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Abstract 

The autoregressive model is a representation of a certain kind of random process in statistics, insurance, signal 

processing, and econometrics; as such, it is used to describe some time-varying processes in nature, economics and 

insurance, etc. In this article, a novel version of the autoregressive model is proposed, in the so-called the partially 

autoregressive (PAR(1)) model. The results of the new approach depended on a new algorithm that we formulated 

to facilitate the process of statistical prediction in light of the rapid developments in time series models. The new 

algorithm is based on the values of the autocorrelation and partial autocorrelation functions. The new technique is 

assessed via re-estimating the actual time series values. Finally, the results of the PAR(1) model is compared with 

the Holt-Winters model under the Ljung-Box test and its corresponding p-value. A comprehensive analysis for the 

model residuals is presented. The matrix of the autocorrelation analysis for both points forecasting and interval 

forecasting are given with its relevant plots. 

 

Keywords: Time series; Statistical model; Forecasting; Residual analysis; Ljung-Box test; Simulation; Statistics 

and numerical data. 

 

1. Introduction 
Reinsurance refers to the coverage a company buys from another insurance company to protect itself (at least in part) 
from the possibility of a significant claim happening. Reinsurance is also referred to as stop-loss insurance or insurance 
for insurers. Reinsurance is the process through which insurers, through arrangement, transfer some of their risk 
portfolios to other parties in an effort to lessen the possibility that they could have to shoulder a sizable liability as a 
result of an insurance claim. The individual (company) who agrees to take on a portion of the possible responsibility 
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in exchange for a piece of the insurance premium is known as the reinsurer. The ceding party is known as the 
diversified insurance portfolio party. Through reinsurance, insurers can continue to turn a profit by recouping all or 
part of the funds paid to claimants. In the event of significant or widespread losses, reinsurance offers protection from 
catastrophic losses and lowers the net liability for individual risks. The process also enables reinsurance seekers, or 
ceding businesses, to enhance their capacity for taking on all types of risks. In other terms, the reinsurer is the business 
that issues the reinsurance coverage. Reinsurance typically allows insurance firms to continue operating after major 
claims occurrences, such as severe catastrophes like hurricanes and wildfires. Reinsurance occasionally fulfils 
functions unrelated to its primary function in risk management, such as lowering the capital needs of the cascading 
company, tax mitigation, or other functions. 
 
Skewed/asymmetric real data sets are those that have an asymmetric distribution, where the data points are not evenly 
distributed around the mean. Such data sets are common in many fields, including economics, finance, engineering, 
insurance, reinsurance, and other social sciences. Moreover, asymmetric data sets are often encountered in real-life 
scenarios, such as income distribution, sales data, or medical research. Analyzing such data sets can provide valuable 
insights into the underlying patterns and behaviors of the system under study. Skewed/asymmetric data sets are 
important in prediction and forecasting, as they often contain information about rare events or extreme values that can 
significantly impact the outcome. For example, in financial forecasting, the distribution of returns is often highly 
skewed, and analyzing this data can help predict the likelihood of extreme market events. For this purpose, we are 
motivated to analyze new asymmetric reinsurance data via a new modified time series model. This new model, as will 
be explained later, is capable of describing asymmetric time series data and dealing with it in analysis, segmentation, 
and future predictions. The ability of the model to do so stemmed from the new modified algorithms that were applied 
to estimate the model parameter completely differently from the well-known traditional methods. It is worth noting 
that the used reinsurance revenue data is skewed to the right (positive skew), while we may later find the reinsurance 
revenue data skewed to the left (negative skew), and due to the limitations of the model and the limitations of the 
study, we will rely solely on the skewed reinsurance revenue data left side. The new model's ability lies in the new 
algorithms, which do not require specific conditions in the data. 

This paper provides a model called the partial autoregressive (PAR) model for estimating the revenues of reinsurance 
businesses. The new model stands out for its simple procedures and high degree of prediction accuracy. This model 
stands in contrast to several pricey ones with stringent requirements such as the autoregressive integrated moving 
average (ARIMA) models (see Box and Jenkins (1970) and Box et al. (2015)). One of the key areas of actuarial 
statistics is the forecasting of reinsurance businesses' revenue streams. There are numerous strategies, methods, and 
models for statistical prediction in statistical literature. It is challenging to declare one methodology, method, or model 
to be the finest of all time. Many other aspects and reasons, such as the needed accuracy, cost, and speed, affect this 
choice between approaches, methodologies, and models. To deliver trustworthy and accurate projections to an 
acceptable and sufficient degree, great care is devoted to balance all these aspects. Box and Jenkins methodology 
compares discrepancies between time series data points to determine results. By using seasonal differencing, moving 
averages models, and autoregressive models, patterns can be found that can be used to construct future projections. 
ARIMA models are used as the main implementation of the Box-Jenkins technique. The two names for these cars are 
occasionally used interchangeably. See Box et al. (2015) for additional information on time series analysis with future 
forecasting. 

Nonetheless, research using ARIMA models was widely disseminated in the actuarial and statistical literature, see 
Cummins and Griepentrog (1985) for more results about combining the econometrics and the ARIMA models for 
predicting the costs of paid claims for vehicle insurance data, Jang et al. (1991) for analyzing and employing medical 
insurance plan based on the ARIMA model, Mohammadi and Rich (2013) for applying the ARIMA model to the 
dynamics of unemployment insurance claims, Hafiz et al. (2021) estimated the rate of the insurance penetration in 
Nigeria, and Kumar et al. (2020) for predicting the quantity of auto insurance claims using the ARIMA model. Several 
authors have focused on the autoregressive (AR), moving average (MA), and ARIMA models in the context of applied 
numerical techniques and future statistical prediction. For the prediction of electricity price see Jakaša et al. (2011). 
For forecasting oil seeds, see Darekar and Reddy (2017). For modelling total seeds of rice and wheat, see Sahu et al. 
(2015). For forecasting wheat production in India, see Nath et al. (2019)), identification of paddy crop phenological 
parameters see Palakuru et al. (2019), and Shrahili et al. (2021) for analyzing some left skewed insurance data via a 
new extension of the Chen model and via the AR model. Following Shrahili et al. (2021), this paper defines a new 
reinsurance claims PAR model as well as a new algorithm for estimating the model is presented and applied. To 
choose the optimum model, the technique essentially involves examining the reinsurance claims for each of the 
conceivable ARIMA models, this selection will depend on suitability for the reinsurance claims data, the significance 
of the model parameter is statistically checked. In general, it is better to use a model with fewer significant parameters. 
In order to create a particular Box-Jenkins model for the time series of reinsurance claims, it is necessary to first 
determine if the time series is stationary or not and whether any significant seasonality needs to be taken into account. 
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The Box-Jenkins model is identified before choosing the autoregressive model. The insurance claims are modelled 
using the PAR model. Its applicability is assessed through a few simulated exercises. The optimal parameter is chosen 
using artificial techniques. The new model was given this name because it involves a dynamic change in the method 
for estimating the model parameter. This change can be considered the development of the original AR model and the 
development of the traditional method popular in estimating the value of the model parameter. Following is a list of 
the main advantages of the updated model: 

I. Since the future prediction process will be dependent on this ideal value, the upgraded model is 
depending on extensive simulation tests to select the best value for the model parameter. According to the 
methods we'll mention in their place, the statistical prediction procedure will take place. 

