
Pak.j.stat.oper.res. Vol.19 No.1 2023 pp 1-13 DOI: http://dx.doi.org/10.18187/pjsor.v19i1.4140

Bayesian Inference for
a Weighted Bilal Distribution: Regression Model

Yupapin Atikankul1∗

∗Corresponding author

1. Department of Mathematics and Statistics, Rajamangala University of Technology Phra Nakhon,
Thailand, yupapin.a@rmutp.ac.th

Abstract

Weighted distributions play an important role when observations from a sample are recorded with unequal probabil-
ities. They are useful for the efficient modeling of statistical data when the original distributions are not appropriate.
In this paper, a new weighted distribution is proposed. Various statistical properties of the proposed distribution such
as survival function, hazard rate function, mean residual life function, moments, moment generating function, Bon-
ferroni curve, Lorenz curve, and order statistic are presented. The Bayesian estimator of the distribution parameter is
derived. The behavior of the Bayesian estimator is assessed by a simulation study. Furthermore, a regression model is
developed based on the proposed distribution. Some real data applications are analyzed to show the potentiality of the
proposed models.
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1. Introduction

Weighted distributions are widely used in many areas such as engineering, medicine, economics, and biological sci-
ence. When observations are collected by nature according to a certain stochastic model, weighted distributions can be
used for modeling data. They can extend distributions by adding flexibility and are helpful for a better understanding
of the original distributions.

Suppose Y is a non-negative random variable with probability density function (pdf) g(y), the pdf of a weighted
distribution can be defined by

gw(y) =
w(y)g(y)

E(w(y))
,

where w(y) is a non-negative weighted function and E(w(Y )) <∞.

Patil and Ord (1976) proposed w(y) = y, called length-biased distribution. The pdf of length-biased distribution can
be defined by

gl(y) =
yg(y)

E(Y )
. (1)
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Abd-Elrahman (2013) introduced a new distribution by utilizing order statistics for lifetime data, called the Bilal
distribution. The pdf of the Bilal distribution with a parameter θ is given by

g(y) =
6

θ
e

−2y
θ (1− e−

y
θ ), y > 0, θ > 0. (2)

The cumulative distribution function (cdf) of the Bilal distribution is

G(y) = 1− e
−2y
θ (3− 2e

y
θ ).

The rth moment about the origin of the Bilal distribution can be written by

E (Y r) = r!

(
θ

6

)r (
3r+1 − 2r+1

)
.

If r = 1, the mean of the Bilal distribution is given by

E (Y ) =
5θ

6
. (3)

The Bilal distribution is in explicit form with a parameter θ. Several generalizations of the Bilal distribution for life-
time data are proposed such as the new two parameter generalized Bilal distribution (Abd-Elrahman, 2017), the power
Bilal distribution (Riad et al., 2022).

A mixture model is a flexible and effective method for analyzing data from multiple populations (Peel and MacLahlan,
2000). In this paper, a mixture of the Bilal distribution and the length-biased Bilal distribution, called the weighted
Bilal distribution, is proposed. The proposed distribution has a closed-form pdf with a parameter θ. We study shape
and some properties of the proposed distribution. Moreover, a regression model based on the weighted Bilal distri-
bution is constructed. Since the maximum likelihood estimation is not suitable for small sample sizes, in this article
the Bayesian approach is applied for unknown parameters. The weighted Bilal distribution and the weighted Bilal
regression model are shown the potential by fitting with two real data sets, and they are compared with other models.
The results indicate that the proposed models outperform compared models.

The organization of this paper is as follows. In Section 2, we introduce the weighted Bilal distribution and its shape.
Reliability measures and various properties of the proposed distribution are presented in Section 3, In Section 4, the
unknown parameter of the proposed distribution is derived by the Bayesian approach. The simulation study is carried
out to assess the Bayesian estimator in Section 5. In Section 6, a regression model based on the proposed distribution
is presented. In section 7, applications of the weighted Bilal distribution and the weighted Bilal regression model are
presented. Finally, we summarize the paper in Section 8.

