n /

0:()=)e and g,(z)=) €™

And linearize them as before, the modified likelihood equations are

==l g9-0 \
Oy o, O
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é%mbui_a;;w lg%gﬁ>o

(%m L:_az\/l— 2+O_2\/1_ _g,(2)=0 o8
802“”__ o 62\/172% \/—Ze(.)gz(a) 0

ai'”L:(lfizfaz(lfp?)?;e‘”_az(l P ;e %80

Again, to derive the MML estimators, we linearize the function gl(z(i))and 9,(ag) by using the first two terms of
1(i) and E(Z(i)) =t
gl(Z(i)) =0 (tl(i)) =+ [Z(i) _tl(i)](% gl(z(i) ))
where o, =" (1-t,,) and B, =e
togi i
9,(@y) = 9, (ts) + [y, _tz(i)](% gz(a(i) ))a(i):tZ(i) =e""(1-1,;)+a,e"" =a; + By a;

Taylor Series Expansion around E(zq) =t 20
Y iy
oty — € A-be) +2qe™ = o+ By 2 (29)

(30)
where a; =€ (1-t,,)) and B, =e*"
Substituting these values we get the following equations,
0
—InL*=——+ = (o + B2;)) =0 )
Oty 0'1 1; o
0
a—ln L*=——— Zz(,) ZZ(I)(a +Buz4) =0
O-l 1 i=1 1 i=1
0
—InLl*=- Z(a +Budg) =0
6”2 0-2\1 p 0-2\1 p > (31)
0 n
662 In L*Z—g %Ze“) 2 ﬁze(l) (a +ﬁ2| |)) 0
0 no
—InL*= ep (@ +pya;)=0
op a-pn o, (L p) z” “ )
To solve (20) we use the functional relations p= 02 and G, =0, h— p? We obtain the following MMLE
0,
=K, -D o (32)
° _ —-B++/B*+4nC
! 2n (33)
- Y/ — A A A AZ
Hy =Y _H(X[,] —H )—me'Z Vi-p
2 (34)
A A 2 A 2 A 2
0,=\0, +6, o (35)
A _ A o-l
=0 (36)
0,

Since the estimators can be obtained from the equations by simple substitution, it follows that, like the ML
estimators, the MML estimators have the invariance property even in this complex situation. This is a very
interesting result indeed.

7. Asymptotic Covariance Matrix
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Case 1: The asymptotic covariance matrix of the estimators .., o,, 4., o,,and pis 9iven by 1 *(u,, o,, 11y, oy, p)
where 1 is the Fisher information matrix. The Fisher information matrix is given by (i, j=1, 2, 3,4, 5)

o%InL
|:[|ij]:|i_E[a P ]jl 1T Ty T, =0, T3 =y T, =00, Ts = P
7,07,

If we let I=n A, the elements of the matrix A are
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0101 O_Z + 0_12 ;ZI 02 Z ' ZZe Z + [1 p 2 2 Ze Z'
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ACWZ — ze[dz Vip? }

0, (1 P&

. ie["z fiee? J P ie[(’z*/??}e z

‘alaz(l P& L e A P

1 N el N P N [6«/;7J 2 1 N [6 ellfvzl
A =———— > 7+ z, — e z,” + e zZ;
7 o\1-p? ; Gl(l_pz)g -Z:;‘ o, (1-p?) ; oA\1- p? ;
0'152(1—P2)2i2:1:e o o’(lfpz)g;e “
1
l N [0'2\/91'*7]
=————-) ¢
y72y77) 0'22(1_,02);
I G AR V1 = N S M=
A, = - e L, ———- ) ¢ g ———F——=) ¢
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_ 1 Ze["ﬁ}z ZZ[(’”"J p Ze[ﬂ}

Hp i

o-p7)  o,0-p) 5 o (1 PO

2

2p N 2 N P
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Case 2: Define Fisher information matrix 1(u,,o0,,u,,,0,,,0)for estimating 1, o,, 11,,,0,, and 8. As usual, the

asymptotic covariance matrix of the estimators ﬁl,(;l, /'IAZ.I’O-AZ.I and @ is given by y = | (1, 04, 1y, 0,,,0) - 1T We
write 1= nA, the elements of the matrix A are

0 13
) n ) n 0_12 IZ:I: [

1 &
— Z. — exp(z;
alu’lao-l 0-12 i=1 I 13 ; p( )

l’1‘71

L = 0 021 = a
OOy '

