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Abstract

Transmuted distributions have been centered of focus for researchers recently due to their flexibility and
applicability in statistics. However, the only few contributions have considered estimation for mixture of
transmuted lifetime models especially under Bayesian methods has been explored more recently. We have
considered the Bayesian estimation of transmuted Lomax mixture model (TLMM) for type-I censored samples.
The Bayes estimates (BEs) and posterior risks (PRs) for informative and noninformative priors are evaluated using
four different loss functions (LFs), two symmetric and two asymmetric, namely the squared error loss function
(SELF), precautionary loss function (PLF), weighted balance loss function (WBLF), and general entropy loss
function (GELF). Simulations are run using Lindley Approximation method to compare the BEs under various
sample sizes and censoring rates. The estimates under informative prior and GELF were found superior to their
counterparts. The applicability of the proposed estimates has been illustrated using the analysis of a real data
regarding type-I censored failure times of windshields airplanes.

Key Words: Bayesian analysis; loss functions; posterior risk; Lindley approximation; Confidence Intervals.

1 Introduction

The skewed family of non-Gaussian distributions that are used in modeling and analyzing reliability data are called
transmuted distributions. The QRTM technique due to Shaw and Buckley (2009) is used to build new families of non-
Gaussian distributions. By adding a new parameter to an existing baseline probability distribution, the QRTM
approach produces a flexible family of probability distributions. Currently, many fields such as lifetime analysis,
reliability studies, insurance, medicine, economics, environmental sciences, and engineering are using transmuted
distributions (AL-Kadim, 2018). Shaw and Buckley (2009) suggested that a random variable X is assumed to have a
transmuted distribution with

2
F(x)=(1+2)G(x)-2{G(x)} (1)
f(x)=g(x){1 +1 — 22 G(x)} (2)
f(x) and g(x) are probability density functions with the cumulative density functions F(x) and G(x), respectively,
whereas x > 0, and |A| <1 is the transmuted parameter. Several authors have worked on mixture models using classical
and Bayesian methods. Based on a type-1 censored sample, Al-Hussaini et al. (2001) used a mixture of 2-component
Lomax model to generate Bayesian prediction boundaries for future observations. Sultan et al. (2007) looked at

features of the inverse Weibull distribution's 2-component mixture. Saleem et al. (2010) used the SELF to evaluate
BEs and PRs for the Bayesian analysis of the 2-component mixture of the power function distribution. They used
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uniform, Jefferys, and inverse chi-square priors. In order to simulate heterogeneous survival data, Erisoglu et al. (2011)
evaluated exponential-gamma, exponential-Weibull, and gamma-Weibull as mixtures of two separate distributions.
Various properties of the proposed model have also been determined, and the maximum likelihood estimation was
considered using the expectation-maximization (EM) algorithm. A Dataset from the real world has also been analyzed.
The Bayesian analysis of a 2-component mixture of the Maxwell distribution was performed by Kazmi et al. (2012).
Under QLF, Majeed and Aslam (2012) performed a Bayesian study of a 2-component mixture of the inverted
exponential distribution. Feroze et al. (2013) used the Bayesian technique to study 2-component mixtures of the Top-
Leone distribution and evaluated several statistical characteristics. Sultan and Al-Moisheer (2013) used a Bayesian
technique to model reliability function for the 2-component mixture of the inverse Weibull distribution under type-11
censoring. Feroze and Aslam (2014) performed a Bayesian study of a 2-component mixture of the Weibull distribution
with censored lifetime data. Sindhu et al. (2016) used doubly type-I1 censored samples for Bayesian analysis of a 2-
component mixture of the inverse Weibull distribution. Rahman and Aslam (2017) performed Bayesian analysis of 2-
component mixture of the inverse Lomax distribution. Reyad and Othman (2018) compared the E-Bayesian and
Bayesian approaches for estimating the parameters of a 2-component mixture of the inverse Lomax distribution.
Bayesian study of the 2-component mixture of the transmuted Weibull distribution was performed by Yousaf et al.
(2019, b). Aslam et al. (2020, b) used several loss functions to develop a Bayesian analysis of a 2-component mixture
of the transmuted Pareto distribution. Aslam et al. (2020, c) proposed Bayesian analysis of a 2-component mixture of
the transmuted Fréchet distribution. Younis et al. (2021) considered Bayesian analysis of a 2-component mixture of
the Lomax distribution (LD). Ashour and Eltehiwy (2013) proposed and studied generalization of the Lomax
distribution (LD) known as transmuted Lomax Distribution (TLD). They took LD as base distribution and derived
some structural properties i.e., moments, quantiles, mean deviation and order statistics. ML method was opted for
parameter estimation.