2. The Weighted Bilal Distribution

In this section, the weighted Bilal distribution is defined and its shape is studied.

Theorem 2.1. A random variable Y follows the weighted Bilal distribution with a parameter θ > 0 if it has the pdf

f(y) =
6e

−3y
θ (e

y
θ − 1)(5θ2 + 6y)

5θ2(θ + 1)
, y > 0. (4)

Proof. The pdf of the length-biased Bilal distribution can be obtained by substituting Equation (2) and Equation (3)
into Equation (1). Hence

gl(y) =
36ye−

2y
θ (1− e−

y
θ )

5θ2
. (5)

The weighted Bilal distribution can be expressed as a mixture of two component

f(y) = pg(y) + (1− p)gl(y), (6)
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where p = θ
1+θ , g(y) is the pdf of the Bilal distribution, given by Equation (2); and gl(y) is the pdf of the length-biased

Bilal distribution, given by Equation (5). Finally, Equation (4) is obtained.

The corresponding cumulative distribution function is

F (y) = 1−
e−

3y
θ

((
18y + 15θ2 + 9θ

)
e
y
θ − 12y − 10θ2 − 4θ

)
5θ (θ + 1)

. (7)

Proposition 2.1. The pdf of the weighted Bilal distribution is log-concave.

Proof. The first and the second derivative of logarithm of f(y) are

d

dy
log f(y) =

6e−
3y
θ e

3y
θ

6y + 5θ2
− 3e−

3y
θ e

3y
θ

θ
+

e
y
θ

θ
(
e
y
θ − 1

) ,
d2

dy2
log f(y) = − e

2y
θ

θ2
(
e
y
θ − 1

)2 +
e
y
θ

θ2
(
e
y
θ − 1

) − 36

(6y + 5θ2)
2 .

Since d2

dy2 log f(y) ≤ 0, the weighted Bilal density is log-concave.

Figure 1 shows the pdf and cdf plots of the weighted Bilal ditribution with different parameter values. The pdf is either
a decreasing or a unimodal function and the cdf decreases with increasing value of θ.
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Figure 1: Pdf plot (left) and cdf plot (right) of the weighted Bilal distribution with some parameter values.

3. Reliability Measures and Statistical Properties

In this section, reliability measures and statistical properties like survival function, hazard rate function, mean resid-
ual life function, moments, moment generating function, Bonferroni curve, Lorenz curve and order statistic of the
weighted Bilal distribution are presented.
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3.1. Survival Function, Hazard Rate Function and Mean Residual Life Function

The survival function, hazard rate function and mean residual life function are applied frequently in survival or relia-
bility studies. Let Y be a random variable with weighted Bilal pdf, the survival function of Y is given by

S(y) =
e−

3y
θ

((
18y + 15θ2 + 9θ

)
e
y
θ − 12y − 10θ2 − 4θ

)
5θ (θ + 1)

.

The hazard rate function of Y can be defined by h(y) = f(y)
S(y) . Therefore, the hazard rate function of the weighted

Bilal distribution is given by

h(y) =
6(e

y
θ − 1)(5θ2 + 6y)

θ(e
y
θ (15θ2 + 9θ + 18y)− 10θ2 − 4θ − 12y)

.

Proposition 3.1. The hazard rate function of the weighted Bilal distribution is an increasing function for all θ.

Proof. The shape of the hazard rate function is studied by using the Glaser’s lemma (Glaser, 1980).

Let η(y) = −d log f(y)

dy
, then

dη(y)

dy
=

36θ2e
2y
θ +

(
36y2 + 60θ2y + 25θ4 − 72θ2

)
e
y
θ + 36θ2

θ2 (6y + 5θ2)
2 (
e
y
θ − 1

)2 > 0

Thus, h(y) is increasing function.
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Figure 2: Survival function plot (left) and hazard rate function plot (right) of the weighted Bilal distribution with
various parameter values.

