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Abstract

Spatial analysis techniques are used in the data analysis of ecological studies, which consider geographical areas as
observation units. In this article, we propose a Bayesian bivariate spatial shared component model to map breast and
cervical cancer mortality in Southern Brazil, based on the models introduced by Knorr-Held and Best (2001) and Held
et al. (2005). Markov Chain Monte Carlo (MCMC) methods were used to spatially smooth the standardized mortality
ratios (SMR) for both diseases. The local Indicator of Spatial Association (LISA) was used to verify the existence of
spatial clusters in specific geographical areas. This study was carried out using secondary data obtained from publicly
available health information systems.

Key Words: Spatial Analysis; Ecological Studies; Epidemiology; Bayesian Methods; Gaussian Markov Random
Field.

Mathematical Subject Classification: 62F15, 62P10.

1. Background

Ecological studies have been widely used to follow time trends and distributions of diseases in populations of interest.
According to Tulchinsky and Varavikova (2014), ecological studies are important for population health monitoring and
the generation of hypotheses for further investigation and intervention. Spatial studies are a type of ecological study
that uses aggregated data rather than individual-level data to assess the distribution of a disease or event of interest in a
geographic space. Bayesian models have been extensively used in the analysis of spatial data, and a popular modeling
approach has been through the conditional autoregressive distribution and their generalizations. These models are
relatively flexible and can accommodate different spatial correlation structures. Since these models present great com-
plexity for the likelihood function, the estimation of the model parameters using frequentist inference methods can be a
difficult task, and a Bayesian approach could offer a convenient alternative to deal with this model structure (Lee, 2011;
Martinez and Achcar, 2014). Examples of application of spatial Bayesian models in epidemiology research include
the articles by Aratjo et al. (2013), Martinez and Roza (2020), and Stoppa et al. (2022). In all these articles, Markov
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Chain Monte Carlo (MCMC) algorithms were used in the parameter estimation. Since the convergence of MCMC can
be very slow in some cases, the use of integrated nested Laplace approximation (INLA) methods is a good alterna-
tive for parameter estimation of models with spatial structures (Bakka et al., 2018; Blangiardo and Cameletti, 2015).
INLA 1is a computational method that can fit Bayesian models in a fraction of the time required by typical MCMC
sampling. De Smedt et al. (2015) compared the performance of the MCMC and INLA methods using simulated data
with spatial components and under different scenarios, and observed that both methods were equivalent for parameter
estimation. However, they also observed that when the disease or event of interest is statistically very rare, INLA
provides worse estimates and credible intervals for the parameters of interest. Furthermore, an advantage of MCMC
methods is the great flexibility that computer programs like OpenBUGS and R offer for implementing models with
different structures and parameter specifications (Cowles, 2013). In addition, Goudie et al. (2020) recently introduced
MultiBUGS, a software built on the existing algorithms and tools in OpenBUGS that automatically parallelizes the
MCMC algorithm to speed up computation dramatically. It is important to point out that the use of OpenBugs software
requires a minimum of programming expertise, where it is only necessary to introduce the likelihood function and the
prior distributions of the model parameters, which makes its use very attractive to epidemiologists and statisticians
using more sophisticated epidemiological models in data analysis as considered in this study. In this way, the main
goal of this study is the implementation of existing spatial Bayesian models in epidemiology research introduced in the
literature assuming MCMC methods, using the free OpenBUGS software and considering a breast and cervical cancer
mortality data set in Brazil, which could be very useful to epidemiologists and statisticians working with mortality
data.

In the present article we use a Bayesian bivariate spatial shared component model introduced in the literature to jointly
map breast and cervical cancer mortality in Southern Brazil. These types of cancer are important causes of death in
women over the age of 15 (Forouzanfar et al., 2011), and studies of their distribution in geographic space are helpful
to support health policies, resource allocation, and to generate hypotheses on possible associations between exposures
and these diseases. The proposed model is based on the shared component model introduced by Knorr-Held and
Best (2001) and Held et al. (2005). While many statistical approaches have been proposed to understand the spatial
patterns of a single disease, the shared component model was developed to model two or more diseases that occur in
a population. The central idea of the model is to separate the underlying risk surface for each disease into a shared
and a disease-specific component. The article is organized as follows. The bivariate model with shared components
is described in Section 2, along with a description of the breast and cervical cancer mortality data and details on
the computational implementation of the proposed method. Section 3 shows the results obtained when the method
is applied to the breast and cervical cancer data. Bayesian approaches using MCMC simulation methods were used
to spatially smooth the standardized mortality ratios. Section 4 provides a discussion of the results. Finally, some
concluding remarks are presented in Section 5.