From the above discussion it can be assessed that transmuted lifetime models have attracted many researchers to use
these models in modeling lifetimes of different products. However, the only few contributions have considered
estimation for mixture of transmuted lifetime models especially under Bayesian methods has been explored more
recently. This paper proposes the Bayesian estimation of parameters from TLMM. The Bayesian estimation has been
considered using informative and non-informative prior distributions. The Bayes estimates have been obtained using
four different loss functions, namely, SELF, PLF, WBLF and GELF. The samples are assumed to be type-I right
censored. The Lindley’s approximation has been used to obtain the approximate Bayes estimates. The applicability of
the proposed estimates has been illustrated using the analysis of a real data regarding type-I censored failure times of
windshields airplanes.

The organization of this article is as follows: Section 2 discusses transmuted distributions, LD, TLD, likelihood
function, derivation of the posterior distributions using NIP and IP, and estimation of model parameters using
Lindley’s approximation. The results and discussions have been given in Section 3. Section 4 covers the conclusion
and some future suggestions.
2 Materials and Methods

In statistics, heterogeneous datasets can be dealt very efficiently by using finite mixture models in order to model and
analyze them. Specifically, Pearson (1894) introduced the statistical modeling using finite mixtures of distributions
by fitting a mixture of two normal distributions to model data provided by Weldon (1892, 1894). Due to the flexibility
of the finite mixture distributions, researchers are inclined towards the analysis of mixture models. The models might
have finite or infinite number of components. The analysis of mixture models has been discussed by many authors,
for example, Bertoli et al. (2020), and Noor et al. (2021), Feroze et al. (2022). Engineering, physical sciences, chemical
sciences, and biological sciences are just a few of the domains where mixture models are used (Aslam et al., 2015).
Titterington et al. (1985) defined mixture distribution with m-component such that its pdf can be expressed as:

m
F(x)=2pf (%) 3)
i=1
where the parameter |p; denotes the mixing proportion of i component and f,(x) denotes the density of i*"
component. It must satisfy the following condition: p, >0;i=12,..,m and i p, =1. Each probability density

i=1

function f, can be same or different distributions, but in our research, we have considered f; of the same distribution
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due to convenience. There are two types of mixture distributions: type-1 mixture model and type-1I mixture model.
The type-I mixture model is concerned with probability density functions belonging to the same family whereas the
type-II mixture model considers probability density functions from different families of distributions.

2.1 Transmuted Lomax Distribution

The probability density function of a random variable 'X' from a LD with parameters (o and ) > 0 is:

g(xa B)=af(l+Ax) Y, x>0,a,8>0 4)

with corresponding CDF is:
G(x;a,ﬂ):{l—(l+ﬂx)7“}, x>0, a, >0 (5)

where a and § denote the shape and scale parameters, respectively.
The random variable ‘X’ is said to have the TLD with parameters o, 8, and X if its pdf is given by:

f (x;a,ﬁ,z)=L[l%—zx{l—(uﬁx)*“}] x>0, @ f>0and | A]<1 ©
(1+ Bx)“™
Equation (6) has been obtained by substituting (4) and (5) in (2). Now the CDF can be obtained by substituting (5) in
(1), then the CDF of the TLD with parameters o, B, and A takes the form:

F(x;a,ﬁ,/z)=(1+/1){1—(1+ﬁx)’“}—,1{1—(1+ﬂx)’“}2,
After some algebraic simplification, we get:
F (@, B,2)={1-(1+ px) “Hi+ 21+ px) "}, x>0, @, >0 and | A[<1 @

If =0, then TLD reduces to ordinary LD and if =1, then TLD reduces to the TPrD.

2.2 Transmuted Lomax Mixture Model

In this paper, a 2-component mixture of the TLD has been proposed. The Bayesian approach has been employed for
estimating the model parameters. The Bayes estimates have been derived using NIP and IP with two symmetric and
asymmetric LFs. Since the marginal posterior distributions are not in closed form, the Lindley’s approximation has
been used to evaluate the BEs with corresponding PRs and 95% Cls. A density function for the mixture of two

component densities with mixing weights ( p,1- pl) is:
f(X): plfl(x)+(1_ pl) fz(X), 0< p1<1 (8)

with the CDF of the mixture model is:
F(x)=p,FR(x)+(1-p)F(X), O<p <1 )

where f, (x) and f, (x) represent the PDF of the first and second component of the TLD defined in (8), and F, (x)
and F, (x) represent the CDF of the first and second component of the TLD defined in (9). Now using (8), the pdf
for the mixture model of the TLD is:

f(xQ)= plﬁ[l+ﬂ1 -24 {1—(1+ ﬂlx)*%”
+(1- pl)#[lwlz ~22, {1—(1+ Box) }J (10)
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Using (9), the CDF for the mixture model of the TLD is:

F(6Q) = L= (1+ Ax) [+ A2+ Ax) " |+ (1= p) L=+ Ax) “ o 4 (L4 1)}, @D
where Qz(al,az,ﬂl,ﬂz,ﬂi,/iz, pl) represents the complete set of parameters of the TLD mixture model. Also
o, B, 53 >0, | 4,4 |<1land ' p, " isthe unknown weight.

