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Abstract 

 

A mathematical model is a mathematical connection that describes some real-life scenario. To handle real-world 

problems securely and effectively, simulation modelling is required. In this article, the author investigates the 

stochastic regression model scenario in which the dependent and independent variables in a linear regression 

model follow a distribution. We assume that the dependent and independent variables both exhibit Type I 

Extreme Value Distribution. The estimators are then derived using the Modified Maximum Likelihood (MML) 

estimation method. In accordance with this, a hypothesis testing technique is developed. 
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1. Introduction 

Main focus of univariate regression is to analyze the relationship between a dependent variable and one independent 

variable and formulates the linear relation equation between dependent and independent variable (Kinal and 

Lahiri,1983; Lai,1994; Magdalinos and kandilorou,2001; Narula, 1974). Regression models with one dependent 

variable and more than one independent variables are called multilinear regression. Simultaneously, the conditions 
that have to be met for its appropriate use and the situations in which regression analysis may result in disastrously 

inaccurate conclusions if these conditions don’t seem to be met (Akkaya and Tiku,2001; Akkaya and Tiku,2005; 

Bharali and Hazarika,2019). Providing greater importance to the assumption that the independent variable X is 

historically called nonstochastic, it is realized that the assumption of a nonstochastic regressor is not necessarily 

plausible; the regressor can be stochastic in nature. It is true for experimental research, in which the experimenter 

has power over the independent variables and may evaluate the outcome of the dependent variable continuously for 

the same defined values or any of the independent variables assigned values (Reynolds,1982; Sazak et.al, 

2006;Tiku,1980). In the social sciences, the independent variables in one equation are often generated as the 

outcome variables of other equations that are stochastic in nature (Bharali and Hazarika,2022; Hwang,1980; Judge 

et. all,1988). Thus they neither have the same fixed values in repeated samples nor do they have values that 

correspond to the investigator’s desired experimental design (Bowden and Turkington,1981; Ehrenberg,1963; 

Hooper and Zellner,1961). Thus, the dependent variable is always under the influence of explanatory factors, which 
are stochastic in design, in a non-experimental or unregulated environment. 

The term stochastic regressor refers that the regressors, i.e. the independent variables, 

becoming unpredictable with the time transition. In the case of Stochastic regressors, the basic assumption are: i) X, 

Y, ε random ii) (X,Y) obtained from i.i.d sampling iii) 0)|( =XE   iv) X takes atleast two values   

v) 2)|(  =XVar  vi) ε is normal. The Variables X is the independent variable, Y dependent variable and ε is the error 

term. 
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However, it has been acknowledged that in numerous applications X may be stochastic, and e the random error term 

may not be normal. This may give rise to three problems (a) X is non-stochastic, and e is non-normal. (b) X is 

stochastic, and e is normal (c) X is stochastic, and e is non-normal (Islam et al, 2001; Islam et all,2005; Islam et al, 

2010, Kerridge,1967; Vaughan and Tiku,200; Tiku et al,2001; Tiku and Suresh, 1992). 

 

2.  Preliminaries  

We consider a situation where the marginal distribution of X and the conditional distributions of (Y|X=x) are 

stochastic in nature. The distribution of variable X is assumed to be Extreme Value Distribution (Type I) with 

probability density function, 
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and the conditional density function of (Y|X=x) is Extreme Value Distribution (Type I) -      
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where, -∞ ≤ x ≤ ∞; -∞ < y < ∞; µ1, µ2 Є R; σ1, σ2 > 0 and -1 < ρ < 1 

 

 

3. Modified Maximum Likelihood Estimator (MMLE) and it’s Properties: 

 

While doing parameter estimations, sometimes the solutions may have no explicit solutions. Solving them by 

iteration can be a difficult task as is determining the properties of the resulting estimators, especially for small 

samples. However, there are some fundamental difficulties with iterative solutions. In such cases maximum 

likelihood doesn’t work, and a modification was suggested over simple maximum likelihood method so that 

modified equation has a explicate solution. A modified method over Maximum Likelihood Estimation (MLE) 

Method called Modified Maximum Likelihood Estimation (MMLE) Method was introduced and developed by Tiku 

in 1967.  Further, Mehrotra and Nanda 1974; Pearson and Rootzen 1977; Tiku and Suresh 1992; Rosaiah et al. 
1993a; Rosaiah et al. 1993b; Kantam and Srinivasa Rao 1993; Kantam and Srinivasa Rao 2002; Kantam and Sriram 

2003 and the references therein are some of the works in this direction. The MMLE method expresses likelihood 

equations in terms of order statistics and then linearizes the intractable terms. The resulting estimators are called 

Modified Maximum Likelihood (MML).  