2. Methods
2.1. Gaussian Markov Random Field models

Gaussian Markov Random Field (GMRF) models are widely used in spatial statistics. As defined by Rue and Held
(2005), a GMREF “is just a (finite-dimensional) random vector following a multivariate normal (or Gaussian) distribu-
tion”. According to this definition, many of the spatial models introduced in the literature are GMRF models. Let us
consider a study aiming to assess the distribution of a disease or event of interest in a geographical region divided into
n mutually exclusive areas. These areas are numbered sequentially from 1 to n and each one is defined as a polygon
in a vector map.

Definition 2.1. Let us consider that {S; : j € A;} are random quantities related to the neighbours A; to an area i,
with i # j. A Gaussian random field S ~ N (u, ) that satisfies

p(sil{s; -3 #1}) = p(sil{s; : 5 € Ai})

is a GMRE, where 1 is a mean vector and 3. is a variance-covariance matrix (Rue and Held, 2005).

The Intrinsic Conditional AutoRegressive (ICAR) model introduced by Besag et al. (1991) is a special case of a GMRF
model.
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Definition 2.2. The ICAR model considers

Zjea, 5 U) , (1)

SZ|S{—1}7 v, W ~N (7
m; my
where S;_;y denotes all the elements of S except S;, v > 0 is an unknown variance parameter, W is a spatial weights
matrix, A; denotes the set of neighbours of area i as defined in W, and my; is the number of areas which are adjacent
to area i. Unnormalized weights are given by W;; = 1 if areas i and j are adjacent and W;; = 0 otherwise.

2.2. Standardized mortality ratios

Standardized mortality ratio (SMR) is an indirect method of adjustment of rates by age, which describes numerically
how great is the mortality due to a disease in a specified area in a given year compared with the rate found considering
the geographic space of interest as a whole (Ulm, 1990). In a general way, to obtain the SMR values for gender s
(s = 1 for males, s = 2 for females) and period of time ¢ (¢t = 1,...,T’), we first consider the corresponding number
of deaths due to the disease, observed for the whole geographic space, in A different age groups. These numbers,
divided by the population for the corresponding gender, age group and period, are the rates of deaths for the whole
geographic space, which are denoted by gs:,. The expected number z;s; of deaths for each area ¢ in the period ¢
according to the gender s is given by

A
Rist = ngm X Mista, (2
a=1
where my;st, is the number of inhabitants in the area ¢ with gender s at the period ¢ and age group a (a = 1,..., A).
The SMR is thus given by
SMngf _ Yist 7
Zist

where y;; is the number of deaths notified in the area ¢ at the period ¢, considering gender s (Silva-Lizzi et al., 2016).
An SMR equals to one suggests that the observed mortality exceeds expectations in the population under study. A
SMR of 1 suggests that the observed number of deaths is not different from what would be predicted for the population
of the whole geographic space. In the present article, we will not consider the s and p indexes in our notation, since
the database covers only one period (the year 2019) and is composed only of women.

2.3. The bivariate model with shared components

Let us consider an ecological study whose objective is to simultaneously assess the spatial distribution of deaths due
to two different diseases or events of interest. Let y;; and z;; denote, respectively, the observed and expected number
of deaths reported in area ¢ ( = 1,...,n) due to a specific disease k, k = 1,2. Under a Bayesian framework, we
assume the model

Yix, ~ Poisson(zie" ), k=1,2,

where e”é* corresponds to the SMR for the area ¢ and disease k,
i1~ N(og + w0 + ugq, 71)
and

U4
7]2'2 ~ N(OZQ-FTZ,TQ).
The parameters ai; and o are disease specific intercepts, u; is the latent shared component common to both diseases
and us is the component only relevant to disease 1. The unknown parameter § > 0 is described by Held et al. (2005)
as a parameter that “allow for a different risk gradient of the shared component for the two diseases”. Let us assume a

normal prior distribution for log d, that is,
logd ~ N(0,0.17).