II. For several businesses in the domains of manufacturing, marketing, insurance, engineering, and 
other industries, firms frequently want quick, accurate, and affordable forecasts for the near future. The 
proposed updated statistical model offers what companies and businesses require in the form of accurate 
predictions at the most affordable prices, and these predictions include qualities that are statistically 
significant. 

III. This new model has been chosen precisely for its rapid statistical forecasting capabilities, not to 
mention how simple it is to use to statistical prediction as it is entirely devoid of the complexity that afflict 
so many contemporary models. 

The remainder of the paper is structured as follows: The key statistical findings of the PAR model are 
presented in Section 2. Section 3 deals with evaluation and application to real data on reinsurance. Finally, 
Section 4 offers a few final remakes. 

2.The PAR model: Structure 

Before going into the details of the new model, a review of some details about the AR model is given. These details 

relate to the importance of the model and its applications in the field of insurance, reinsurance, economics, risk 

management, financing, agriculture and others. Here are some applications of AR models: 

I. The AR models can be used to analyze stock market data and make predictions about future prices. 
By modeling the relationships between past prices and current prices, an AR model can provide valuable 

insights into market trends and volatility (see Idrees et al. (2019)). 

II. The AR models can be used to forecast economic indicators such as inflation, and unemployment 

rates. By analyzing the historical data, an AR model can provide valuable insights into economic trends and 

help policymakers make informed decisions (see Bruneau et al. (2007)). 

III. Due to Githeko and Ndegwa (2007), the AR models can be used to analyze and forecast climate 

data such as temperature, precipitation, and sea level. By modeling the relationships between past climate 

data and current data, an AR model can help researchers understand the factors that drive climate variability 

and change. 

IV. The AR models can be used to forecast energy consumption and production, which is important for 

energy planning and policy making. By analyzing historical data, an AR model can provide insights into 
energy trends and help forecast future demand and supply (for more details, see Debnath and Mourshed 

(2018)). 

V. According to Akbar (2019), the AR models can be used to forecast financial data such as stock 

prices, interest rates, and exchange rates. By modeling the relationships between past financial data and 

current data, an AR model can provide insights into market trends and help investors make informed 

decisions. 

VI. The AR models can be used to analyze mortality data to understand trends and patterns in death 

rates over time (see Lee and Carter (1992)). By modeling the relationships between past mortality rates and 

current rates, an AR model can help actuaries estimate future mortality and assess the adequacy of reserves 

for life insurance and annuity products. 

VII. Risk management, credit risk, insurance risk, and operational risk are just a few of the different sorts 
of hazards that the AR models can be used to forecast and model. An AR model can assist actuaries in 

estimating the likelihood and severity of possible losses and developing methods to reduce these risks by 

evaluating historical data (see Shrahili et al. (2021) and Mohamed et al. (2022a,b,c) for more details). 

According to Yan and Hong (2015), reinsurance markets have received very little attention in empirical studies on 

asymmetric information, in contrast to primary insurance markets. By looking for a positive association between 
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coverage and "ex post" risk in three significant reinsurance markets for the years 1995 to 2000, Yan and Hong (2015) 

looked into the possibility of asymmetric knowledge. They found that: 

I. In the private passenger auto liability and homeowners’ reinsurance markets, asymmetric 

information problems exist, but not in the market for product liability reinsurance. 

II. Retention limits are frequently used to mitigate asymmetric information problems. 
III. long-term contractual relationships are either rarely used or ineffective in controlling asymmetric 

information problems. 

In several reinsurance markets, Yan and Hong (2015) found evidence of the use of retention restrictions to minimize 

asymmetric information issues, but little to no evidence of the use of long-term contractual ties to regulate asymmetric 

information. Additionally, Yan and Hong (2015) were unable to independently test for the existence of asymmetric 

information in the internal and external reinsurance markets due to a lack of data. In the actuarial literature, there are 

many useful works which deserve a huge attention and consultation in future works such as Lee and Carter (1992), 

Mohamed et al. (2022a,b,c), Yan and Hong (2015), Saikkonen and Teräsvirta (1985) among others. 

These numerous uses gave the model significant weight in the statistical literature, and our decision to publish this 

new model was mostly driven by these uses. On the other hand, the ARIMA is a class of statistical models that 

forecasts future values by explaining a given time series based on its own previous values, such as its own lags and 

lagged forecast errors. Making the time series stationary is the first stage in creating a robust ARIMA model. The 
PAR model, where is the order of the PAR model, is a linear regression model that employs its own lags as predictors. 

When the predictors are unrelated and uncorrelated with one another, the linear regression models are suitable. One 

can analyze and ascertain the required number of AR terms by looking at the autocorrelation function (ACF) and 

partial autocorrelation function (PACF) plots. The PACF plots, however, are more precise than the ACF plots. Several 

simulated results are offered for the purpose of investigating the necessary number of AR terms. Following Shrahili 

et al. (2021), the new PAR model of order 𝜋(PAR(𝜋)) can be expressed as  

𝑦𝜍 = 𝑐 + 𝜑1𝑦𝜍−1 + 𝜑2𝑦𝜍−2. . . +𝜑𝜋𝑦𝜍−𝜋 + 𝜀𝜍 , 

where 𝜀𝜍 is the white noise, 𝑐 is a constant, the lagged values of 𝑦𝜍 are the predictors, and 𝜑1 , 𝜑2 , … , 𝜑𝜋  are the 

unknown parameters. The autoregressive models are normally restricting to stationary data, where some constraints 

on the parameter values are required. For the PAR(1) model: 

• when 𝜑1 = 0, then 𝑦𝜍 is equivalent to white noise model which is ARIMA model with parameters (0,0,0); 

• when 𝜑1 = 1 and 𝑐 = 0, then 𝑦𝜍 is equivalent to a random walk model with drift. 

• when 𝜑1 < 0, then the ACF oscillates and has negative correlation at lag 1. 