2.3 The Likelihood Function and the Posterior Distributions

Let X, X,,..., X, be a random sample of size'n", taken from the TLD. Assuming that the true lifetimes for some of

the objects were unavailable, type-1 censoring scheme has been opted. This censoring scheme is associated with some
pre-specified test termination time, see, (Kalbfleish and Prentice, 2011; Rabie and Li, 2020; and Elbatal et al., 2022).

Suppose for the life testing experiment, out of 'n" elements which are taken from a 2-component mixture TLD, 'I''
elements have failed until the test termination time 't' while remaining 'n—r" objects still working after time 't".
According to Mendenhall and Hader (1958), subpopulation-I and subpopulation-II can contain "I, * and 'r,* number

of failed objects, respectively. It is known that r =1, +r, which represents number of uncensored observations
while the remaining N—r observations represent the censored observations. Now, Xij denotes the failure time of

the jth observation belonging to the i"™ subpopulation, where i =1,2 and j=12,...r. The likelihood function for
the mixture model under type-I censored samples (Mendenhall and Hader; 1958) is:

L062) ={TTot 05, T ) 1 )P ) w2
j=1 j=1
where Q=(ay,@,, B, 5./, 4, p,) and x=(x11,x12,...xlrl,x21,x22,...x2r2)
. . ﬂ - 2 . ,B —a,
L(xQ)= le% 1= 4+ 24 (1+ B, [ p)—2 2 1= 4 + 24, (14 By,
= (1+181X1j)( ){ ( ) } = (1+ﬂzx21')( ){ ( ) }
XL pufL- (@ Ax ) e AL A )L P L (L A ) [ 2 (L4 Bix, )”‘}J
After some algebraic simplifications, we get:

; (o +1)i Iog(l+Bl><1j ) —(ay +1)i Iog(l+ﬁ2><2 j) i |og{l—l1 +2}1(1+ﬂ1x1j )")‘1}
L(x;Q)oc p(1-p,)" o'e = aye = pler

r 711
Z:Iog{l—ﬂ2 +275 (14 s ) 2 }

x pre’ Lo Ax) e A e Ax ) (13)
- p) i@ ax) e x|

The above expression can be presented as:
L(6Q) o (R {0, (L= Py} e g e ghatg

Where 1, = Y log (L+ 8%, ). 1, = log(1+ B,%,, ) 1y = . log {1—,1l +24, 1+ B, ) }
= =

I, = ilog {1—2,2 +20, (14 By, ) } and
| =1-p, {1—(1+ Bx) }{1+,11 (1+ 8% ) } +(1- pl){l—(l+ Box, ) }{1”2 (1+ 8%, ) }
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The log-likelihood function is:

I, =t log (e, B.p,)+1, log{e, B, (1- )} — (o4 +1)2 log (1+ B,x,; ) - (2, +1)22:Iog (1+ B,%,5)
= = (14)

+Z|og{1—z1 +22,(14 A, )’“1}+Z|og {1—12 +27,(1+ By, )’“Z}Jr(n— r)log |
j=1 j=1
2.3.1  Posterior Distribution Assuming Noninformative Prior

Here, we take UP as NIP which has a little impact on the final result of the inference (Bernardo and Smith, 1994). It
is used when prior information is not available. Now we take an assumption of independent NIP (uniform) for the

parameters Q= (a4, @, B, Br1 s 25, By, 6., 0 U(0,0), 2, 0U(0,0), 40U (0,»), B, 01U (0,0)
For mixing proportion p, , the UP over the interval (0,1) is assumed, i.e., p, /U (0,1). The priors for transmuted
parameters 4, and A, are 4[] U(—l,l) and 4,0U (—1,1). The joint prior distribution for the parameters

Q= (al’abﬂl’ﬂbﬂ'l’ﬂ?’ pl) is:
Ty (Q)cl, o, @, >0, B,8,>0,| 4,4, <1, and 0< p, <1 (15)
Using the Bayes theorem, we can define the posterior distribution as:
L(X Q) (Q
o (1) = H(52) e ()

ol 11 '

JITT L)z (@)

0000-1-10
The joint posterior distribution of Q= (e, a,, B, 5141, A5, P, ) given X under UP is:
(@Bp)" (@, (1 p,))" e Dug e iaghastupror
woowo 1 11
[TTT1](aBp) B, (1-p,)}" et Diue e ghau "rdpd 4,d 4d B,d Bd e, dey
000 0

-1-1

a,a,>0,6,5,>0,|4,4, <1, and 0< p, <1

Where |, = Zlog (1+ BXy; ), I, :Zzllog (1+ﬂzxzj )v s = lelog {1_11+2ﬂ1 (1+131X11 )-%}1
i= I= =

(16)

Gue (le):

. (17)

ot—38

_ Z log {1—,1Z +20, (L+ B, ) } and

=1 py {1 (L B ) Hae 4 (L Bx ) (1 py) 1= (2 Box, ) L 2, (24 Bix, )
and it can be written in the form:

Our (@ B, A1 X) o (5, p,)* {5, (1= py )" @ (i (o heghoh

2.3.2  Posterior Distribution Assuming Informative Prior

Following independent priors are assumed for the unknown parameters:
o, [1 gamma(a,,b,), «, 1 gamma(a,,b,), A [J gamma(c,,d,), and A, [ gamma(c,,d,)

While the UPs are assumed for the transmuted parameters, ie., A, [JU (—1,1) and A4, U (—1,1).