As a motivation for the choice of the value 0.17 assigned to the prior variance, we refer to Knorr-Held and Best (2001).
Held et al. (2005) suggested the use of “weakly”’informative prior inverse-gamma distributions for 7y and 7». Thus,
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Wwe assume
7~ IG(1,0.01), k=1,2,

where IG(a, b) denotes an inverse-gamma distribution with probability density function given by

o= () o ()

with mean b/(a — 1) for a > 1, variance b*/[(a — 1)?(a — 2)], and mode b/(a + 1). This implies in a prior mode value
given by 0.01/2 = 0.005 for 7y, with infinite expectation and variance. The shared components u; and us are assumed
to follow a ICAR Normal prior (1) with sum-to-zero constraints on the random effect terms, unnormalized weights,
and unknown variance parameters v; and v, respectively. For these variance parameters we also use inverse-gamma
prior distributions given by

vp ~ 1G(1,0.01), k =1,2.

For a Bayesian analysis of this model, we considered the use of Markov Chain Monte Carlo (MCMC) methods to
simulate samples of the joint posterior distribution for the parameters of the proposed model (Gilks et al., 1995). A
known advantage of using Bayesian methods is that this methodology incorporates the prior expert information about
the model parameters given under a prior distribution, in addition to the data information given by the likelihood
function, leading to more accurate inference results. In spatial data analysis, Bayesian models have been widely used
for their efficiency in quantifying uncertainty and handling complex hierarchical problems associated with modern
simulation techniques.

A satisfactory model should take into account all the spatial trends in the data and expect no spatial correlation for
the model’s residuals (Anderson and Ryan, 2017). Under a Bayesian framework, Carlin and Louis (2008) describe a

residual as
1< (9)
Tik = Yik ~ & 9521 E (yzkwik )

where G is the number of MCMC iterations, £ (yZ k| 91(,‘3 )) is the expected value for the posterior predictive distribution,

and {92(,3)} is a set of parameters sampled from the posterior distribution (Lawson, 2018). Considering a Poisson
likelihood and expectation z;;e"#*, the residuals can be approximated by

Tik = Yik — ZiR€",
where 7);;, are the average values of the parameter 7);;, obtained from the simulated MCMC posterior sample (Lawson,
2018). Standardized residuals are given by R
o Yik — Zige™t
ik oo
Anderson and Ryan (2017) proposed the use of a spatial Moran’s index (I2) (Moran, 1950) as a method to measure

the extent of spatial autocorrelation in the residual values from the model fit. The closer I? is to zero, better the model
accounts for the spatial autocorrelation.

3)

2.4. The breast and cervical cancer mortality data

To simplify the administration of the Brazilian Unified Health System (SUS), the Ministry of Health office organizes
the division of the Brazilian territory into Health Regions. The Health Regions are geographical areas composed of
groupings of municipalities aiming for better planning of health services among them (Bousquat et al., 2019). The
Brazilian municipalities are grouped into 450 Health Regions. In the present study, we considered all the 68 Health
Regions in the Southern region of Brazil. This region is composed of three federative units (Parand, Santa Catarina,
and Rio Grande do Sul), as shown in the map presented in Figure 1. The Southern region is bordered to the east by the
Atlantic Ocean.

Information on the number of deaths due to breast and cervical cancer reported in 2019 was obtained from the In-
formation System on Mortality (SIM/DATASUS) (Morais and Costa, 2017). The anatomical location of tumors was
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[] Parana

1- 12 RS Paranagua

2 - 22 RS Metropolitana

3 - 32 RS Ponta Grossa

4 - 42 RS Irati

5 - 52 RS Guarapuava

6 - 62 RS Uni&o da Vitéria
7 - 7 RS Pato Branco

8 — 82 RS Francisco Beltrdo
9 - 92 RS Foz do Iguagu

10 - 10° RS Cascavel

11 - 112 RS Campo Mouréo
12 - 122 RS Umuarama

13 - 132 RS Cianorte

14 - 143 RS Paranavai

15 - 152 RS Maringa

16 - 162 RS Apucarana

17 - 172 RS Londrina

18 - 182 RS Cornélio Procépio
19 - 192 RS Jacarezinho

20 - 202 RS Toledo

21 - 212 RS Telémaco Borba
22 - 222 RS Ivaipora

[ Santa Catarina
23 - Extremo Oeste
24 - Oeste
25 - Xanxeré
26 - Alto Vale do Itajai
27 - Foz do Rio Itajai
28 - Médio Vale do Itajai