Figure 2 displays plots of the survival function and the hazard rate function with some parameter values. The figure
confirms that the hazard rate function of the weighted Bilal distribution is an increasing function. For fixed y, the value
of S(y) is increasing with increasing θ but the value of h(y) is decreasing with increasing θ.
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The mean residual life function can be defined by

m(y) = E(Y − y|Y > y)

=
1

1− F (y)

∫ ∞
y

[1− F (t)]dt

=
θ
(
(9e

y
θ − 4)(5θ2 + 6y) + 2θ(27e

y
θ − 8)

)
6
(
(3e

y
θ − 2)(5θ2 + 6y) + θ(9e

y
θ − 4)

) .

3.2. Moments and Moment Generating Function

Moments are important properties for any distribution. They can be used to study characteristics of distribution and
for estimation.

Proposition 3.2. Let Y be a weigthed Bilal random variable, then the rth moment about the origin of Y is given by

µ′r =
6−rθr

(
3r+1(5θ + 3r + 3)− 2r+1(5θ + 2r + 2)

)
Γ(r + 1)

5θ + 1
. (8)

Proof.

µ′r = E(Y r)

=

∫ ∞
0

yr
6e

−3y
θ (e

y
θ − 1)(5θ2 + 6y)

5θ2(θ + 1)
dy

=

∫ ∞
0

[
− 36e

−3y
θ yr+1

5θ2(θ + 1)
+

36e
−2y
θ yr+1

5θ2(θ + 1)
− 6e

−3y
θ yr

θ + 1
+

6e
−2y
θ yr

θ + 1

]
dy

=
6−rθr

(
3r+1(5θ + 3r + 3)− 2r+1(5θ + 2r + 2)

)
Γ(r + 1)

5(θ + 1)
.

Proposition 3.3. If Y be a weigthed Bilal random variable, then the moment generating function of Y can be obtained
by

MY (t) =
6(5θ3t2 − 25θ2t− 12θt+ 30θ + 30)

5(θ + 1)(θt− 3)2(θt− 2)2
. (9)

Proof.

MY (t) = E(etY )

=

∫ ∞
0

ety
6e

−3y
θ (e

y
θ − 1)(5θ2 + 6y)

5θ2(θ + 1)
dy

=

∫ ∞
0

[
− 36yety−

3y
θ

5θ2(θ + 1)
+

36yety−
2y
θ

5θ2(θ + 1)
− 6ety−

3y
θ

θ + 1
+

6ety−
2y
θ

θ + 1

]
dy

=
6(5θ3t2 − 25θ2t− 12θt+ 30θ + 30)

5(θ + 1)(θt− 3)2(θt− 2)2
.
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If Y be a weigthed Bilal random variable, the first four moments about the origin of Y are, respectively

µ′1 =
θ(25θ + 38)

30(θ + 1)
,

µ′2 =
θ2(19θ + 39)

18(θ + 1)
,

µ′3 =
θ3(325θ + 844)

180(θ + 1)
,

µ′4 =
θ4(211θ + 665)

54(θ + 1)
.

The moments about the mean of Y are given by

µr = E(Y − µ)r

=

r∑
k=0

(
r

k

)
µ′k(−µ)r−k.

The mean plot and the variance plot of the weighted Bilal distribution are shown in figure 3. We can see that the mean
and variance are increasing as θ increases.
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Figure 3: Mean plot (left) and variance plot (right) of the weighted Bilal distribution with some parameter values.