Furthermore, the beta prior for the mixing proportion has been assumed as p, [ Beta(el, e2) . It is not the first time
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that assumption of independence is being used, see, (Yousaf et al., 2019b; Aslam et al., 2020b; and Aslam et al.,
2020c). The joint prior distribution for the parameters Q = (ay, @, B, Bor 41 Aps Py) ISt

Tep (Q) ocC al blala b2a2 ﬂcl -1 *dlﬂiﬂcz —d, /5 91 1(1 pl) 71, (18)

Using (18), the joint posterior distribution of parameters {2 given X under GP is:

r1+a1 -1 _n+a,-1 ph+c— 1ﬂr2+c2 1e—ozll21 az'zze*dlﬁl dzﬁze|za+|24 Kn r p n+e -1 (1_ p )r2+e2—1
2 1
Ocp (Q | X) =

a, 1
wowmwo 1 11
I e = asara0 0 st
a,a,>0, 5,6,>0,|4,4,|<land 0< p, <1

Where |, =i|og(1+ Bxy )+ 1, =ilog(l+ﬁ2x2j)+bz, L =ilog{l—21 +27, (1+ X, )'“1}—r2|og(1+ BX;)
j j=1 j=1 j=L

=

r1+al—10[r2Jraz—lﬂlrl-uc1 lﬂzrz+cz—1e—¢le21—azl22 e—dlﬂl dzﬁ'Zelzg,H24 Kn r
(19)

:ilog{l—ﬂz +20, (L+ B, ) " } —ilog(l+ Byx,;) and

K=1-py 1= (L A ) e A (0 Aix ) ™+ (0 p) - (0 B ) o 2, (04 Bx )

and it can be written in the form:

gGP (Q | X) oC a1|’1+al la2r2+a2 lr1+cl lﬂz"z“?z le—al 21— ZZe—dl/Zl dz/fzelz3+l24 Kn r IolrlJrel 1( pl)rz+efl

2.3.3  Bayes Estimators and Posterior Risks under Different Loss Functions

This section explains the derivations of the BEs under different LFs and their respective PRs. The BEs are evaluated

under the SELF, PLF, WBLF and GELF. The following Table 1 shows the BEs and their PRs under above mentioned
LFs.

Table 1 Bayes Estimators and Posterior Risks under different LFs
Loss function Expression BE PR
SELF (0-d) E(6|x) Var (6|x)

PLF

@ E(Hz‘x {/ 02|x }
WBLF (ﬂjz E(02 ) {E(ax)}

(@) ey

GELF (%]p— pln[%]—l, p#0 {E(¢9‘P|x)}’E |n{E(9-p|x)}+ pE (Ind|x)
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2.4 Lindley’s Approximation

To derive the Bayes estimators for the parameters Q:(al,az, B, ﬂz,ﬂi,ﬂz,pl), we apply Lindley (1980)
approximation by introducing the function 1(x), such that:

h L@y
I(x)=E [h(Q):l - J.””}?L)(Q)w(n)d (Q()Q) (20)

whereas h(Q): function of €2 only, L(Q): Log-likelihood function and G(Q): Log joint prior of €2,

For Lindley approximation method, the availability of the ML estimates of the parameters and sample size ‘n’ is
sufficiently large enough are the requirements. The ratio of the integral presented in (20) can be approximated as:

1(X) = N(2) R + i+ ke e, + Pk + P + ks K+ +%(D1El+ D,E, +D,E, + D,E, + D,E; + D;E, + D, ), (21)

where QQ: MLE of Q,

Ei =hS; +hS;, +hSis +h,S;, +heSis +1sSig + 0y Sy,

D, =Sy Ly + Sy loni + Saslag + Suslasi + Ssslssi + Seslesi +S77ban + 28,015 + 285015 + 25, Ly + 2851
+ 28,61y + 25171175 + 28 5Ly + 285, Loy + 2855 Log + 25 6Ly + 25 Ly + 254, Ly
+ 2835 L35i + 2835 L36i + 2837 L37i + 2845 L45i + 2846 L46i + 2847 L47i + 2856 L56i + 2857 L57i + 2867 L67i 1