[]Rio Grande do Sul

39 - Regido 01 - Verdes Campos

40 - Regido 02 - Entre Rios

41 - Regido 03 - Fronteira Oeste

42 - Regiao 04 - Belas Praias

43 - Regido 05 - Bons Ventos

44 - Regido 06 - Vale do Paranhana e Costa Serra
45 - Regido 07 - Vale dos Sinos

46 - Regido 08 - Vale do Cai e Metropolitana
47 - Regiao 09 - Carbonifera e Costa Doce
48 - Regido 10 - Capital e Vale do Gravatai
49 - Regiao 11 - Sete Povos das Missoes
50 - Regido 12 - Portal das Missdes

51 - Regido 13 - Diversidade

52 - Regido 14 - Fronteira Noroeste

53 - Regido 15 - Caminho das Aguas

54 - Regido 16 - Alto Uruguai Gaticho

55 - Regido 17 - Planalto

56 - Regido 18 - Araucarias

57 - Regido 19 - Botucarai

58 - Regido 20 - Rota da Produgéo

59 - Regido 21 - Sul

60 - Regido 22 - Pampa

61 - Regido 23 - Caxias e Horténsias

62 - Regido 24 - Campos de Cima da Serra
63 - Regido 25 - Vinhedos e Basalto

64 - Regido 26 - Uva e Vale

65 - Regido 27 - Jacui Centro

66 — Regido 28 - Vale do Rio Pardo

67 - Regido 29 - Vales e Montanhas

68 - Regiao 30 - Vale da Luz

29 - Grande Floriandpolis

30 - Meio Oeste

31 - Alto Vale do Rio do Peixe
32 - Alto Uruguai Catarinense
33 - Nordeste

34 - Planalto Norte

35 - Serra Catarinense

36 - Extremo Sul Catarinense
37 - Carbonifera

38 - Laguna

Figure 1: Health Regions in Southern Brazil. The Southern region of Brazil is divided into three federative units
(Parand, Santa Catarina, and Rio Grande do Sul) and 68 Health Regions.

coded according to the tenth revision of the International Classification of Diseases (ICD-10). Cancer disease types
were selected according to these codes: breast (C50) and cervix (C53). The number of inhabitants in each one of the
Health Regions by age groups (mq,2 = 1,...,68,a = 1,...,7) was obtained from the Brazilian health statistics
site TabNet/DATASUS, where the information for 2019 was calculated by projections based on demographic census
data. To obtain the expected number z;; of deaths due to breast (k = 1) and cervical (k = 2) cancer for each area ¢ in
2019 (equation (2)), we considered the following age groups: 20-29 years (a = 1), 30-39 years (a = 2), 40-49 years
(a = 3), 50-59 years (a = 4), 60-69 years (a = 5), 70-79 years (a = 6), and 80 and older (a = 7).

Summary statistics for the observed number of deaths due to breast and cervical cancer and the number of women
aged 20 years and older living in each of the 68 Health Regions in Southern Brazil in 2019 are shown in Table 1.

Table 1: Summary statistics for the observed number of deaths due to breast and cervical cancer and the
population size (women aged 20 years and older) of the 68 Health Regions in Southern Brazil included in this
study. Data for 2019.

n Mean Median 1% Quartile  3"¢ Quartile Minimum  Maximum
Deaths by breast cancer 68 45.6 26.5 16.75 44.75 3 375
Deaths by cervical cancer 68 14.2 10.0 6.0 16.0 0 96
Population size 68 222470 145,280 96,652 223,221 49,771 1,881,102

2.5. Computational implementation of the model

In the OpenBUGS software, we can use the car.normal function to fit the spatial ICAR model. Its syntax is given
by