0 lo
A e 1 ex
uo = alulae Oz1 0'21; p(o-u}

Ao, = = Z Ly et )+Z(ei}i

ity

ouoo,, -

80'180'1 i=1 1 i=1 21 i=1 J2.1
e 00,0, 7 00,00,
n
A"ﬁ:a 0 :_1+1Z( & }i
0,00 Oy1 Oz1i21\ O21

0 1 o~ &
Aﬂz.lﬂu = = 2 +12(j(zi)
Oty Oty Oyy Oy T\ O
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8. Hypothesis Testing

Case 1: Our major interest is testing the null hypothesis Ho: p=0.
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Since the MML estimators are asymptotically equivalent to the ML estimators, the likelihood function L is
maximized (asymptotically) by the MML estimators. Thus, the likelihood ratio is (asymptotically)

;1_ max(L|H,)
max(L | H,)

= {Yi*ﬁa]
exp —e* 7

i1 8‘3
32_22_3(Xi_/21) yi_/jz_a(xi_;ll)
n ~ ~
l—l 1 e 021 expl —e 021
A A2 1 p
i=1 3
o,(l-p )

A2
It can be shown that for large n, 2 is a monotonic function of o . Thus, to test Ho: p>0, we propose the statistic

1

_ . T
n 2np u 1 n 3p? 4 1 9 [o‘z 172] 2
- @—p) Ly T2 2 e
W= (1-p%)? o,(l-p*)2 " o,(l-p?)? " i
. (1f) 2)2 Z [%W}Zi el + P 5 Ze[f’z\/ﬁle 5 1p — Ze[ﬁz\/ﬁ] el
2 P i=1 (1_ 2)2 i=1 o, ( - p i=1 .
L 1o
Where
N omp 2 1 3 < - o
) -y 3 ;Zi + ﬁgel + 3 ;e-Jr(l,pz);e "’z |is the asymptotic variance of
d-p)2 " o,(1-p%)* " o,(1-p%)* = )
— ze[(’zr]zl g+ Ze[“’z 1 s ]Z 4+ P — ze["zﬂJe
0'2(1 ,D) i (1_p2)2 i1 (1 i1

p under Ho, obtained from {1 (s, 0y, 115, 75, P}, 4

The null distribution of W is referred to normal N(0,1). Large values of W lead to rejection of Ho against Hi: p>0.

Testing the null hypothesis
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is also of great practical importance.
Since, ﬁl and ﬁz are asymptotically equivalent to the ML estimators, the distribution of the random vector

Jn(u, 1,)is bivariate normal with zero mean vector and (estimated) covariance matrix.

A A
On Onp
A

A

A
Q=n
O13 Oy

where, ¢, o, and g, are the estimated elements of the asymptotic covariance matrix ), more specifically,

oy =% =1y (t,00,1,,0,,p)- Since in these elements gAl and C;z converge to 5, ando,, respectively, the

asymptotic null distribution of

A2 A A Al -
T =n(, 1) /Lfl
Ha
A2
is chi-square with 2 d.f. We reject Ho at the 5% level of significance if the value of T is greater than 52 (2). The

A2
non null distribution (asymptotic) of T is noncentral chi-square with 2 d.f. and non centrality parameter.

2= n(x4, ﬂz)Ql(ﬂlj

Hy

For small n, the null distribution of (n-2) fzis approximately central- F with (2, n-2) d.f. and the non-null
2(n-1)

distribution is approximately noncentral —F with (2,n-2) d.f. and non-centrality parameter 12.

Case 2: We are interested in the null hypothesis (z, u,,) = (0,0) Which is same as

SR
Haa 0
Since ﬁl and ,quil are asymptotically equivalent to the ML estimators, the distribution of the random vector

Jn (1, p,,) s bivariate normal with zero mean vector and (estimated) covariance matrix

where o, and o are the estimated elements of the asymptotic covariance matrix 2., more specifically ,

oy =2 :lij_l(’ul,o'l, 1,,,0,,,0,)- The covariance between ,; and ,u;_l is zero since they are orthogonal

components, so there is no need to estimate it. Since in these elements o, and ¢,, converge to o, and o, ,
respectively, the asymptotic null distribution of
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is chi-square with 2 d.f. We reject H, at the 5% level of significance if the value of 'Icl

2

A A

2

1

A

T, =n(u, t;,)Q 'Lil

Hay
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2

2
is greater than 4 005(2)  The

nonnull distribution (asymptotic) of is '|§l non central chi-square with 2 d.f. and non-centrality parameter