Further, one can write  

𝑦𝜍 = 𝑐 + 𝜑1𝑦𝜍−1 + 𝜀𝜍  |  − 1 < 𝜑1 < 1, ∀ 𝜍 = 0, ±1, ±2, …. 

Here, the expected value of  𝑦𝜍  can be formulated as  

𝐸(𝑦𝜍) = 0|𝜍 = 0, ±1, ±2, . . ., 

and its variance can be expressed as  

𝑉ar(𝑦𝜍) = 𝛾(0)|𝜍 = 0, ±1, ±2, …, 

where  

𝛾(0) = 𝛥(𝜑1
2)𝜎𝜀

2|𝛥(𝜑1
2) =

1

1 − 𝜑1
2, 

 𝜎𝜀
2  is the variance of the residuals, and the covariance Cov(𝑦𝜍 , 𝑦𝜍−1)  reduces to  

𝐶ov(𝑦𝜍 , 𝑦𝜍−1) = 𝛥(𝜑1
2)𝜑1𝜎𝜀

2. 

Analogously, the covariance  𝐶ov (𝑦𝜍 , 𝑦𝜍−2)  has the form  

𝐶ov(𝑦𝜍 , 𝑦𝜍−2) = 𝛥(𝜑1
2)𝜑1

2𝜎𝜀
2. 

For the PAR(2) model (or the ARIMA(2,0,0) model)  

𝑦𝜍 = 𝑐 + 𝜑1𝑦𝜍−1 + 𝜑2𝑦𝜍−2 + 𝜀𝜍|−1<𝜑1<1,𝜑2+𝜑1<1 and 𝜑2−𝜑1<1. 

The PAR model in Equation (2) and some of its mathematical results will be used for statistical modeling of the claims 

payment data, and future prediction. 

3. Assessment and forecasting 

While Box-Jenkins models, also known as ARIMA models, are widely used and effective for time series analysis, 
they do have some disadvantages that should be considered. Here are the main disadvantages of Box-Jenkins models: 
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I. Stationarity assumption: Box-Jenkins models require the time series to be stationary, meaning that the 
mean, variance, and autocorrelation structure of the series remain constant over time. However, many 
real-world time series exhibit non-stationary behavior, such as trends or seasonality. In such cases, the 
series needs to be transformed or changed to achieve stationarity, which can complicate the modeling 
process and potentially introduce additional uncertainty. 

II. Complexity and parameter estimation: Box-Jenkins models can become complex, particularly when 
dealing with higher-order autoregressive (AR) or moving average (MA) components. Estimating the 
parameters of these models can be challenging, especially when the dataset is small or contains missing 
values. The iterative process of identifying the appropriate model order and estimating parameters can 
be time-consuming and require significant computational resources. 

III. Sensitivity to outliers: Box-Jenkins models can be sensitive to outliers or extreme values in the time 
series data. Outliers can significantly affect the model estimation process and bias the parameter 
estimates. Additionally, outliers might lead to incorrect model selection, resulting in suboptimal 
forecasting performance. 

IV. Model selection: Box-Jenkins models involve selecting the appropriate model order, which includes 
determining the number of autoregressive (p), integrated (d), and moving average (q) terms. The model 
selection process typically relies on diagnostic tools, such as the Akaike Information Criterion (AIC) or 
Bayesian Information Criterion (BIC). However, selecting the optimal model order is not always 
straightforward, and different criteria may lead to different model choices. It requires careful judgment 
and expertise to strike the right balance between model complexity and goodness-of-fit. 

V. Forecast uncertainty: While Box-Jenkins models can provide accurate forecasts under certain conditions, 
they may not fully capture the complexities and inherent uncertainty of real-world time series data. The 
assumption of constant parameters and linear relationships may limit their ability to accurately forecast 
in situations with nonlinear trends, sudden shifts, or structural breaks. 

VI. Limited handling of complex patterns: Box-Jenkins models are primarily designed to capture linear 
dependencies and autocorrelations in time series data. They may struggle to effectively model complex 
patterns, such as long-term dependencies, nonlinear relationships, or non-Gaussian and heavy-tailed 
distributions. In such cases, alternative modeling techniques, such as state space models or machine 
learning approaches, may be more suitable. 

VII. It's important to note that while Box-Jenkins models have these disadvantages, they still offer valuable 
insights and are widely used in time series analysis. However, it's essential to carefully consider the 
limitations and assess the suitability of these models for specific datasets and analysis goals. 

 

Moreover, all Box-Jenkins models require numerical approximations of the solutions of a few nonlinear equations in 
order to estimate the parameters. It is typical to utilize statistical tools like R for this purpose. The nonlinear least 
squares and maximum likelihood methods are the two major methods for fitting all of these models. Although the 
second strategy is typically the most popular in statistical literature, it is excluded from our study since it is too complex 
for the full Box-Jenkins models (see Shrahili et al. (2021) and Mohamed et al. (2022a,b,c) for more details). Before 
dealing with the Box-Jenkins methodology (in general) and the PAC model (specifically) in prediction operations, it 
is inevitable to examine the behavior of the PACF, as the PACF plays a role no less important than the role of the 
ACF to use them in time series inactivity tests, as well as in identifying the appropriate model for time data. In modern 
analysis, the partial ACF takes various forms, just like the previously presented ACF. Sometimes it fades slowly, 
sometimes it fades quickly in an exponential form, and sometimes it gradually approaches zero in the form of waves 
of the sine function, or it breaks completely after a certain number of time gaps. Due to Makridakis and Hibon (1997), 
the following cases can be mentioned: 

I. The PACF of the non-seasonal time series is completely cut off after a certain number of time slots. 

II. It slowly fades into a calm exponential pattern. 

III. It quickly fades into a fast exponential pattern. 

IV. It approaches zero gradually in the form of sine function waves. 

V. It gradually approaches zero in the form of a combination of exponential functions. 
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In this section, the results of the PAR model are compared with Holt-Winters model results under the Ljung-Box test 
and its corresponding p-value. There are two distinct iterations of the Holt-Winters method, each with a distinct 
seasonal component. The multiplicative technique is used when seasonal fluctuations change proportionally to the 
level of the series rather than when they are essentially constant across the course of the series. The Ljung-Box test 
determines whether an autocorrelation exists in a time series. The independent distribution of the residuals is 
hypothesized by H0 (there is no autocorrelation in the data). The alternative theory is that the residuals are serially 
correlated and not independently distributed. The Ljung-Box test and its corresponding p-value are used for assessing 
the prediction accuracy (see Ljung and Box (1987)). The Ljung-Box test is a statistical test used to assess the presence 
of autocorrelation in a time series. It helps determine whether the residuals of a time series model are independent and 
uncorrelated. The test is based on the Ljung-Box statistic, which measures the overall autocorrelation in the residuals 
up to a certain lag. The null hypothesis of the Ljung-Box test is that there is no autocorrelation in the residuals (i.e., 
the residuals are independent). The alternative hypothesis suggests the presence of autocorrelation. 