S[1:N] ~ car.normal (adj[], weights[], num[], tau)
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where N is the number of areas, adj[] is the adjacency vector defined for the neighbourhoods, weights[] is a
vector of length N giving the weights for each pair of neighbours, num [ ] is a vector of the number of neighbours for
each area, and tau is the variance parameter (Lawson, 2013). Vectors adj[] and weights [ ] must be of the same
length, and unnormalized weights are obtained setting all the elements in weights [] equal to 1. Figure 1 shows
that the Health Region 1 has two neighbors (labeled as 2 and 33), the Health Region 2 has four neighbors (1, 3, 6, and
34), the Health Region 3 has seven neighbors (2, 4, 5, 6, 19, 21, and 22), the Health Region 4 has three neighbors (3,
5, and 6), and so on. Therefore, in the OpenBUGS syntax the vector num[ ] is given by

num = ¢c(2, 4, 7, 3, 7, 8, 6, 5, 3, 7, 7, 5, 4, 3, 5, 5, 4, 3, 3, 3, 6, 5, 4,
5, 6, 5, 3, 5, 5,8, 5, 5, 4, 6, 7, 4, 3, 3, 5 4, 4, 3, 4, 7, 5, 6,
6’ 5/ 5’ 8’ 5’ 2/ 5’ 6’ 6/ 7’ 6’ 5’ 4/ 4’ 4’ 7’ 7’ 6’ 7’ 5/ 4’ 5)

and the 16 first elements of the vector adj [ ] are given by
adj = ¢c(2, 33, 1, 3, 6, 34, 2, 4, 5, 6, 19, 21, 22, 3, 5, 6, ...)

The OpenBUGS code used to implement the bivariate model with shared components is presented in an Appendix
at the end of the manuscript. We first simulated 5,000 initial samples as a burn-in sample to eliminate the effect
of the initial values for the parameters of the model in the algorithm. Next, we simulated another G = 1,000, 000
samples, taking every 100th sample to obtain approximately uncorrelated samples of the joint posterior distribution of
all parameters of the model. The Bayesian estimates for the parameters were obtained as the mean of the simulated
samples drawn from the joint posterior distribution for all parameters of the model, that is, we are assuming a quadratic
loss function to get the Bayesian estimators of interest. The convergence of the simulated sequences was monitored by
using traceplots and the Geweke diagnostic criterion (Cowles and Carlin, 1994). This convergence criterion is based
on a z score that compares the difference in the two means of non-overlapping sections of a simulated Markov chain,
divided by the asymptotic standard error of the difference. This z score asymptotically follows a standardized normal
distribution, so we obtain convergence for a chain if its corresponding absolute z score is less than 1.96. Geweke z-
scores were obtained using the geweke . diag function of the MCMCpack package of the R software (Martin et al.,
2011). Highest probability density (HPD) intervals for the parameters of interest were obtained using the Monte Carlo
method described by Chen and Shao (1999). Box and Tiao (2013) state that an HPD interval has two main properties.
First, the density for every point inside the interval is greater than that for every point outside the interval. Second, for
a given probability content, the HPD interval is the one of shortest length (Chen and Shao, 1999). The Monte Carlo
standard error (MC error) was used as a measure of how accurately the mean of the Monte Carlo samples for a given
parameter estimates its true posterior expectation. As a rule of thumb, the number G of simulated MCMC samples is
considered sufficient when the MC error is less than 1% to 5% of the posterior standard deviation (SD) for a parameter
of interest (Lunn et al., 2013).

The Moran’s index (I?) was used to estimate the degree of spatial autocorrelation (Moran, 1950). This index is a
generalization of Pearson’s correlation coefficient, and an 2 value close to zero indicates that a measure of interest
tends to have a random spatial distribution in the geographic region of interest. The Moran’s index was calculated
using the moran.test function of the spdep package of the R software. Local Indicators of Spatial Association
(LISA) were used to estimate the spatial autocorrelation between the Health Regions and thus to identify the local
clusters (Anselin, 1995). Spatial autocorrelation of LISA is classified into four different classes, including high-high,
low-low, high-low, and low-high, which respectively mean “high surrounded by high”, “low surrounded by low”,
“high surrounded by low”, and “low surrounded by high”. A fifth class is commonly called “not significant” and
encompasses all areas in which there are no important associations. LISA maps showing these classifications in each
Health Region were used to identify spatial clusters and examine the spatial patterns of mortality due to breast and
cervical cancer in Southern Brazil.