Ki =4S+ 6,5, + 4,Sis + 4,51, + 4S5 + 4:Si + 4,5, 1=1,2,3,4,5,6,7

Ks = hipSi, + 1S5+, Spy +MigSig + 0y Si7 + M85 + 05,850 +1,sS +0sS 6 +h,, S
+ 15, Sy, + higSsg + Mg Sag + Ny S7 + NS g + Ny Sy + Ny S 7 + hige S + ;S + hg S

1
k9 = E(hllsll + h22822 + h33833 + h44S44 + h55855 + h66866 + h77S77)

and on the right-hand side, subscripts like 1, 2, 3, 4, 5 6, 7 refers to as parameters «, «,,

B By A, A, and p,, respectively. Now, let
Q=a;, Q) =0, Qy =, Q, = 5, Q5 = 4,
Q h(Q h(Q L(Q L(Q
Qo=4,Q;=p, 4= a(;(li ) h = 68£)i )'hij = SQng?’ L = ZQif(ij), L :%
i,),k=12,3456,7, Q=(a, 2, B, By 1, A, P1)
and Sij : (i, j)th element of the inverse of the matrix {—L-- } which is represented as:
S

1)
_L11 _L12 _L13 _L14 _L15 _L16 _L17 N s11 2

[%)
.

- L21 - L22 - L23 - L24 - L25 - L26 - L27 S
_L31 _L32 _L33 _L34 _Lss _L36 _L37 S
—Ly —Lp L —Lu —Ls —Ls —Lsg =|S
S
S

22
32
s
L Ll —ls -l ks L —Ls
7'-61 7'-62 7L63 7'—64 7'-65 7'—66 7L67 62
_L71 _L72 _L73 _L74 _L75 _L76 _L77 S71 72 S73 S74 S75 S76 S77
All evaluated at the MLEs of the parameters which can be determined using the nonlinear system of equations. Using
(4.7), we maximize [; with respect to o, ,, B, B,, 4, A,, and ;. We have the following system of non-linear
equations:

5.

N

N
n 0 n 0 n
&
n 0 n 0 v
R
w
&
w n
&
v n
3

ul
P
n nu mu n n on
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— L_iln(ﬂlxu +1)2{211(ﬁ1x1] +1) "In(Ax, *1)]

ooy o o 1+ 4,24, {1—(ﬂ1x1j +1)’“1}
(n—- r)[— p(Bx +1)" {1+2.1(,b’1xr +1)7a1} In(Bx, +1)+p, {1—(ﬂ1xr -rl)""l}ﬂl(ﬁlxr +1) " In(Bx, +1)} B

+ =0

1-p {1—(,6'1x, +1)’“1}{1+ A (BX +1)’“1}—(1— pl){l—(/a’zx, +1) } {1+ﬂb2 (B +1)’“2}
o _ 55 & 2 (B +1) " In (% +1)
2, = 2, ]Z:;In (ﬂzxzj +1> %14.22 -24, {1—(ﬁ2X2j +1)_a2 } ]
. (n- r)[—(l— B ) (B, +1) {1+/12 (B +1)“ JIn(Bx, +1)+(1- pl){l—(ﬁzxr +1) },12 (8% +1) “In(Byx, +1)} )

1= py (L= (x 1) {1+ 4 (B, +1) ™ = (1= p) L (B +1) ™ [{Le 4 (Box, +2)

O S B i e
B B 22, (Bx; +1) -4 +1

EV A TR =
P24 (B +1) " = A +1 e (n=1)x, (Bx, +1) "
(B 4™ Apy = Py (A =D (B, +1)* ~(Bx, +1) ™ {4 (B +1) ™ ~ 1, +1f (L4 py)
ER 5, rz{z,iz(ﬁzxzj+1)’“Z'la2x2j}

+ =0

=2—(ag,+1 — .
oh, P (a ' );ﬂZXZJ +1 4 2’12(52X2]+1) az_/inrl

(n=r)(2+ P) (B, +1) " e, {2, (Bx, +1) “ — A, +1
[ (1 B (B, +2) ™ (<14 ) (2 ~1) (B, +2) “ + (A%, +1)  pu{ A (B, +1) - 241}
A, & le2(px;+1)”

0k 42 -24, {1-(Ax, +1) "}
(n=r)p, {1—(ﬂ1xr +1)7”’1}(ﬂ1xr +1)™

+ =0

1 pl{l—(ﬂlx, +1)’a1}{1+21(ﬂ1xr+1)*%}_(1_ pl){l_(ﬂzxr+1)7a2}{1+ﬂ,2(ﬂ2xr+]_)’“2} =0
aly —1+2(Byx,; +1)
ok, T+ A, — 24, {1_(ﬂzxzj +1)7a2}

(n=1)(@=p){i=(Bx +1) | (Bx, +1) .