 
 

The p-value associated with the Ljung-Box test represents the probability of observing the computed test statistic (or 
a more extreme value) under the null hypothesis of no autocorrelation. If the p-value is below a specified significance 
level (e.g., 0.05), we reject the null hypothesis and conclude that there is evidence of autocorrelation in the residuals. 
In practice, the Ljung-Box test is often applied to a series of ACF values, and the p-values are calculated for each lag. 
The p-values are then examined to identify significant lags where autocorrelation is present. It's important to note that 
the Ljung-Box test is not the only test available for assessing autocorrelation in time series data. Other tests, such as 
the Durbin-Watson test or the Breusch-Godfrey test, may also be used depending on the specific requirements and 
characteristics of the data.  
 
Given the importance of analyzing the residuals of any statistical model, it is preferred to return with the ACF and the 
PACF when analyzing errors and judging the adequacy and efficiency of the PAR model. The PAR model parameter 
estimation algorithm is based on a different approach from its traditional predecessor. These steps are formulated in 
algorithm 1, This algorithm is based mainly on the following steps: 

Step 1. Calculate the autocorrelation coefficients (𝑟𝑘) and partial autocorrelation coefficients (𝑟𝑘𝑘) for the maximum 
possible number of lags which are 𝑛 − 1. 

Step 2. Use all autocorrelation coefficients and partial autocorrelation coefficients in evaluating the model and re-
estimating the series values, such that: 

𝜑1 |̂(−1 < 𝜑1 < 1) = 𝐼𝑘|𝐼𝑘 = {𝑟𝑘 , 2𝑟𝑘}, 𝑘 = 1,2, … , 𝑛 − 1, (−1 < 2𝑟𝑘 < 1), 

or 

𝜑1 |̂(−1 < 𝜑1 < 1) = 𝐽𝑘𝑘|𝐽𝑘𝑘 = {𝑟𝑘𝑘 , 2𝑟𝑘𝑘}, 𝑘 = 1,2, … , 𝑛 − 1, (−1 < 2𝑟𝑘𝑘 < 1). 

Consequently, practitioner choose the unknown parameter values 𝜑1̂  that minimize the mean of square prediction 
errors (MSPE), where  

MSPE= ∑ (𝑦𝑡 − 𝑦̂𝑡|𝑡−1)
2𝑇

𝑡=0 . 

Step 3. Use this value to predict new future observations. 

Step 4. Evaluate predictions and analyze residuals to judge the adequacy and efficiency of the model. 

This Section discusses the reinsurance revenue of a reinsurance company in the insurance industry in the United States. 
A monthly time series represents the reinsurance revenue. Fortunately, our data are recent time series data with a 
starting date of February 2015 and an ending date of April 2020. The data are available at: 
https://catalog.data.gov/datase, and for other new insurance data see Ibrahim et al. (2023), Khedr et al. (2023) and 
Yousof et al. (2023a,b,c). The information on reinsurance revenues must be looked at first. Both graphical and 
numerical approaches can be used to examine real data. A variety of graphical methods are offered for examining 
early fits of theoretical distributions including the normal, logistic, uniform, exponential, beta, lognormal, and 
Weibull, such as the skewness-kurtosis plot (also known as the Cullen and Frey plot). The bootstrapping findings are 
used and shown for greater accuracy. The picture by Cullen and Frey is a superb representation of the characteristics 

https://catalog.data.gov/datase
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of the distributions, however it only compares distributions in the space of the squared skewness, kurtosis. Additional 
graphical tools include the "box plot" for finding the extreme reinsurance revenues and the "nonparametric Kernel 
density estimation (NKDE)" approach for assessing the initial shape of the empirical hazard rate function, and the 
"total time on test (TTT)" plot can be used for examining the initial shape of the empirical hazard rate function. The 
Cullen and Frey plot for the data of reinsurance revenues is shown in Figure 1.  The NKDE plot for the data of 
reinsurance revenues is shown in Figure 2 (top left figure). Figure 2 (top right plot) displays the Q-Q plot for the data 
of the reinsurance revenues. The TTT plot for the data of the reinsurance revenues data is shown in Figure 2 (the 
bottom left plot), and Figure 2 (the bottom right figure) displays a box plot of the data for reinsurance revenues. 

 

Figure 1: Cullen and Frey plot for the reinsurance claims data. 

Due to Figure 2 (top left figure), the reinsurance revenues data are not very skewed and are close to being symmetric, 
they are of course not completely symmetrical, and this is confirmed by the results of Table 1, where the 
skewness=0.26682 and the kurtosis =2.26414. Table 1 presents a summery statistic for the reinsurance revenues data. 
No extreme observations are spotted based on Figure 2 (top right and bottom right plots) due to the reinsurance 
revenues data.  Further, Figure 2 (bottom left plot) shows that the HRF for the reinsurance revenues data is 
monotonically increasing. 
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Figure 2: NKDE plot, Q-Q plot, TTT plot and box plot for the original insurance claims data. 

Table 1: Some statistical measures for the reinsurance revenues data. 

Measure Result Measure Result 
Minimum value 1402148 Maximum value 5875647 

Standard deviation 1164150 25% Quantile 2242655 
33% Quantile 2762846 75% Quantile 3992999 

Mean 3236045 Median 3209088 

Kurtosis 2.26414 Skewness 0.26682 

This application is allocated for modeling the process of a time series of the revenues of reinsurance companies, and 
it is interested in knowing the shape of the spread by knowing the extent to which the values of the time series are 
interconnected with their previous values, and therefore the scattergram at lag 𝑘 = 1 is drawn. The scatter gram is a 
diagram that shows points referencing two different variables. Two variables are observed and plotted on a graph to 
make a scattergram. The resulting display illustrates how the variables are related. Where the points are most closely 
grouped together, the link is stronger. Statistical surveys or laboratory test results are occasionally represented using 
scattergrams. The terms scatter plot, scatter diagram, scatter chart, and scatter graph can all be used to refer to a 
scattergram. Figure 3 shows the scattergrams (top right and left plots). 
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Figure 3: Scattergrams and ACF for the original insurance claims data. 