For small n, the null distribution ofM-f—2 is approximately central-F with (2, n-2) d.f. and the nonnull
2(n-1)

1

2= N(ey, 4y1) Q2 =

:,Ul2

On

Ha

2

Hai

+7
Og3

distribution is approximately noncentral-F with (2, n-2) d.f and non-central parameter A2

9. Simulation Study

The ratio of the variance of the MMLE to the corresponding LSE multiplied by 100 is used in this section to
calculate the simulated relative efficiency of Least Square Estimators (LSE). Results have been provided for
multiple n (sample size) values. We present the findings for fixed values of p = 0.5 and various values of n, which
are 20, 40, 80, and 100. Then, 10,000 Monte Carlo runs were used to generate the results. Without loss of generality,

H1:01: H2:02 gre considered to be 0, 1, 0, 1. The other parameters take values from the relationsgzpa,

= —_— e e 2 - - - - - - -
Hor = Hy 9”1, 021=0V1=P" The computer program to do simulations is written in R studio. The simulated
estimated value for the marginal distribution of X and the conditional distributions of Y given X=x are both Extreme
Value Distribution of Type | for fixed value of p and different values of n are presented in the Table: 8.1 through

Table: 8.4.
Table 8.1: Simulated values for n =20, p = 0.5
21 (41 %) 02 H21 021 0 4
MMLE  mean 0.0525  1.0275  -0.0032 1.062 -0.0456 0.8962 0.5123 0.5012
n*bias2 0.0457  0.0135  0.0085 0.0456 0.0312 0.062 0.0012 0.0042
n*variance 54612 08445  7.8921 0.7351 5.859 0.6563 0.9015 0.615
n*mse 55069  0.858 7.9006 0.7807 5.8902 0.7183 0.9027 0.6192
LSE mean -0.0327 0978 -0.1452 0.9803 -0.0697 0.8459 0.4995 0.5156
n*bias2 0.0026  0.006 0.1385 0.0162 0.0676 0.0015 0.0012 0.0025
n*variance 55747  0.982 7.9678 0.8013 6.3586 0.739 1.0253 0.6969
n*mse 55773 0988 8.1063 0.8175 6.4262 0.7405 1.0265 0.6994
effvar 97.9640 859979  99.0499 917384 921429  88.8092  87.9254  88.2479
effmse 98.7377  86.8421  97.4624 954984 916591  97.0020  87.9396 885330
Table 8.2: Simulated Values forn=40,p = 0.5
Hq 01 %) ) H21 021 0 P
MMLE  mean 0.0423 1.0137 0.0076 1.045 0.0111 0.8856 05162  0.5015
n*bias2 0.0437 0.007 0.0051 0.0375 0.0123 0.0051  0.0011  0.0035
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n*variance  5.3552 0.8142 7.2156 0.7521 5.4563 0.6468 0.845 0.6038
n*mse 5.3989 0.8212 7.2207 0.7896 5.4686 0.6519 0.8461 0.6073
LSE mean 0.0311 0.985 -0.1321 0.9758 -0.0458 0.8156 0.4986 0.5745
n*bias2 0.0025 0.004 0.1221 0.0151 0.0013 0.0011 0.0011 0.0021
n*variance  5.5088 1.0121 7.5678 0.825 6.1236 0.7563 1.0001 0.6912
n*mse 5.5113 1.0161 7.6899 0.8401 6.1249 0.7574 1.0012 0.6933
effvar 97.2117 80.4466 95.3460 91.1636 89.1028 855216  84.4915  87.3553
effmse 97.9605 80.8188 93.8984 93.9888 89.2847 86.0707  84.5085  87.5955

Table 8.3: Simulated Values for n =80, p = 0.5

251 g4 |25 g2 Haq 021 0 P
MMLE mean 0.0343 1.004 0.0052 1.031 0.0112 0.8695 0.5369 0.5125
n*bias2 0.0345 0.001 0.0015 0.0025 0.0113 0.0045 0.0009 0.0031
n*variance 5.2039 0.7707 6.6596 0.6521 5.1569 0.6213 0.812 0.5986
n*mse 5.2384 0.7717 6.6611 0.6546 5.1682 0.6258 0.8129 0.6017
LSE mean -0.0269 0.992 -0.1289 0.9786 -0.0125 0.8145 0.4978 0.5645
n*bias2 0.0019 0.002 0.1645 0.0021 0.0009 0.001 0.0005 0.0015
n*variance 5.4501 1.0215 6.9878 0.8368 5.9869 0.7769 0.9865 0.6915
n*mse 5.452 1.0235 7.1523 0.8389 5.9878 0.7779 0.987 0.693
effvar 95.4826 75.4478 95.3032 77.9278 86.1364 79.9716 82.3112 86.5654
effmse 96.0821 75.3981 93.1322 78.0307 86.3121 80.4473 82.3606 86.8254