3.3. Bonferroni and Lorenz Curves

Bonferroni and Lorenz Curves are well-known measures of inequality of income, insurance and reliability. Let Y be
a weighted Bilal random variable, the Bonferroni curve for a random variable Y can be defined by

B(p) =

∫ q

0

yf(y)dy

p

∫ ∞
0

yf(y)dy

=
1

pµ

(∫ ∞
0

yf(y)dy −
∫ ∞
q

yf(y)dy

)
=

1

pµ

(
µ−

∫ ∞
q

yf(y)dy

)
,

Bayesian Inference for a Weighted Bilal Distribution: Regression Model 6



Pak.j.stat.oper.res. Vol.19 No.1 2023 pp 1-13 DOI: http://dx.doi.org/10.18187/pjsor.v19i1.4140

where q = F−1(p).

The Lorenz curve is defined by

L(p) =

∫ q

0

yf(y)dy∫ ∞
0

yf(y)dy

=
1

µ

(∫ ∞
0

yf(y)dy −
∫ ∞
q

yf(y)dy

)
=

1

µ

(
µ−

∫ ∞
q

yf(y)dy

)
.

Since∫ ∞
q

yf(y)dy =
e−

3q
θ

((
108q2 +

(
90θ2 + 108θ

)
q + 45θ3 + 54θ2

)
e
q
θ − 72q2 +

(
−60θ2 − 48θ

)
q − 20θ3 − 16θ2

)
30θ (θ + 1)

,

the Bonferroni and the Lorenz curves of the weighted Bilal are, respectively

B(p) =
1

p

(
1−

e−
3q
θ

((
108q2 +

(
90θ2 + 108θ

)
q + 45θ3 + 54θ2

)
e
q
θ − 72q2 +

(
−60θ2 − 48θ

)
q − 20θ3 − 16θ2

)
θ2(25θ + 38)

)
,

L(p) = 1−
e−

3q
θ

((
108q2 +

(
90θ2 + 108θ

)
q + 45θ3 + 54θ2

)
e
q
θ − 72q2 +

(
−60θ2 − 48θ

)
q − 20θ3 − 16θ2

)
θ2(25θ + 38)

.

3.4. Order Statistic

Let Y1, Y2, . . . , Yn be independent and identically distributed random sample from the weighted Bilal distribution and
let Y(1) ≤ Y(2) ≤ . . . ≤ Y(n) denotes the order statistics. The pdf of Y(i) can be defined by

fY(r)
(y) =

n!

(i− 1)!(n− i)!
fY (y)(FY (y))i−1(1− FY (y))n−i,

where fY (y) and FY (y) are the pdf and cdf of the weighted Bilal distribution given by Equation (4) and Equation (7),
respectively. Therefore, the rth order statistic of the weighted Bilal distribution is given by

fY(r)
(y) =

n!

(i− 1)!(n− i)!

(
6e−

3y
θ (e

y
θ − 1)(5θ2 + 6y)

5θ2(θ + 1)

)

×

(
1−

e−
3y
θ

((
18y + 15θ2 + 9θ

)
e
y
θ − 12y − 10θ2 − 4θ

)
5θ (θ + 1)

)i−1

×

(
e−

3y
θ

((
18y + 15θ2 + 9θ

)
e
y
θ − 12y − 10θ2 − 4θ

)
5θ (θ + 1)

)n−i
.
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4. Bayesian Inference

Suppose Y1, Y2, . . . , Yn be an iid random variable of size n from the weighted Bilal distribution and y1, y2, . . . , yn be
the observations. Then the likelihood function of the observed sample is given by

L(θ) =

n∏
i=1

6e
−3yi
θ (e

yi
θ − 1)(5θ2 + 6yi)

5θ2(θ + 1)
.

Based on the Bayesian approach, a parameter is considered as random variable represented by a prior distribution.
Following the recommendations of Gelman and Hill (2006), in this paper the half-Cauchy (HC) distribution with a
scale 25 is used as the noninformative prior distribution. Thus,

θ ∼ HC(25).

The posterior distribution for θ is expressed by

p(θ|y) =
L(y|θ)p(θ)∫

θ
L(y|θ)p(θ)d(θ)

.