 The following properties are known to have under the usual regularity conditions for the existence of 

maximum likelihood estimators (Vaugan and Tiku 2000). 

a. asymptotically, MML estimators are efficient i.e. they are unbiased and their variances are equal to the 

Minimum Variance Bounds (MVB). 

b. for small samples, the MML estimators are almost fully efficient i.e. they have no or unimportant bias and 

their variances are only marginally, if at all, greater than the MVB.   

c. the MML estimators are explicit functions of sample interpretation and are easy to compute and their 
properties are uncomplicated to determine.  

 Moreover, the MML estimators are numerically very close to the ML estimates for all sample sizes. This 

method can be utilized to estimate the parameters in the bivariate distribution with density g(x,y). 

g(x,y)= g(x)g(y|x) 

where g(x) is the distribution of X and g(y|x) is conditional distribution of (y|x) respectively. 

 

 

3.1. Estimation Procedure of MMLE: 

 

Suppose, we consider the three parameter log normal distribution with parameter (λ, µ, 𝜎2), where  λ is the 

location parameter, µ is the scale parameter and σ2 is the shape parameter. Accordingly, pdf is given by-  
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The estimators for three unknown parameters (λ, µ, 𝜎2), for lognormal distribution can be obtained by using 

the following algorithm: 

Step 1: Get the likelihood of the given distribution. 

Step 2: Take the natural log of the likelihood function obtain in step 1. 

Step 3: Find the partial derivatives of the log-likelihood with respect to the three unknown parameters. 

Step 4: Equate the derivatives in step 3 with zero and solve for µ and σ2. 

Step 5: To obtain the MML estimators, which have all the properties, first order the values xi, 1≤ i ≤ n, (in 
ascending order) of magnitude. The equations reduce to a new form. 

Step 6: Solving the new transform equations are difficult, so linearize the function by using the first two 

terms of Taylor Series expansion around  t(i) = E(Z(i)). 

Step 7: Substitute the terms of the tailor series expansion in the equations and estimated the parameters from 

the new set of equations.  

 MML estimators are asymptotically equivalent to the ML estimators, their asymptotic variances and the 

covariance are given by    where   is the Fisher information matrix. 

 The method can solve particularly two problems of likelihood function: 

 When the value of any ordered sample x1, x2,…xn will not tend to ∞ as (λ,µ,σ2) approaches (x, -∞, ∞), this 

method can be utilized for any sample sizes. It avoids the problem of convergence in Newton-Raphson iteration 

method which produces no solutions for λ, when sample size is very small (n<10) (Colin Chen, 2005). However, 
this method also has some disadvantages. Some information about the sample is lost since the smallest value of x 

is not included in the formulation to calculate the estimate values of µ and σ2. 

4.  Estimation of Parameters 

 

The likelihood function based on the marginal distribution of X and the conditional distribution of (Y|X=x) as the 

Extreme Value Distribution of Type I is as follows,
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Likelihood equations w.r.t the parameters −areand 1.21.211 ,,,  
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5.  The Modified Maximum Likelihood (MML) Estimators 

MMLE provides a framework to handle missing data more effectively by integrating over the missing values. This 

can lead to more accurate parameter estimates and better model fit. It allows for the incorporation of prior 

knowledge and this is particularly useful in Bayesian modeling, where prior information about the parameters can be 

combined with the observed data to obtain more informative estimates. MLE assumes that the observed data follow 

a specific probability distribution. While this assumption is often reasonable, it can limit the flexibility of the model. 

On the other hand, MMLE allows for more flexible modeling assumptions by considering a wider class of 

probability distributions or using nonparametric methods. This can be beneficial when the data do not adhere strictly 

to the assumed distribution. Though MMLE involves additional computational steps, it is helpful in the case of 

relatively complex situations. In this research work, because of the functions 
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equations (4) to (8) are almost impossible to solve. Hence, we use Modified Maximum Likelihood (MML) Method 

to solve the above equations. 

To find the MML estimators, we define,  
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To derive the MML estimators, we linearize the function )( )(1 izg and )( )(2 iag by using the first two terms of Taylor 

Series Expansion around 
)(1)( )( ii tzE = and 
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The equations have explicit solutions which are the following MML estimators:
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6.  Conditional and Marginal Likelihood function 

 

All the estimators are very difficult than those based on a bivariate normal distribution. It is, therefore very 

important to recognize the true underlying distribution. In order to develop the estimation procedure for the 
parameters  and2211 ,,, directly, we consider the likelihood function. 
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The likelihood equations for estimating the parameters  and2211 ,,, are
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To solve (20) we use the functional relations 2
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Since the estimators can be obtained from the equations by simple substitution, it follows that, like the ML 

estimators, the MML estimators have the invariance property even in this complex situation. This is a very 

interesting result indeed. 