Table 8.4: Simulated Values for n=100, p=0.5

251 (51 %) (¥} Haq 021 0 P
MMLE mean 0.0261 1.003 0.0012 1.011 0.0071 0.8611 0.5372 0.5369
n*bias2 0.0272 0.001 0.0011 0.0015 0.0073 0.0036 0.0007 0.0025
n*variance 5.0011 0.7617 6.2457 0.6198 4.9863 0.5991 0.7526 0.5875
n*mse 5.0283 0.7627 6.2468 0.6213 4.9936 0.6027 0.7533 0.59
LSE mean -0.0218 0.992 -0.1289 0.9869 -0.0078 0.8012 0.4965 0.5398
n*bias2 0.0011 0.002 0.1056 0.0011 0.0008 0.001 0.0005 0.0004
n*variance 5.3828 1.002 6.7589 0.8563 5.8963 0.7781 0.9521 0.69
n*mse 5.3839 1.004 6.8645 0.8574 5.8971 0.7791 0.9526 0.6904
effvar 92.9088 76.0179 92.4070 72.3811 84.5665 76.9952 79.0463 85.144
effmse 93.3951 75.9661 91.0015 72.4632 84.6789 77.3584 79.0783  85.457

10. Conclusions

In the paper Tiku (1967), the author briefly mention a new family of estimators that can be derived from Tiku's
MMLE estimator. The new family of estimators could be useful for a variety of applications, such as medical
research, quality control, and financial forecasting. Also, MMLE get the better fitting in censored sample. The
censoring can be either upper or lower, and the method is applicable to both symmetrical and asymmetrical
censoring. Utilizing this, a method for testing hypothesis has been derived for the case where X's marginal
distribution is the Extreme Value Distribution of Type | and Y's conditional distributions is also the Extreme Value
Distribution of Type | given that X=x. According to a simulation research, the MML estimators are more effective
than the comparable LS estimators for all sample sizes (n=20, 40, 80, and 100) and all parameters. Due to the fact
that MML estimators are asymptotically MVB estimators, their relative efficiencies grow along with sample size,
which is another benefit of using MML estimators.

The value of @and pis the primary focus of regression analysis. It is evident from Table 8.1 to 8.4 that the

effectiveness of LS estimators slowly declines as sample size increases and stays close to 80%. The simulated mean,
variance, and MSE for MML estimators and LS estimators are shown in this study along with their respective
efficiency. According to the analysis, MML estimators are more effective than the analogous LS estimators, which
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suggest that MMLE efficiency is directly proportional to sample size. Additionally, this outcome is consistent with
the published theoretical findings.

References

1. Akkaya, A and Tiku, M.L.(2001). Estimating parameters in autoregressive models in non-normal
situations: Asymmetric innovations. Communication in Statistics-Theory and Methods, 30(3), 517-536

2. Akkaya, A.D. and Tiku, M.L. (2005). Robust estimation and Hypothesis Testing under Short-Tailedness
and Inliers, Test 14(1), 129-150

3. Bowden, R.J and Turkington, D.A. (1981). A Comparative Study of Instrumental Estimators for Nonlinear
Simultaneous Models, Journal of the American Statistical Association, 76 (3), 988-995

4. Bharali, S and Hazarika, J.(2019). Regression Models with Stochastic Regressors: An Expository note,
International Journal of Agricultural and Statistical Sciences, 15(2), 873- 880.

5. Bharali, S and Hazarika, J.(2022). Stochastic Regression Model with Marginal Extreme Value Distribution
and Conditional Normal Distribution, Journal of Scientific Research, 66(3), 292-301.