Based on Figure 3, it is evident through the spread of the points that the data has a certain pattern, and this pattern can 
be considered an ascending pattern or what we can call in time series analysis the general trend pattern. Furthermore, 
the ACF, autocovariance function (ACOF), and PACF are provided. The ACF illustrates how a change in separation 
affects the correlation between any two signal values. Theoretical ACF assesses stochastic process memory in the 
time domain, not the frequency content of the process, and provides some information on the distribution of hills and 
valleys on the surface. The ACOF is defined as the sequence of covariances of a stationary process. The theoretical 
ACF is given in Figure 4 (left plot), the ACOF n Figure 4 (right plot) and theoretical PACF in Figure 4 (last plot) for 
the reinsurance revenues data under lag 𝑘 = 1 .   

  

Figure 4: The ACF (left panel) and PACF (right panel) for the reinsurance revenues data. 
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Based on Figure 4 (the left panel), it is notted that the ACF is a positve funtion, that beeing said: all autocorrelation 
coefficients are positive. However, the partial autocorrelation coefficients can be positive and can be negative 
without any well-known pattern. Figure 5 presents the original time series plot (top left), the separated components 
(top right), the seasonally adjusted time series (bottom left) and trend adjusted time series (bottom right). 
 

 
Figure 5: The original time series, the separated components, the seasonally adjusted time series and trend adjusted 

time series. 

Based on Figure 5 (bottom left and bottom right), it is noted that excluding the seasonal effect did not affect stationary 
of the time series, but the general trend effect only had a significant impact on the stationary of the time series. 
Therefore, it is recommended excluding the trend component from the time series. So, for obtaining stationary 
reinsurance data, it is recommended to exclude the trend component from the time series. The ACF and PACF for the 
reinsurance revenues data from k=0 to k=18 is listed in Table 2. With k=0 , the ACF began with 1 and all subsequent 
ACF were all less than 1. The PACF accepts both positive and negative values, but not frequently, and it lacks the 
typical pattern that ARIMA models typically have that can be used to infer certain findings. Due to Table 2, its noted 
that r_0=1 and r_1=r_11=+0.546 this is in complete agreement with the theoretical results. 

Table 3 lists the seasonal components for the reinsurance revenues data. It is noted that the seasonal components can 
have positive and negative values due to the seasonal status. Table 3 gives the seasonal components for 2015, 2016, 
2017, 2018, 2019 and 2020 (up to April 2020). Table 4 gives the trend components for the reinsurance revenues data. 
It is seen that the trend components are all positive values, and this numerical result matches with the theoretical one. 
Table 4 gives the trend components for 2015 (from June), 2016, 2017, 2018, 2019 (up to April 2019). 
 
Table 5 presents the random components for the reinsurance revenues data. It is seen that the random components can 
be positive and negative, and this numerical result matches the theoretical one. Table 4 gives the trend components 
for 2015 (from June), 2016, 2017, 2018, 2019 (up to April 2019). 
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Table 2: ACF, ACVF, PACF up to 𝒌 = 𝟏𝟖. 

lag(k) ACF ACVF PACF 

0 1.000 1.33×10¹⁴ - 
1 0.546 7.29×10¹³ +0.546 

2 0.482 6.43×10¹³ +0.262 
3 0.737 9.84×10¹³ +0.612 

4 0.374 4.98×10¹³ -0.360 

5 0.299 3.99×10¹³ -0.083 
6 0.519 6.92×10¹³ +0.121 

7 0.250 3.34×10¹³ -0.005 
8 0.206 2.74×10¹³ +0.044 

9 0.473 6.31×10¹³ +0.250 

10 0.261 3.49×10¹³ -0.002 
11 0.189 2.53×10¹³ -0.091 

12 0.457 6.09×10¹³ +0.094 
13 0.191 2.55×10¹³ -0.240 

14 0.146 1.95×10¹³ +0.128 

15 0.305 4.07×10¹³ -0.230 
16 0.033 4.34×10¹² -0.078 

17 0.024 3.19×10¹² +0.076 
18 0.167 2.22×10¹² -0.022 

 

Table 3: The seasonal components. 

Season Data 

2015 4715247.02, -742028.390,12060973.980, -2212708.70,-7976948.32,-18955.410 
 1242600.57, -10733295.64,1872643.01, -214220.570,-7524548.14,9531240.59 

2016 4715247.020, -742028.390,12060973.98, -2212708.70,-7976948.32,-18955.410 

 1242600.57, -10733295.64,1872643.01, -214220.570,-7524548.14,9531240.59 
2017 4715247.020, -742028.390,12060973.98, -2212708.70,-7976948.32,-18955.410 

 1242600.57, -10733295.64,1872643.01, -214220.570,-7524548.14,9531240.59 
2018 4715247.020, -742028.390,12060973.98, -2212708.70,-7976948.32,-18955.410 

 1242600.57, -10733295.64,1872643.01, -214220.570,-7524548.14,9531240.59 

2019 4715247.020, -742028.390,12060973.98, -2212708.70,-7976948.32,-18955.410 
 1242600.57, -10733295.64, 1872643.01, -214220.570,-7524548.14,9531240.59 

2020 1242600.57, -10733295.64,1872643.010, -214220.570,-
7524548.14,9531240.59 

 1242600.570, -10733295.640,1872643.01, -214220.570. 

 
Table 4: The trend components. 

Season Data 
2015 19044119,19842077,20435866,21153695,21602843,21971379 

2016 22718310,23151217,23801309,24737116,25287155,26141365 

 27042538,27685683,28767734,29459504,29807304,30490634 
2017 30952217,31183336,31045570,31010826,31212133,31384062 

 31842900,32413052,32618942,32945625,33498678,33786615 
2018 33959008,34325328,34766470,35267834,36051673,36585360 

 36362366,36067310,36389348,36573107,36574756,37294785 

2019 38320378,39313320,40428645, 41154962,41475990,42097259 
Table 5: the random components. 

Season Data 
2015 -1124826.940,6096203.01,-1704569.52,53400.2300, 915074.82,-3710811.510 

2016 1168029.490,-42114.110,-6123674.50,5826601.03,-2045603.08,-1736751.30 

 1201378.940,-1682270.30,5500650.36,-1330139.91,-1010706.55,1992284.89 
2017 339916.2300,-44532.610,4571586.42,-1784152.20,1713659.74,-263760.970 

 763321.9800,-5225089.24,-2841492.68,-1159198.74,-3527758.98,1648270.59 
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2018 5393266.24,2436987.07,168546.8900,2481361.95, 1624874.14, -3305339.08 
 -1778431.44,-2065358.71,-2838501.39,3472678.96,3948937.70, 395803.010 

2019 -6575664.980,-2024793.36,1709088.16,-6198263.80,-967383.83,5631398.33 
 1345491.190, 3283448.97,2290846.95,-629806.82 

Tables 6 report the predicted values (𝑌ς̂|φ=0.546), the prediction errors (PE) (𝐸ς|φ=0.546), sum of prediction errors 

(SEs), mean of prediction errors (MEs), absolute prediction error (APE) (|𝐸ς||φ=0.546), sum of absolute prediction 

error (SAPE), mean of absolute prediction error (MAPE), square prediction errors (SPE) (𝐸ς
2|φ=0.546), sum of  square 

prediction errors (SSPE) and MSPE. For the purpose of evaluating the PAR(1) model, the value of the series was re-
estimated again as if it had not occurred. Thus, the values of the series starting are estimated from February 2015 to 
April 2020. After the evaluation process, predictions of future reinsurance revenues will be made.  