In the Bayesian inference, the posterior distribution is proportional to the sum of the likelihood and the prior distribu-
tion because the denominator is normalization constant. The posterior distribution can be expressed as

p(θ|y) ∝ L(y|θ)p(θ).

Consequently, the posterior distribution is given by

p(θ|y) ∝
n∏
i=1

6e
−3yi
θ (e

yi
θ − 1)(5θ2 + 6yi)

5θ2(θ + 1)
× 2× 25

π(θ2 + 252)
.

The Markov Chain Monte Carlo (MCMC) methods can be applied to obtain the posterior distribution. In this paper, we
apply the Metropolis-Hastings-within Gibbs with 10,000 iterations in the LaplaceDemon function of the LaplaceDe-
mon package (Statisticat, 2021) in the R programming language (R Core Team, 2022).

The LaplaceDemon function maximizes the logarithm of the joint posterior density, then

log[p(θ|y)] ∝ log[L(y|θ)] + log[p(θ)].

The posterior distribution for the parameter of the weighted Bilal distribution is obtained by

log[p(θ|y)] ∝
n∑
i=1

log(6)− 3

θ

n∑
i=1

yi +

n∑
i=1

log(e
yi
θ − 1) +

n∑
i=1

log(5θ2 + 6yi)−
n∑
i=1

log
(
5θ2(θ + 1)

)
+ log

(
2× 25

π(θ2 + 252)

)
.

5. Simulation Study

The simulation study is conducted to assess the behavior of the Bayesian estimator in this section. The inversion
method is used to generate random variates. The steps of random variate generation from the weighted Bilal distribu-
tion are as follows:

1. Generate ui, i = 1, . . . , n from U(0, 1).

2. Generate yi from F−1(yi) = ui of the weigthed Bilal distribution.

The simulation study is carried out 1,000 times with θ = 0.5, 1, 2 for the different sample sizes n = 50, 100, 150, 200, 500.
The measures are based on: root mean square error (RMSE) and average bias, defined by

Bayesian Inference for a Weighted Bilal Distribution: Regression Model 8
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RMSE =

√√√√√√
1,000∑
i=1

(θ̂i − θ)2

1, 000
,

Average bias =

1,000∑
i=1

(θ̂i − θ)

1, 000

Table 1: RMSE and average bias of the simulated estimate.

n
θ = 0.5 θ = 1.0 θ = 2.0

RMSE Average bias RMSE Average bias RMSE Average bias

50 0.0447 0.0086 0.0938 0.0256 0.1949 0.0436

100 0.0300 0.0016 0.0632 0.0122 0.1319 0.0186

150 0.0245 0.0012 0.0510 0.0043 0.1077 0.0114

200 0.0224 0.0026 0.0436 0.0041 0.0943 0.0119

500 0.0141 −0.0008 0.0283 0.0040 0.0574 0.0027

Table 1 displays RMSEs and average biases for the Bayesian estimator. The RMSEs decrease with increasing sample
size and the average biases tend to zero for large sample size. Hence, the Bayesian estimator performs well for the
parameter.

6. The Weighted Bilal Regression Model

In this section, we propose a regression model based on the weighted Bilal distribution with systematic structure. Let
xi = (xi1, xi2, . . . , xip)

T be the vector of covariates. The parameter θi is linked to the covariates by the log-linear
structure, log(θi) = xi

Tβ. Thus
θi = exi

Tβ,

where i = 1, 2, . . . , n and β = (β1, β2, . . . , βp) be the vector of regression coefficients.

The pdf of the weighted Bilal regression model that the parameter θ depends on xi can be defined by

f(y) =
6e−3y/e

xi
T β
(
ey/e

xi
T β − 1

)(
5(exi

Tβ)2 + 6y
)

5
(
exi

Tβ
)2 (

exi
Tβ + 1

) .

An uninformative prior distribution, normally-distributed with µ = 0 and σ2 = 10000 is assigned for each β.