6. Ehrenberg, A.S.C. (1963). Bivariate Regression Analysis is useless, Journal of the Royal Statistical Society
(Applied. Statistics), 12,161-179

7. Hooper, JW. and Zellner, A. (1961). The error of forecast for multivariate regression models,
Econometrica, 29, 544-555

8. Hwang, H. (1980). Test of Independence between a subset of Stochastic Regressors and Disturbances,
International Economic Review, 21(3), 749-760

9. lIslam, M.Q.; Tiku, M.L. and Yildirim, F. (2001). Nonnormal Regression. I. Skew distribution,
Communications in Statistics -Theory and Methods, 30(6), 993-1020

10. Islam, M.Q and Tiku, M.L. (2005). Multiple Linear Regression Model Under Nonnormality,
Communications in Statistics -Theory and Methods, 33(10), 2443-2467

11. Islam, M.Q. and Tiku, M.L. (2010). Multiple linear regression model with stochastic design variables,
Journal of Applied Statistics, 37(6), 923-943

12. Judge, G.G.; Hill, R.C.; Griffiths, W.E.; Lutkepohl, H. and Lee, T. (1988). Introduction to the theory and
practices of econometrics, John Wiley and Sons

13. Kantam, R. R. L. and Srinivasa Rao, G. (2002). Log-logistic distribution: Modified maximum likelihood
estimation, Gujarat Statistical Review, Vol.29, No.1, pp.25-36

14. Kantam, R. R. L. and Sriram, B. (2003). Maximum likelihood estimation from censored samples: Some
modifications in length biased version of exponential model, Statistical Methods, Vol. 5, No.1, pp.63-78.

15. Kerridge, D. (1967). Errors of prediction in multiple regressions with stochastic regressor variables,
Technometrics, 9, 309- 311

16. Kinal, T. and Lahiri, K. (1983). Specification Error Analysis with Stochastic Regressors, Econometrica,
51(4), 1209-1219

17. Lai, T. (1994). Asymptotic Properties of Nonlinear Least Squares Estimates in Stochastic Regression
Models, The Annals of Statistics, 22(4), 1917-1930

18. Magdalinos, M. and kandilorou, H. (2001). Specification Analysis in Equations with Stochastic Regressors,
Journal of Bussiness & Economic Statistics, 19(2), 226-232

19. Mehrotra, K. G. and Nanda, P. (1974). Unbiased estimation of parameters by order statistics in the case of
censored samples, Biometrika, Vol. 61, No. 3, pp. 601-606

20. Narula, S.C. (1974). Predictive mean Square Error and Stochastic Regressor Variables, Journal of the
Royal Statistical Society, Series C(applied Statistics), 23(1), 11-17

21. Pearson, T., and Rootzen, H. (1977). Simple and highly efficient estimators for a Type | censored normal
sample, Biometrika, VVol. 64, pp. 123-128

22. Reynolds, R.A. (1982). Posterior Odds for the Hypothesis of Independence between Stochastic Regressors
and Disturbance, International Economic Review, 23(2), 479-490

23. Rosaiah, K., Kantam, R.R.L. and Narasimham, V.L. (1993a). ML and Modified ML Estimation in Gamma

Distribution with a Known Prior Relation Among the Parameters, Pakistan Journal of Statistics, Vol. 9, No.
3(B), pp. 37-48.

Marginal and Conditional both Extreme Value Distributions: A Case of Stochastic Regression Model

535



Pak.j.stat.oper.res. VVol.19 No. 3 2023 pp 521-536 DOI: http://dx.doi.org/10.18187/pjsor.v19i3.4143

24,

25.

26.

27.

28.

29.

30.

Rosaiah, K., Kantam, R.R.L. and Narasimham, V.L. (1993b). On Modified Maximum Likelihood
Estimation of Gamma Parameters, Journal of Statistical Research, Bangladesh, Vol. 27, No. 1&2, pp. 15-
28.

Sazak, H.S.; Tiku, M.L. and Islam, M.Q. (2006). Regression Analysis with a Stochastic Design Variable,
International Statistical Review, 74(1), 77-88

Tiku, M.L. (1967). Estimating the Mean and Standard Deviation from Censored Normal Samples,
Biometrika, 54, 155- 165

Tiku, M.L. (1980). Robustness of MML estimators based on censored samples and robust test statistics,
Journal of Statistical Planning and Inference, 4, 123-143

Tiku, M.L. and Suresh, R.P. (1992). A new method of estimation for location and scale parameters, Journal
of Statistical Planning and Inference, 30, 281-292

Tiku, M.L.; Islam, M.Q. and Selcuk, A.S. (2001). Nonnormal Regression. Il. Symmetric Distribution,
Communications in Statistics - Theory and Methods, 30(6), 1021-1045

Vaughan, D.C. and Tiku, M.L. (2000). Estimation and Hypothesis Testing for a Nonnormal Bivariate
Distribution with Applications, Mathematical and Computer Modeling, 32, 53-67

Marginal and Conditional both Extreme Value Distributions: A Case of Stochastic Regression Model

536