1-p, {1-(Bx +) " Har 2 (Bx +1) =2 p) - (B +1) “ i+ & (Bx +2)
oy _ 6 _n
5_p1_ P 1- P
) (n=) {2 (B +2) s A (B +2) 4 {L-(Bx, +1) Mo 22 (B, +1) | )
1= P, {1= (B 1) L A (Bx +1) ™ = (1= p) L= (Bx, +2) {1+ & (Bx, +1) ™

This system of non-linear equations can be solved numerically by any software to obtain the ML estimates. Also, the

asymptotic Cls can be obtained for different LFs. Hence, the approximated 100(1_Zj% Cls for the parameters €2
2

are as follows:

aiiZZ,/Var(ai), B izl‘lgar(ﬂi), ﬂ,iizl,lgar(/li), and plizl,lgar(pl), =12

2

Bayesian Estimation of Transmuted Lomax Mixture Model with an Application to Type-1 Censored Windshield Data 1034



Pak.j.stat.oper.res. VVol.18 No. 4 2022 pp 1027-1048 DOI: http://dx.doi.org/10.18187/pjsor.v18i4.4059

7 denotes the level of significance. If » = 0.05, it means that 95% chance that true parameter falls in the interval

e.g., (aLL,aUL),where LL=Lower Limit, UL= Upper Limit.
3 Results and Discussions

A simulation study has been used to compare the performance of different BEs. Sample of sizes n = 20, 60, 100 and
500 have been generated by the inverse transformation method from the 2-component mixture of the TLD with the
following formula

0, = {1- (1 px) “ Hue e px)

@

2
After simplification we get, x _1 ALty A4) -4y, _1|,where u,JU(0,1) and i =1, 2.

B 24,

In order to generate the censored data using the above inverse transformation methods, we need to fix the censoring
time. The parametric sets assumed for this study are (o, B,, A, p,, @2, B,, A2) € {(0.7,0.9,0.8, 0.5, 1.2, 1.3, 0.6),
(1.0, 1.2,0.6,0.7,0.8, 0.7, 0.7), (1.3, 1.4, 0.7, 0.3, 0.6, 0.9, 0.8)}. After generating the desired samples, the BEs, the
PRs, and associated 95% asymptotic Cls are computed assuming the UP and the IP under the SELF, PLF, WBLF and
GELF. It is important to mention that type-I censoring is implemented so that the impact of censoring rate on the BEs
can be evaluated using different censoring rates. The censoring rate in the resultant sample is assumed to be between
10% and 20%. Because one iteration does not satisfy the aim of performance assessment of the estimator, we repeat
the samples N = 10,000 times to compute the average BEs along the appropriate PRs and the 95 % asymptotic Cls
using the Mathematica software. Iteration size is fixed after convergence of parameter has been carefully observed
making the estimated value getting closer and closer to the parametric value. In Bayesian analysis under IP (gamma),
the values of the hyperparameters are selected such that the prior mean becomes the expected value of the pertinent
parameter. The numerical results of simulation study are presented in Tables 2-25, whereas the PRs are tabulated in
the column next to BEs. The simulation study's findings revealed some intriguing BEs characteristics for the TLMM
which are as follows in general:

e As the sample size increases, the estimated values of the parameters converge to the true values of the

parameters, and PRs diminish. This trend is not limited to any particular LF.

e These findings show that BEs perform better under the IP than those under UP for all of the LFs evaluated
in this study. As a result, the estimates based on the IP are preferable in terms of PRs.

e Itis observed that censoring rate is directly proportional to the PRs, i.e., the increased censoring rate leads to
increased PRs.

e From the results of Cls given in the Tables 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 and 25. and for the
aforementioned LFs, it is noticed that all Cls contain the true value of the respective unknown parameters.

e The pattern of these intervals demonstrates that the width of intervals becomes narrow as the sample size is
increased.

e By comparing the results of censored data based on 10% and 20% censoring rates, the PRs for 10% censoring
are found smaller than 20% censoring rate. In general, the PRs (complete data) < PRs (10% censored data)
< PRs (20% censored data).

e The pattern of these findings can also be seen in the figures 1-8. Furthermore, the Cls for 10% censoring rate
are narrower than the 20% censoring rate due to a less loss of information when a small censoring rate is
used.