7.  Asymptotic Covariance Matrix 
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Case 1: The asymptotic covariance matrix of the estimators 
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Case 2: Define Fisher information matrix ),,,,( 1.21.211 I for estimating  and1.21.211 ,,, . As usual, the 

asymptotic covariance matrix of the estimators 
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8.  Hypothesis Testing 

Case 1: Our major interest is testing the null hypothesis H0: ρ=0. 

Since the MML estimators are asymptotically equivalent to the ML estimators, the likelihood function L is 

maximized (asymptotically) by the MML estimators. Thus, the likelihood ratio is (asymptotically) 
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It can be shown that for large n, 
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 is the asymptotic variance of 
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The null distribution of W is referred to normal N(0,1). Large values of W lead to rejection of H0 against H1: ρ>0. 

Testing the null hypothesis 
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9.  Simulation Study 

 

The ratio of the variance of the MMLE to the corresponding LSE multiplied by 100 is used in this section to 

calculate the simulated relative efficiency of Least Square Estimators (LSE). Results have been provided for 
multiple n (sample size) values. We present the findings for fixed values of ρ = 0.5 and various values of n, which 

are 20, 40, 80, and 100. Then, 10,000 Monte Carlo runs were used to generate the results. Without loss of generality, 

2211 ,,,  are considered to be 0, 1, 0, 1. The other parameters take values from the relations 1

2



 =
,

121.2  −=
, 

2

21.2 1  −=
. The computer program to do simulations is written in R studio. The simulated 

estimated value for the marginal distribution of X and the conditional distributions of Y given X=x are both Extreme 

Value Distribution of Type I for fixed value of ρ and different values of n are presented in  the Table: 8.1  through 

Table: 8.4. 

 

Table 8.1: Simulated values for n =20, 𝜌 =  0.5 
  𝝁𝟏 𝝈𝟏 𝝁𝟐 𝝈𝟐 𝝁𝟐.𝟏 𝝈𝟐.𝟏 𝜽 𝝆 

MMLE mean 0.0525 1.0275 -0.0032 1.062 -0.0456 0.8962 0.5123 0.5012 

 n*bias2 0.0457 0.0135 0.0085 0.0456 0.0312 0.062 0.0012 0.0042 

 n*variance 5.4612 0.8445 7.8921 0.7351 5.859 0.6563 0.9015 0.615 

 n*mse 5.5069 0.858 7.9006 0.7807 5.8902 0.7183 0.9027 0.6192 

LSE mean -0.0327 0.978 -0.1452 0.9803 -0.0697 0.8459 0.4995 0.5156 

 n*bias2 0.0026 0.006 0.1385 0.0162 0.0676 0.0015 0.0012 0.0025 

 n*variance 5.5747 0.982 7.9678 0.8013 6.3586 0.739 1.0253 0.6969 

 n*mse 5.5773 0.988 8.1063 0.8175 6.4262 0.7405 1.0265 0.6994 

 effvar 97.9640 85.9979 99.0499 91.7384 92.1429 88.8092 87.9254 88.2479 

 effmse 98.7377 86.8421 97.4624 95.4984 91.6591 97.0020 87.9396 88.5330 

Table 8.2:  Simulated Values for n = 40, 𝜌 =  0.5 

  𝝁𝟏 𝝈𝟏 𝝁𝟐 𝝈𝟐 𝝁𝟐.𝟏 𝝈𝟐.𝟏 𝜽 𝝆 

MMLE mean 0.0423 1.0137 0.0076 1.045 0.0111 0.8856 0.5162 0.5015 

 n*bias2 0.0437 0.007 0.0051 0.0375 0.0123 0.0051 0.0011 0.0035 
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 n*variance 5.3552 0.8142 7.2156 0.7521 5.4563 0.6468 0.845 0.6038 

 n*mse 5.3989 0.8212 7.2207 0.7896 5.4686 0.6519 0.8461 0.6073 

          

LSE mean 0.0311 0.985 -0.1321 0.9758 -0.0458 0.8156 0.4986 0.5745 

 n*bias2 0.0025 0.004 0.1221 0.0151 0.0013 0.0011 0.0011 0.0021 

 n*variance 5.5088 1.0121 7.5678 0.825 6.1236 0.7563 1.0001 0.6912 

 n*mse 5.5113 1.0161 7.6899 0.8401 6.1249 0.7574 1.0012 0.6933 

 effvar 97.2117 80.4466 95.3460 91.1636 89.1028 85.5216 84.4915 87.3553 

 effmse 97.9605 80.8188 93.8984 93.9888 89.2847 86.0707 84.5085 87.5955 

 