Based on Tables 6 one concludes the following results: 

I. MEs < MAPE, however the MEs in not a sufficiently accurate measure to rely on for serious 
comparisons. The reason for this is simply that there are negative and positive values, and many negative 
values may cause the size of the output of the MEs to be smaller than MAPE. 

II. As mentioned, the MAPE scale is more accurate than the MEs scale, but the MSPE scale is the best for 
the ease of mathematical interpretation of its results. 

III. The results presented in Table 6 are the best results obtained, all of them were built on the assumption 
that the estimated value of the parameter is 0.94955.  Figure 6 presents the fitted time series plot (top 
left), the separated components (top right), the seasonally adjusted time series (bottom left) and trend 
adjusted time series (bottom right). 

Based on Figure 6 (bottom left and bottom right), it is noted that excluding the seasonal effect did not affect stationary 
of the time series, but the general trend effect only had a significant impact on the stationary of the time series. 
Therefore, the trend component is removed from the fitted time series. After reviewing the original reinsurance data 
(see Table 2, Table 3, Table 4, Table 5 and Figure 6) then fitted values and calculating their PE, SEs, MEs, APE, 
SAPE, MAPE, SPE, SSPE and MSPE (in Table 6) and also drawing those fitted values (in Figure 6). This application 
is also interested in analyzing the residuals of the fitting process in the context of further statistical verification before 
starting the operations of predicting future reinsurance observations. Therefore, Figure 7, Figure 8 and Figure 9 are 
presented. Figure 7 gives the Cullen and Frey plots for PE, APE and SPE respectively. Figure 8 presents scattergram 
at lag k=1 for PE, APE and SPE respectively. Figure 9 shows the Q-Q plots for PE, APE and SPE, respectively. Based 
on Figure 7 (the Cullen and Frey plots for PE, APE and SPE respectively), it is seen that the PE and APE are normally 
distributed. Due to Figure 8 (the Scattergram at lag k = 1 for PE, APE and SPE respectively), it is noted that the PE 
and APE have a similar pattern of spread. According to Figure 9 (the Q-Q plots for PE, APE and SPE respectively), 
PE and APE are normally distributed without extreme values. However, the SPE has some extreme values, and this is 
an expected result. Generally, all these plots confirm beyond any doubt the adequacy and efficiency of the new model 
for modeling and forecasting reinsurance data. 

Table 6: Assessing the PAR model. 

2015 

Tim e↓ Fitting and criteria → 𝑌ς̂|φ=0.546 𝐸ς|φ=0.546 |𝐸ς||φ=0.546 𝐸ς
2|φ=0.546 

Jan - - - - 
Feb 16010022 -202434.55 202434.55 4.097975×1010 
Mar 15962617 6084529.02 6084529.02 3.702149×1013 
Apr 17388875 1425708.29 1425708.29 2.032644×10¹² 
May 17723083 -3701603.39 3701603.39 1.370187×1013 
Jun 16855301 -71372.480 71372.480 5.094031×109 
Jul 16838660 2323232.19 2323232.19 5.397408×10¹² 

Aug 17383278 -2178293.70 2178293.70 4.744963×10¹² 
Sep 16872609 3731330.98 3731330.98 1.392283×1013 
Oct 17747200 3245674.78 3245674.78 1.053440×1013 
Nov 18508126 -3514756.34 3514756.34 1.235351×1013 

2016 

Jan 20053568 8548018.50 8548018.50 7.306862×1013 
Feb 22057390 309684.07 309684.07 9.590422e+10 
Mar 22129988 7608620.57 7608620.57 5.789111×1013 
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Apr 23913471 4437536.94 4437536.94 1.969173×1013 
May 24953611 -9689007.27 9689007.27 9.387686×1013 
Jun 22682478 1703180.08 1703180.08 2.900822×10¹² 
Jul 23081780 6404737.07 6404737.07 4.102066×1013 

Aug 24583112 -9312994.74 9312994.74 8.673187×1013 
Sep 22400029 13740998.56 13740998.56 1.888150×1014 
Oct  25621099 2294044.66 2294044.66 5.262641×10¹² 
Nov 26158864 -4886814.65 4886814.65 2.388096e+13 
Dec 25013315 17000844.88 17000844.88 2.890287×1014 

2017 

Jan 28998544 7008836.67 7008836.67 4.912379×1013 
Feb 30641400 -244624.62 244624.62 5.984120×1010 
Mar 30584179 17093951.73 17093951.73 2.922032e+14 
Apr 34591198 -7577233.27 7577233.27 5.741446e+13 
May 32814969 -7866124.30 7866124.30 6.187591×1013 
Jun 30971123 130222.540 130222.54 1.695791×1010 
Jul 31001560 2847262.23 2847262.23 8.106902×1012 

Aug 31669142 -15214475.04 15214475.04 2.314803×10¹² 
Sep 28102606 3547486.65 3547486.65 1.258466×1013 
Oct 28934198 2638007.62 2638007.62 6.959084×10¹² 
Nov 29552514 -7106142.97 7106142.97 5.049727×1013 
Dec 27886722 17079403.77 17079403.77 2.917060×1014 

2018 

Jan 31890414 12177106.86 12177106.86 1.482819×1014 
Feb 34744890 1275397.16 1275397.16 1.626638×10¹² 
Mar 35043902 11952088.41 11952088.41 1.428524×1014 
Apr 37845569 -2309081.32 2309081.32 5.331857×10¹² 
May 37304320 -7604720.82 7604720.82 5.783178×1013 
Jun 35521686 -2260620.61 2260620.61 5.110406×10¹² 
Jul 34991796 834738.91 834738.91 6.967890×1011 