The code to reproduce this work is also available in GitHub (https://github.com/edsonzmartinez/sharedcomponents).

3. Results

The computer code provided in the Appendix was used in OpenBUGS and MultiBUGS software, both installed on
a personal computer with an 11th Gen Intel®Core™i7 processor (2.80 GHz). Using the OpenBUGS software, the
processing time for 1,000,000 iterations was 648 seconds, and using the MultiBUGS software, this processing time
was 638.5 seconds. Since the model involves a relatively small number of parameters and observations, both software
showed very close running times. The obtained results from both software were similar.
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Table 2: Bayesian estimates (posterior means) of the parameters.

Parameter Estimate SD MC error 95% HPD interval Geweke z-score
a -0.08949 0.02763 0.0003 (-0.1434, -0.0354) -0.048
1e D) -0.02340 0.04240 0.0004 (-0.1038, 0.0620) 0.972
6 1.119 0.335 0.0045 (0.4951, 1.7630) 0.835
Ty 0.01211 0.00955 0.0001 (3.383 x 1076, 0.0307) 1.369
Ty 0.02491 0.01833 0.0002 (1.798 x 1075, 0.0597) -1.251
vy 0.03111 0.02306 0.0003 (2.273 x 1075, 0.0754) -0.422
Vg 0.04237 0.03407 0.0005 (9.383 x 1076, 0.1090) -1.825

Table 2 shows the Bayesian estimates of the parameters a1, as, d, 71, T2, v1, and vy, obtained from the MultiBUGS
software, together with their sample standard deviation (SD), MC error, 95% HPD intervals, and Geweke z-scores.
The MC errors for each parameter are less than 5% of their corresponding SD, indicating that the number of MCMC
simulated samples is sufficient to have a correct estimation. In addition, all absolute Geweke z-scores are smaller than
1.96 suggesting the convergence of the simulated Markov chains to a stable distribution. The posterior samples for
these parameters are graphically described in Figure 2. The traceplots presented in the first column of the Figure 2 show
the evolution of the samples generated by the MCMC method over the iterations, also indicating good convergence of
the simulation algorithm. The second column of Figure 2 shows unimodal posterior distributions for the parameters,
and the autocorrelation function (ACF) plots presented in the third column show that the autocorrelation between
successive samples is reasonably low. We also verified the convergence of the simulated samples for the shared
components u1; and for ug;, i = 1, ..., 68, but we do not show the results here due to space limitation.

Bayesian estimates and 95% HPD intervals for the SMR for breast and cervical cancer are visually represented in
Figure 3. The Health Regions 10 to 14, 17, 18, 20, 22, and 25 are highlighted in green in the panel (a) of Figure 3.
These regions have relatively low SMR estimates for breast cancer and corresponding HPD intervals which do not
contain the value 1. Except for region 25, all these Health Regions are located in the state of Parana (see Figure 1).
The Health Regions 33, 41, 48, and 59 have relatively high SMR estimates for breast cancer and are highlighted in red
in the panel (a) of Figure 3. The Health Region 33 is located in the northeast of Santa Catarina state, and the regions
41, 48, and 49 are located in the Rio Grande do Sul state. Panel (b) of Figure 3 visually suggests that the variability
of the SMR estimates for cervical cancer is lower than that observed for breast cancer, and all the corresponding HPD
intervals contain the value 1. The maps in the Figure 4 describe the distribution of the Bayesian estimates for SMR for
breast and cervical cancer across the geographic space.

Figure 5 shows LISA maps of the smoothed estimates for SMR for breast and cervical cancer. The obtained Moran’s
index with value 0.537 suggests a non-homogeneous distribution pattern of the SMR for breast cancer in the southern
region of Brazil. Panel (a) of Figure 5 identifies spatial High-High clusters in the southwest region of Rio Grande do
Sul state and in the coastal regions of Parand and Santa Catarina states. Low-Low clusters are identified in western
Parang state. The obtained Moran’s index with value 0.298 indicates that the spatial distribution of the SMR for
cervical cancer has a lower heterogeneity degree when compared to the SMR distribution for breast cancer in the
southern region of Brazil. Nevertheless, panel (b) of Figure 5 identifies High-High spatial clusters in the southwest
region of Rio Grande do Sul state and Low-Low clusters in the northwest of Parand state. High-Low and Low-High
classes were absent in our data set.