β ∼ N(0, 10000).

Here, the posterior densities of parameters are obtained by the LaplaceDemon function (Statisticat, 2021) in the R
programming language (R Core Team 2022).

Bayesian Inference for a Weighted Bilal Distribution: Regression Model 9
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7. Applications

In this section, two real data sets are considered to illustrate the performance of the proposed model. The proposed
model is compared with other models that have one parameter, namely the exponential model, the Lindley model
(Lindley, 1958), and the Bilal model (Abd-Elrahman, 2013). Based on the Bayesian approach, the Deviance Informa-
tion Criterion (DIC) (Spiegelhalter et al., 2002) is applied to consider the best model. The lowest of the DIC value
indicates the better model.

Following Spiegelhalter et al. (2002), the deviance can be given by

D(Θ) = −2 logL(Θ) + c,

where c is a constant that cancels out for comparing difference models.

Let D̄ = E [D(Θ)] is the posterior mean of the deviance and mD is the effective number of parameters, defined by

mD = D̄ −D(Θ̂), (10)

where D(Θ̂) is the deviance evaluated at the posterior mean of Θ̂.

The DIC is calculated by
DIC = D̄ +mD,

Rearranging Equation (10), we get D̄ = mD +D(Θ̂). Hence, the DIC can be expressed as

DIC = D(Θ̂) + 2mD.

7.1. Application 1

The first data set represents breaking stress of carbon fibres (in Gba), presented in the Adequacy (Nichols and Padgett,
2006). The observations are shown in Table 2.

Table 2: Breaking stress of carbon fibres.

3.7 2.74 2.73 2.5 3.6 3.11 3.27 2.87 1.47 3.11 4.42 2.41

3.19 3.22 1.69 3.28 3.09 1.87 3.15 4.9 3.75 2.43 2.95 2.97

3.39 2.96 2.53 2.67 2.93 3.22 3.39 2.81 4.20 3.33 2.55 3.31

3.31 2.85 2.56 3.56 3.15 2.35 2.55 2.59 2.38 2.81 2.77 2.17

2.83 1.92 1.41 3.68 2.97 1.36 0.98 2.76 4.91 3.68 1.84 1.59

3.19 1.57 0.81 5.56 1.73 1.59 2.00 1.22 1.12 1.71 2.17 1.17

5.08 2.48 1.18 3.51 2.17 1.69 1.25 4.38 1.84 0.39 3.68 2.48

0.85 1.61 2.79 4.7 2.03 1.8 1.57 1.8 2.03 1.61 2.12 1.89

2.88 2.82 2.05 3.65

The total time on test (TTT) plot can be used to show the shape of the hazard rate function of the data set. Figure 4
shows the TTT plot for breaking stress of carbon fibres data. The plot reveals that the hazard rate function of the data
set is an increasing shape; thus, the data set can been described by the weighted Bilal distribution.

Table 3 displays the posterior means and the DIC values for breaking stress of carbon fibres data of the exponential,
Lindley, Bilal, and weighted Bilal distributions. The table indicates that the weighted Bilal distribution has the lowest

Bayesian Inference for a Weighted Bilal Distribution: Regression Model 10
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Figure 4: TTT plot for breaking stress of carbon fibres data.

DIC value; hence, it provides a better fit than other distributions.

Table 3: Posterior means and the DIC values for breaking stress of carbon fibres data.

Distribution Posterior mean DIC

Exponential 0.005 526.391

Lindley 0.009 417.427

Bilal 1.150 337.312

Weighted Bilal 1.012 334.242

7.2. Application 2

The second data set is considered to compare the exponential, Lindley, Bilal, and weighted Bilal regression models.
The data set contains 99 observations of U.S. oil field with 3 variables (Baltagi, 2011). The variables are as follows:

• y, crude prices (USD/barrel)

• x1, sulphur (in %)

• x2, gravity (degree API)

Table 4 shows posterior means of the regression parameters and the DIC values of the fitted regression models. We can
conclude that the weighted Bilal regression model is the best model among the competing regression models because
it has the smallest DIC value.