Aug 35187479 -11918823.79 11918823.79 1.420584×1014 
Sep 32393588 3029901.85 3029901.85 9.180305×10¹² 
Oct 33103807 6727758.70 6727758.70 4.526274×1013 
Nov 34680899 -1681753.79 1681753.79 2.828296×10¹² 
Dec 34286602 12935226.20 12935226.20 1.673201×1014 
Jan 31890414 12177106.86 12177106.86 1.482819×1014 

2019 
Jan 37318880 -858919.91 858919.91 7.377434×1011 
Feb 37117553 -571054.34 571054.34 3.261031×1011 
Mar 36983677 17215029.72 17215029.72 2.963572e×1014 
Apr 41019178 -8275188.39 8275188.39 6.847874×1013 
May 39079430 -6547772.46 6547772.46 4.287332×1013 
Jun 37544499 10165202.63 10165202.63 1.033313×1014 
Jul 39927432 6064709.57 6064709.57 3.678070×1013 

Aug 41348947 -4415281.98 4415281.98 1.949471×1013 
Sep 40313933 8212327.13 8212327.13 6.744232×1013 
Oct 42239200 1921216.18 1921216.18 3.691072×10¹² 
Nov 42689459 -6314502.51 6314502.51 3.987294×1013 
Dec 41209286 17547187.66 17547187.66 3.079038×1014 
Jan 37318880 -858919.91 858919.91 7.377434×1011 

2020 

Jan 45322656 10965644.87 10965644.87 1.202454×1014 
Feb 47893166 -7667922.74 7667922.74 5.879704×1013 
Mar 46095763 3926402.23 3926402.23 1.541663×1013 
Apr 47016088 5304604.94 5304604.94 2.813883×1013 
Sum - 137573866 401556906 4.08448×1015 
Mean - 2183712 6373919 6.483302×1013 
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Figure 6: The fitted time series, the separated components, the seasonally adjusted time series and trend adjusted time 
series. 
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Figure 7: Cullen and Frey plots for PE, APE and SPE respectively. 

 

Figure 8: Scattergram at lag k = 1 for PE, APE and SPE respectively. 



Pak.j.stat.oper.res.  Vol.19  No. 3 2023 pp 425-446  DOI: http://dx.doi.org/10.18187/pjsor.v19i3.4123 

 

 
Modeling the Asymmetric Reinsurance Revenues Data using the Partially Autoregressive Time Series Model: Statistical Forecasting and Residuals Analysis 440 

 

 

Figure 9: Q-Q plots for PE, APE and SPE respectively. 

Now, after all these procedures and verifications, the process of forecasting the future views of the reinsurance data 
can be started. Knowing that the longer the forecast period, the greater the forecast error and the more short-term the 
forecast, the more accurate the forecast. This means that the time range has a significant effect on the values of forecast 
errors, and that it is an accepted fact in the field of forecasting in general, whatever the model, method, technique, or 
methodology that is being used in prediction. The 80% (Lower bound (LB), Upper bound (UB)) and 95% (LB, UB) 
for 2020 (beginning in May), 2021, and September 2022 for the PAR model and Holt-Winters model are reported in 
Table 7.  

Table 7: Predictive values as predictive confidence intervals "80%(LB, UB), 95%(LB, UB)". 

𝑌̂𝑇|𝑇−1  for 2020 

 PAR model Holt-Winters model 
May (44622981,49230897),(43403339,50450539) (38247556,58271470),(32947546,63571480) 
Jun (43856296,49997582),(42230795,51623082) (37976161,58542865),(32532484,63986542) 
Jul (43245978,50607900),(41297395,52556483) (37711747,58807279),(32128098,64390928) 

Aug (42723357,51130520),(40498115,53355762) (37453802,59065224),(31733604,64785423) 
Sep (42258885,51594992),(39787767,54066111) (37201871,59317155),(31348309,65170717) 
Oct (41836620,52017258),(39141967,54711910) (36955555,59563472),(30971600,65547426) 
Nov (41446795,52407082),(38545782,55308095) (36714492,59804534),(30602927,65916099) 
Dec (41082916,52770961),(37989277,55864600) (36478360,60040666),(30241795,66277231) 

𝑌̂𝑇|𝑇−1  for 2021 

Jan (40740403,53113475),(37465449,56388429) (3624687060272156),(2988776166631265) 
Feb (40415883,53437995),(36969138,56884740) (3601975760499269),(2954042166978605) 
Mar (40106787,53747091),(36496416,57357461) (3579678260722244),(2919941067319616) 
Apr (39811104,54042773),(36044209,57809669) (3557772660941300),(2886439467654632) 
May (39527227,54326650),(35610057,58243821) (3536239161156635),(2853506767983959) 
Jun (39253846,54600031),(35191956,58661921) (3515059361368433),(2821114968307877) 
Jul (38989875,54864002),(34788248,59065630) (3494216261576864),(2789238268626644) 

Aug (38734405,55119472),(34397540,59456337) (3473694461782082),(2757852868940498) 
Sep (38486665,55367213),(34018653,59835224) (3453479461984232),(2726936769249659) 
Oct (38245991,55607886),(33650575,60203303) (3433557962183448),(2696469369554333) 
Nov (38011812,55842065),(33292430,60561448) (3413917362379853),(2666431769854709) 
Dec (37783630,56070248),(32943454,60910424) (3394546362573563),(2636806270150964) 

𝑌̂𝑇|𝑇−1  for 2022 

Jan (37561004,56292873),(32602978,61250899) (3375433962764687),(2607576470443262) 
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Feb (37343549,56510328),(32270409,61583468) (3356570162953325),(2578726770731759) 
Mar (37130920,56722957),(31945221,61908656) (3337945463139572),(2550242771016599) 
Apr (36922809,56931068),(31626943,62226934) (3319551063323516),(2522110871297918) 
May 36718940,57134937),(31315153,62538725) (3301378563505241),(2494318471575842) 
Jun (36519064,57334813),(31009468,62844409) (3283420063684826),(2466853371850493) 
Jul (36322955,57530923),(30709544,63144333) (3265668363862343),(2439704472121982) 

Aug (36130407,57723471),(30415068,63438810) (3248116264037864),(2412860872390418) 
Sep (35941233,57912645),(30125752,63728126) (3230757364211453),(2386312672655900) 