e For the purpose of brevity, we have only reported the results under UP. However, remaining tables and
figures can be seen in the supplementary material.
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Table 2 BEs, and PRs of TLMM under UP with 10% Censoring
Parameter Size  Loss Functions
n SELF PLF WBLF GELF
a1 =0.7 0.66835  (0.00995) 0.67575  (0.01479) 0.68323 (0.02176) 0.65682 (0.00582)
B1=0.9 0.84232  (0.04025) 0.86587  (0.04709) 0.89007 (0.05361) 0.80806 (0.01339)
Mm=08 0.83051  (0.02996) 0.84846  (0.03590) 0.86685 (0.04201) 0.79624 (0.01523)
p1=0.5 20 0.49711  (0.00694)  0.49009  (0.01405) 0.48316  (0.02888) 0.50975 (0.00899)
=12 1.08865  (0.03643) 1.10517  (0.03305) 1.12196 (0.02955) 1.06693 (0.00621)
B2=13 1.18711  (0.08008) 1.22029  (0.06635) 1.25440 (0.05352) 1.14219 (0.01203)
X2=0.6 0.68455  (0.03192) 0.70788  (0.04664) 0.73215 (0.06560) 0.62797 (0.03364)
a1 =07 0.68997  (0.00352) 0.69251  (0.00509) 0.69507  (0.00733) 0.68559 (0.00222)
B1=0.9 0.88120  (0.01418) 0.88921  (0.01602) 0.89729  (0.01793) 0.86774 (0.00531)
M=08 0.80976  (0.01050) 0.81622  (0.01292) 0.82273  (0.01577) 0.79787 (0.00528)
p1=0.5 60 0.49914  (0.00231) 0.49682  (0.00464) 0.49451 (0.00936) 0.50331 (0.00297)
=12 1.16575  (0.01483) 1.17209 (0.01269) 1.17847 (0.01080) 1.15530 (0.00309)
B2=13 1.26430  (0.02964) 1.27597  (0.02333) 1.28774  (0.01820) 1.24507 (0.00525)
X2 =0.6 0.62698 (0.01261) 0.63696  (0.01997) 0.64711  (0.03114) 0.60708 (0.01179)
a1 =07 0.69404  (0.00212) 0.69556  (0.00305) 0.69709  (0.00438) 0.69136 (0.00136)
B.=0.9 0.88877  (0.00857) 0.89358  (0.00962) 0.89842  (0.01074) 0.88046 (0.00328)
Mm=08 0.80579  (0.00627) 0.80968  (0.00777) 0.81358  (0.00957) 0.79870 (0.00315)
p1=0.5 100 0.49949  (0.00139) 0.49810  (0.00278) 0.49672  (0.00559) 0.50199 (0.00178)
=12 1.17961  (0.00913) 1.18347  (0.00772) 1.18734 (0.00652) 1.17301 (0.00195)
B2=13 1.27870  (0.01804) 1.28574  (0.01407) 1.29281  (0.01091) 1.26669 (0.00328)
X2=0.6 0.61615 (0.00770)  0.62237  (0.01243) 0.62865 (0.01988) 0.60425 (0.00705)
a1 =07 0.69881  (0.00043) 0.69912  (0.00061) 0.69942  (0.00088) 0.69826 (0.00028)
B.=0.9 0.89775 (0.00173) 0.89872  (0.00193) 0.89968  (0.00215) 0.89603 (0.00068)
M=08 0.80116  (0.00126) 0.80194  (0.00157) 0.80272  (0.00195) 0.79974 (0.00063)
p1=0.5 500  0.49990  (0.00028)  0.49962  (0.00055) 0.49935 (0.00111) 0.50040 (0.00036)
a =12 1.19594  (0.00188) 1.19673  (0.00157) 1.19751  (0.00131) 1.19454  (0.00041)
B2=1.3 1.29575  (0.00367) 1.29717  (0.00283)  1.29859  (0.00218) 1.29323  (0.00069)
A =0.6 0.60324  (0.00158) 0.60454  (0.00261) 0.60585 (0.00431) 0.60086 (0.00141)
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Some findings which can be seen in the results are as under:

If (o, < a,), itis observed that for first parametric set of values the estimates of the shape parameter for
second component are underestimated for both 10% and 20% censored data under all the LFs and both priors.
While for first component, the estimates of the shape parameter are underestimated for 10% censored data
under all the cases. The said estimates overestimated the true parametric values for 20% censored data under
PLF and WBLF using the UP, while underestimated under all the LFs except the WBLF using the GP.

If (o, > a,) it is observed that, using second parametric set of values, the shape parameters for first and
second components are underestimated for both 10% and 20% censored data under all the LFs using the UP
and the GP. It is observed that for third parameter set of values, the shape parameter for first component are
underestimated for both 10% and 20% censored data under all the cases, while for second component, the
shape parameters are underestimated for 10% censored data under all the cases.

If (B, <B,), itis observed that for first parametric set of values the estimates for scale parameter for second
component are underestimated for majority of the cases.

If (3, > B,), it is observed that for second and third parametric sets the scale parameters for first and second

components are underestimated throughout. On the other hand, the transmuted parameter is overestimated
using all LFs except GELF.

In the case of the first and third sets of true parametric values, estimates for mixing parameter under SELF
were observed to be superior to those under other three LFs. While for the second parametric set of values,
the GELF provides better estimates.

It is observed that for third set of true parametric values, the estimates of the mixing component parameter
are overestimated for both 10% and 20% censored data under all the LFs using the UP and the GP.