Table 8.3: Simulated Values for n = 80, 𝜌 =  0.5 

  𝝁𝟏 𝝈𝟏 𝝁𝟐 𝝈𝟐 𝝁𝟐.𝟏 𝝈𝟐.𝟏 𝜽 𝝆 

MMLE mean 0.0343 1.004 0.0052 1.031 0.0112 0.8695 0.5369 0.5125 

 n*bias2 0.0345 0.001 0.0015 0.0025 0.0113 0.0045 0.0009 0.0031 

 n*variance 5.2039 0.7707 6.6596 0.6521 5.1569 0.6213 0.812 0.5986 

 n*mse 5.2384 0.7717 6.6611 0.6546 5.1682 0.6258 0.8129 0.6017 

          

LSE mean -0.0269 0.992 -0.1289 0.9786 -0.0125 0.8145 0.4978 0.5645 

 n*bias2 0.0019 0.002 0.1645 0.0021 0.0009 0.001 0.0005 0.0015 

 n*variance 5.4501 1.0215 6.9878 0.8368 5.9869 0.7769 0.9865 0.6915 

 n*mse 5.452 1.0235 7.1523 0.8389 5.9878 0.7779 0.987 0.693 

 effvar 95.4826 75.4478 95.3032 77.9278 86.1364 79.9716 82.3112 86.5654 

 effmse 96.0821 75.3981 93.1322 78.0307 86.3121 80.4473 82.3606 86.8254 

 

Table 8.4: Simulated Values for n =100, ρ=0.5 

  𝝁𝟏 𝝈𝟏 𝝁𝟐 𝝈𝟐 𝝁𝟐.𝟏 𝝈𝟐.𝟏 𝜽 𝝆 
MMLE mean 0.0261 1.003 0.0012 1.011 0.0071 0.8611 0.5372 0.5369 

 n*bias2 0.0272 0.001 0.0011 0.0015 0.0073 0.0036 0.0007 0.0025 

 n*variance 5.0011 0.7617 6.2457 0.6198 4.9863 0.5991 0.7526 0.5875 

 n*mse 5.0283 0.7627 6.2468 0.6213 4.9936 0.6027 0.7533 0.59 

          

LSE mean -0.0218 0.992 -0.1289 0.9869 -0.0078 0.8012 0.4965 0.5398 

 n*bias2 0.0011 0.002 0.1056 0.0011 0.0008 0.001 0.0005 0.0004 

 n*variance 5.3828 1.002 6.7589 0.8563 5.8963 0.7781 0.9521 0.69 

 n*mse 5.3839 1.004 6.8645 0.8574 5.8971 0.7791 0.9526 0.6904 

 effvar 92.9088 76.0179 92.4070 72.3811 84.5665 76.9952 79.0463 85.144 

 effmse 93.3951 75.9661 91.0015 72.4632 84.6789 77.3584 79.0783 85.457 

 

 

 

 

 

10. Conclusions 

 

In the paper Tiku (1967), the author briefly mention a new family of estimators that can be derived from Tiku's 

MMLE estimator. The new family of estimators could be useful for a variety of applications, such as medical 

research, quality control, and financial forecasting. Also, MMLE get the better fitting in censored sample. The 

censoring can be either upper or lower, and the method is applicable to both symmetrical and asymmetrical 

censoring. Utilizing this, a method for testing hypothesis has been derived for the case where X's marginal 

distribution is the Extreme Value Distribution of Type I and Y's conditional distributions is also the Extreme Value 

Distribution of Type I given that X=x. According to a simulation research, the MML estimators are more effective 

than the comparable LS estimators for all sample sizes (n=20, 40, 80, and 100) and all parameters. Due to the fact 
that MML estimators are asymptotically MVB estimators, their relative efficiencies grow along with sample size, 

which is another benefit of using MML estimators. 

The value of  and is the primary focus of regression analysis. It is evident from Table 8.1 to 8.4 that the 

effectiveness of LS estimators slowly declines as sample size increases and stays close to 80%. The simulated mean, 

variance, and MSE for MML estimators and LS estimators are shown in this study along with their respective 

efficiency. According to the analysis, MML estimators are more effective than the analogous LS estimators, which 
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suggest that MMLE efficiency is directly proportional to sample size. Additionally, this outcome is consistent with 

the published theoretical findings. 
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