Ljung-Box 17.4068 23.4914 
p-value 0.7996 0.70634 

Generally, the 80% (LB, UB) is wider than the 95% (LB, UB) for all months because the forecast error increases if 
the time range of future predictions increases. Actually, the 95% (LB, UB) is preferable since it was established based 
on a higher confidence level. This Table's findings show that the larger the statistical prediction's time horizon, the 
greater its prediction error and the wider its confidence intervals. Drawing prediction values will not be as important 
to us as examining forecast errors of the new model is analyses beforehand. Table 7 gives all results of the predictive 
values as predictive confidence intervals (80% (LB, UB), 95% (LB, UB)) for the PAR model and Holt-Winters model. 
The Ljung-Box test and its corresponding p -value are used for assessing the prediction accuracy. It is noted that, the 
Ljung-Box test for the PAR model is 17.4068, however, the Ljung-Box test for the Holt-Winters model is 23.4914. It 
should be noted that whereas the p-value for the Holt-Winters model is 0.70634, the p-value for the PAR model is 
0.7996. It is also a good idea to check if the forecast errors are regularly distributed with mean zero and constant 
variance to make sure the predictive model cannot be improved. Finally, Figure 10 presents the fitted reinsurance time 
series values against the original reinsurance one. Figure 11 presents the fitted reinsurance time series values against 
the original reinsurance one using the Holt-Winters model. A temporal plot of the in-sample forecast errors can be 
made, as shown in Figure 10, to show if the forecast errors in this case have constant variance. This graph demonstrates 
how the in-sample forecast error variance has remained stable throughout time. 

 

Figure 10: The fitted reinsurance time series values against the original reinsurance one via the PAR model. 
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Figure 11: The fitted reinsurance time series values against the original reinsurance one via the Holt-Winters model. 

Based on Figures 10 and 11, It is clear that the new PAR(1) model gives future estimates that are very close 

to the original time series, and this indicates the efficiency of the PAR(1) model and its adequacy to model 
those data and the possibility of being relied upon with a high degree of confidence in future predictions of 

reinsurance data.  

 

Residuals analysis plays a crucial role in time series modeling. Time series models are used to forecast 
future values based on historical data patterns. Residuals, also known as errors or residuals, are the 

differences between the observed values and the predicted values obtained from the time series model. 

Analyzing these residuals helps to assess the model's performance and ensure that the underlying 
assumptions of the model are met. Here are some key reasons why residuals analysis is important in time 

series models: 

I. Residuals analysis helps determine whether the model adequately captures the underlying 

patterns and dynamics of the time series data. If the residuals exhibit a random and independent 
behavior, it suggests that the model has captured most of the systematic components, and the 

model is considered adequate. On the other hand, if the residuals show a non-random pattern 

or exhibit serial correlation, it indicates that the model might be missing important information 
or structure in the data. 

II. Time series models are based on certain assumptions, such as the absence of autocorrelation 

(independence of residuals), constant mean and variance, and normality of residuals. Residual 
analysis allows us to validate these assumptions. If the residuals exhibit autocorrelation, it 

suggests that the model does not adequately capture the temporal dependencies in the data. 

Violation of assumptions may lead to biased parameter estimates and unreliable forecasts. 
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III. Residuals analysis provides insights into the accuracy of the model's forecasts. By examining 
the residuals' patterns and properties, such as mean, variance, and distribution, one can assess 

the model's ability to capture the true underlying behavior of the time series. Large and 

systematic residuals indicate potential model inadequacies or missing explanatory variables, 

which may affect the forecast accuracy. 
IV. Residuals analysis can guide model refinement and improvement. If the residuals exhibit 

systematic patterns, such as trends or cycles, it suggests that the model might benefit from 

including additional variables or adjusting the model's structure. By analyzing the residuals, 
one can identify areas where the model can be enhanced to better capture the complexity of the 

time series data. 

V. Residuals analysis helps identify outliers or unusual observations that are not accounted for by 
the model. Outliers can significantly influence the model's performance and forecasts. By 

examining the residuals' magnitude and distribution, one can identify potential outliers and 

investigate the reasons behind their occurrence. 

 
Overall, residuals analysis is an essential step in time series modeling as it allows us to assess model 

adequacy, validate assumptions, evaluate forecast accuracy, refine the model, and identify outliers. It helps 

ensure that the model is capturing the true dynamics of the data and provides reliable forecasts for future 
time points. Figure 12 gives the matrix of the ACF analysis for both point forecasting and interval 

forecasting. Based on Figure 12 the matrix of the ACF analysis is a skewed symmetric matrix, the elements 

of the diagonal represent the variance of the residues and the elements around the diagonal represent the 
covariance of the residues. Due to the first row of the matrix, there are no correlations between the residuals 

of the point forecasting and the lower bounds (80% & 95%), and the residuals of the point forecasting and 

the upper bounds (80% & 95%). Due to the first column of the matrix, there are no correlations between 

the residuals of the lower bounds (80% & 95%) and the point forecasting, and the upper bounds (80% & 
95%) and the point forecasting. Figure 13 provides the checking the residuals normality vial three different 

shapes. The first shape (left panel) refers to the plot of the residuals, the second shape (middle panel) refers 

to the histogram of the residuals, the third shape (right panel) refers to the Q-Q of the residuals. Based on 
Figure 13 (left panel, middle panel, and right panel), its is noted that the results are normally distributed. 
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Figure 12: The ACF analysis for both point forecasting and interval forecasting. 
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Figure 13: Checking the residuals normality. 

4. Concluding remarks 
In this paper, a new version of the autoregressive model is proposed, in the so-called a partial autoregressive (PAR) 
model. The PAR(π) approach is a linear regression model that uses its own lags as predictors, where π is the order of 
the PAR model. The linear regression models are adequate when the predictors are not correlated and are independent 
of each other. The results of the new model depended on a new algorithm that has been formulated to facilitate the 
statistical prediction process considering the rapid developments in time series models. The new algorithm depends 
on the values of the autocorrelation and partial autocorrelation functions in determining the estimated value of the 
parameter model subject to certain terms and conditions. For this main proposal, a monthly time series represents the 
reinsurance revenue has been analyzed. Fortunately, our data are recent time series data with a starting date of February 
2015 and an ending date of April 2020. The new model is assessed by re-estimating the actual time series values. The 
PAR model was used to predict the future values of reinsurance revenues data, the results of the PAR model is 
compared with Holt-Winters model results under the Ljung-Box test and its corresponding p-value. Many graphical 
tools were also used to show the importance and applicability of the new model, in addition to a full analysis of the 
model's errors to show the adequacy and efficiency of the new model in forecasting operations. The new model is 
expected to draw a lot of interest from people who are interested in applied statistics, time series, actuaries, and other 
related fields. Given that the model's development will be continued in other upcoming works, the model's simplest 
situations (π =1) are taken into consideration in this work. It is noted that, the Ljung-Box test for the PAR model is 
17.4068, however, the Ljung-Box test for the Holt-Winters model is 23.4914. It should be noted that whereas the p-
value for the Holt-Winters model is 0.70634, the p-value for the PAR model is 0.7996. 
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