Standardized residuals for the Bayesian model, given by the expression (3), are shown in Figure 6, together with their
corresponding spatial Moran’s indexes. From these plots we can see that the majority of the standardized residuals are
in the range of (—2,2), suggesting the absence of extremely low or extremely high values. The Moran’s indexes for
the spatial distribution of the standardized residuals are given by —0.083 (breast cancer) and —0.039 (cervical cancer).
As these values are close to zero, we conclude that the proposed model is able to explain the spatial distribution of the
SMR for the two diseases in the Southern Brazilian region.

For comparison, we also fitted a similar Bayesian model with both components u; and us assuming a double expo-
nential (Laplace) prior distribution in place of a Gaussian prior distribution. This distribution is denoted by car.11
in the OpenBUGS syntax. Comparing the fit of the models with shared components following a double exponential
distribution and a Gaussian distribution to the data, the overall goodness-of-fit measured by the deviance information
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Figure 2: Posterior samples for the parameters oy, s, d, 71, T2, v1, and vy of the bivariate model with shared

components applied to the breast and cervical cancer mortality data. (a) Traceplot of posterior samples (the horizontal
red lines correspond to the posterior means), (b) histogram and kernel density estimate for the posterior density, and
(c) autocorrelation function (ACF) plot for the posterior samples of the model parameter.

criterion (DIC) were, respectively, 829.0 and 828.4. Since the DIC values are very close for both models, we do not
have indication that one model has better fit in comparison to the other model.

4. Discussion

In the same direction as the present study, Bermudi et al. (2020) carried out a study with the objective of verifying the
spatial pattern of mortality from breast and cervical cancer in the areas covered by basic health units in the metropolitan
area of the Sao Paulo city, Brazil, showing that their obtained results are useful to help to direct resources to prevent and
promote health in this geographical area. In another study, Diniz et al. (2017) aimed to identify the factors associated
with the age-standardized breast cancer mortality rate in the municipalities of Sdo Paulo state, Brazil, in the period
from 2006 to 2012, showed a positive association between mammography and breast cancer mortality, and Rocha-
Brischiliari et al. (2018) showed that the breast cancer mortality rate in Parand state, Brazil, was negatively associated
with illiteracy rate and positively associated with access to treatment and health services. Although these ecological
studies have been important in elucidating invisible effects on the individual level, their data analysis was not formally
based on a statistical model such as the one described in the present article. Considering the breast and cervical cancer
mortality data as examples, we believe that the proposed model and possible extensions would be a suitable alternative
for the analysis of spatial data, where the interest is to simultaneously describe the spatial pattern of the incidence,
prevalence, or mortality due to two or more diseases in a region of interest.

A potential limitation of the data used in this study is due to the possible regional differences in the coverage, com-
pleteness, and quality of the information, which can lead to biased results (Felix et al., 2012). We did not use a
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Figure 3: Bayesian estimates and 95% HPD intervals for the standardized mortality ratios (SMR) for (a) breast cancer
and (b) cervical cancer. Health regions with relatively low SMR estimates and HPD intervals that do not contain the
value 1 are highlighted in green, and health regions with relatively high SMR estimates are highlighted in red.
correction approach for underreporting and relocation of ill-defined causes of mortality. We also acknowledge that our
results may be subject to edge effects, defined by Lawson (2013) as “any effect upon the analysis of the observed data
brought about by the proximity of the window edges”. The Southern Brazil region is bordered to the north by Sao
Paulo state, to the northwest by Mato Grosso do Sul state, to the west by Argentina and Paraguay, and to the south by
Uruguay. As information from the outer region is not included in the statistical model, estimates for SMR in Health
Regions near boundaries can be affected by the edge position. A method proposed by Lawson (2013) to deal with
edge effects is based on the inclusion of “guard areas” in the model, that is, areas outside the region of interest having
a neighborhood with its boundary. However, this was not possible in the present study since our database does not
have mortality information from Paraguay, Uruguay, and Argentina. Another approach was introduced by Rodeiro
and Lawson (2005), which explores how the estimation of the measures of interest near boundaries can be affected
by the edge position and how the error due to boundary effects propagates as we go further into the region. Their
method considers successive models based on subsets of the dataset, where the first set consists of the most external
areas (boundary areas), the second set consists of areas in a second ring away from the edge, the third set consists
of the areas in a third ring, and so on. The map must, however, have a sufficient number of small areas to allow for
“boundary hull stripping up” to five depth. Unfortunately, the map in Figure 1 shows that the number of areas in the
southern region of Brazil is not large enough to use this method.