Table 5 displays the lower bound (LB) and the upper bound (UB) of the 95% probability interval for βj . The 95%
probability intervals for β1 of the weighted Bilal regression model is (−0.086, 0.013); therefore, β1 is not significant
at the 0.05 level. A new weighted Bilal regression model is constructed by considering only x2. The result of the new
weighted Bilal regression model is shown in Table 6. The table shows that the new weighted Bilal regression model
provides the lower DIC value than the weighted Bilal regression model in Table 4.
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Table 4: Posterior means and the DIC values for crude prices data.

Distribution Posterior mean DIC

β̂0 β̂1 β̂2

Exponential −313.416 20.314 −296.266 3036.780

Lindley −449.122 −133.872 −225.276 2622.003

Bilal 1.257 −0.042 −0.005 673.742

Weighted Bilal 1.180 −0.035 −0.003 671.575

Table 5: LB and UB of the 95% probability intervals for regression parameters.

Distribution (LB, UB)

β0 β1 β2

Exponential (−419.145, −169.516) (−46.803, 103.688) (−421.320, −213.902)

Lindley (−554.150, −307.252) (−201.686, −49.480) (−350.330, −142.912)

Bilal (1.168, 1.364) (−0.070, −0.007) (−0.009, −0.004)

Weighted Bilal (1.036, 1.280) (−0.086, 0.013) (−0.004, −0.001)

Table 6: Posterior means (LB, UB) for β0, β2 and the DIC value.

Distribution Posterior mean (LB, UB) DIC

β̂0 β̂2

Weighted Bilal 0.820 (0.721, 0.891) 0.010 (0.008, 0.012) 670.960

8. Conclusions

In this paper, we have proposed the weighted Bilal distribution. The distribution is the mixture of the Bilal distribution
and length-biased Bilal distribution. Various statistical properties of the proposed distribution (including survival
function, hazard rate function, mean residual life function, moments, moment generating function, Bonferroni curve,
Lorenz curve and order statistic) have been provided. The Bayesian approach has been used to estimate its parameter.
The simulation study has been conducted to assess the performance of the Bayesian estimator in terms of root mean
square error and bias. The Bayesian approach provides good performance for the parameter. Moreover, we have
proposed a regression model based on the weighted Bilal distribution. Two real data sets have been analyzed to show
the usefulness of the weighted Bilal distribution and the weighted Bilal regression model. They provide better fits than
other competitive models.
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Sankhyā: The Indian Journal of Statistics, Series B, 38(1):48–61.
9. Peel, D. and MacLahlan, G. (2000). Finite Mixture Models. John & Sons, New York, USA.
10. R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria.
11. Riad, F. H., Alruwaili, B., Gemeay, A. M., and Hussam, E. (2022). Statistical modeling for COVID-19 virus

spread in Kingdom of Saudi Arabia and Netherlands. Alexandria Engineering Journal, 61(12):9849–9866.
12. Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002). Bayesian measures of model

complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4):583–
639, doi:10.1111/1467–9868.00353.

13. Statisticat, L. (2021). LaplacesDemon: Complete Environment for Bayesian Inference. R package version
16.1.6.

Bayesian Inference for a Weighted Bilal Distribution: Regression Model 13


	1 Introduction
	2 The Weighted Bilal Distribution
	3 Reliability Measures and Statistical Properties
	3.1 Survival Function, Hazard Rate Function and Mean Residual Life Function
	3.2 Moments and Moment Generating Function
	3.3 Bonferroni and Lorenz Curves
	3.4 Order Statistic

	4 Bayesian Inference
	5 Simulation Study
	6 The Weighted Bilal Regression Model
	7 Applications
	7.1 Application 1
	7.2 Application 2

	8 Conclusions