Raei et al. (2018) introduced an extension of the model with shared components, including both spatial and temporal
effects. The authors used this model to map the incidence of breast and cervix uteri cancer among Iranian women
over a 6-year period searching for trend changes and risk factors. Ahmadipanahmehrabadi et al. (2019) used a similar
model to determine the spatial pattern and temporal trend of death risk due to colorectal and stomach cancers among
provinces of Iran. Downing et al. (2008) proposed an extension of the model with shared components to more than
two diseases. The authors used this model to estimate jointly the incidence rates of six smoking-related cancers in the
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Figure 4: Bayesian estimates for standardized mortality ratios (SMR) for (a) breast cancer and (b) cervical cancer.
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Figure 5: Global Moran’s Index (I?) and Local Indicators of Spatial Association (LISA) maps of the smoothed esti-
mates for standardized mortality ratios (SMR) for (a) breast cancer and (b) cervical cancer.
Yorkshire region of England. These extensions of the model will be considered in our future research.
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Figure 6: Standardized residuals for the Bayesian model, considering the (a) breast cancer data and the (b) cervical
cancer data.

5. Concluding Remarks

The method proposed in this article is based on the models introduced by Knorr-Held and Best (2001) and Held et al.
(2005). It can be easily implemented in OpenBUGS software, which requires little expertise in computer program-
ming. As observed from the data analysis assumed in the study considering breast and cervical cancer mortality in
an important region of Brazil, the computational MCMC algorithm showed good convergence in the generation of
samples from the joint posterior distribution of interest and short computational time. In the application considered
in this study, the model highlighted the health regions with higher or lower mortality due to the diseases under study.
These results may be of great importance to health authorities in planning medical and financial resource distribution
to areas with higher mortality rates.
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Appendix

This is the OpenBUGS code for the Bayesian bivariate model with shared components, as presented in subsection 2.3:

model {

for

vyl
v2l

(i in 1:n) {

[1i]
i]

" dpois (lambdal[i])
" dpois (lambda2[i])
)

SMR1[1i] <- exp(etallil]

SMR2[1i] <- exp(eta2[i])

lambdal([i] <- z1[1]*SMR1[i]

lambda2[i] <- z2[1]*SMR2[1i]

etal[i] 7 dnorm(mul[i],prec.taul)

eta2[i] 7 dnorm(mu2[i],prec.tau2)

mul[i] <- alphal + ul[i] * delta + u2[i]

mu2[i] <- alpha2 + ul[i]/delta

# Standardized Bayesian residuals:

resl[i] <- (yl[i] - lambdal[i])/sqgrt (lambdall[i])
res2[1i] <- (y2[i] - lambda2[i])/sgrt (lambda2[i])

}

# Prior distributions:

alphal = dflat ()

alpha2 = dflat ()

ul[l:n] 7 car.normal (adj[], weights[], num[], prec.vl)

uz2 (1l

:n] ~ car.normal (adj[], weights[], num[], prec.v2)

log(delta) <- ldelta
ldelta ~ dnorm(0,prec.delta)

taul
tau2

" dgamma (1,0.01)
~ dgamma (1,0.01)
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vl dgamma (1,0.01)

v2 ~ dgamma(1l,0.01)

prec.taul <- 1/taul

prec.tau2 <- 1/tau?2

prec.vl <- 1/vl

prec.v2 <- 1/v2

prec.delta <- 1/0.17

for (j in 1:sumNumNeigh) {weights[j] <- 1}
}
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