It is observed that for first set of values, the estimates of mixing component parameter are underestimated
for both 10% and 20% censored data under all the LFs except the GELF using the UP. Using GP, the estimates
of the mixing component parameter are underestimated for 10% censored data under all the LFs except the
GELF.

It is observed that for second parameter set of values, the estimates of the mixing component parameter are
underestimated for both 10% and 20% censored data under all the LFs using the UP. Using GP, the estimates
of the mixing component parameter are overestimated for 10% censored data under all the LFs except the
WBLF.

In short, the estimates under the GELF are having the best convergence among all the LFs, because the PRs
are smaller for the GELF as compared to the PRs for other LFs involved in the study. Also, IP (gamma) is
better because the PRs under the GP are smaller as compared to the PRs under the UP.
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Table 3 BEs, and PRs of TLMM under UP with 20% Censoring
Parameter Size  Loss Functions
n SELF PLF WBLF GELF
a1 =0.7 0.69360  (0.01245) 0.70252  (0.01783) 0.71155 (0.02521) 0.67816 (0.00784)
B1=0.9 0.86193  (0.04416) 0.88716  (0.05047) 0.91314 (0.05605) 0.82278 (0.01539)
=08 0.82720  (0.05313) 0.85876  (0.06310) 0.89156  (0.07212) 0.76810 (0.02626)
p1=0.5 20 0.48576  (0.00889) 0.47652  (0.01849) 0.46745 (0.03918) 0.50141 (0.01113)
az=12 1.12560  (0.04753) 1.14649  (0.04178) 1.16777 (0.03606) 1.09479  (0.00904)
B.=13 1.19730  (0.09280) 1.23541  (0.07621) 1.27473  (0.06068) 1.14453  (0.01421)
2=0.6 0.61699  (0.05864) 0.66299  (0.09201) 0.71264 (0.13409) 0.53640 (0.04750)
a1 =0.7 0.69775  (0.00414) 0.70071  (0.00592) 0.70368  (0.00843) 0.69249 (0.00267)
B1=09 0.88713  (0.01509) 0.89559  (0.01693) 0.90414 (0.01881) 0.87264 (0.00572)
=028 0.80831  (0.01810) 0.81943  (0.02224) 0.83070  (0.02695) 0.78804  (0.00901)
p1=0.5 60  0.49558  (0.00291) 0.49264  (0.00588) 0.48972  (0.01198) 0.50078 (0.00370)
=12 1.17581  (0.01694) 1.18299  (0.01436) 1.19021 (0.01210) 1.16368 (0.00359)
B.=1.3 1.26659  (0.03349) 1.27974  (0.02630) 1.29302  (0.02044) 1.24482 (0.00594)
X=0.6 0.60649  (0.01962) 0.62246  (0.03194) 0.63886  (0.05066) 0.57781 (0.01699)
a1 =07 0.69862  (0.00248) 0.70040  (0.00354) 0.70217  (0.00505) 0.69546 (0.00161)
B1=0.9 0.89226  (0.00909) 0.89734  (0.01016) 0.90245 (0.01129) 0.88339 (0.00350)
M=08 0.80488 (0.01087) 0.81161  (0.01345) 0.81839  (0.01650) 0.79269 (0.00542)
p1=0.5 100 0.49740  (0.00174) 0.49565 (0.00350) 0.49391 (0.00707) 0.50052 (0.00222)
=12 1.18558  (0.01027) 1.18990  (0.00865) 1.19424  (0.00725) 1.17809 (0.00222)
B.=13 1.28010  (0.02036) 1.28803  (0.01586) 1.29601  (0.01227) 1.26652 (0.00371)
X2 =0.6 0.60402  (0.01173) 0.61366  (0.01927) 0.62345 (0.03116) 0.58668 (0.01028)
a1 =07 0.69972  (0.00050) 0.70008  (0.00071) 0.70043 (0.00101) 0.69909 (0.00032)
B.=0.9 0.89844  (0.00183) 0.89946  (0.00204) 0.90049  (0.00227) 0.89662 (0.00072)
M=08 0.80095  (0.00220) 0.80232  (0.00274) 0.80369  (0.00341) 0.79849 (0.00110)
p1=0.5 500 0.49949  (0.00035) 0.49914  (0.00069) 0.49879  (0.00139) 0.50011 (0.00044)
=12 1.19713  (0.00209) 1.19800  (0.00174) 1.19888  (0.00145) 1.19558 (0.00046)
B2=13 1.29603  (0.00415) 1.29763  (0.00320) 1.29924  (0.00246) 1.29318 (0.00078)
X=0.6 0.60082  (0.00236) 0.60278  (0.00392) 0.60475 (0.00650) 0.59729 (0.00209)

Bayesian Estimation of Transmuted Lomax Mixture Model with an Application to Type-1 Censored Windshield Data

1038



Pak.j.stat.oper.res. VVol.18 No. 4 2022 pp 1027-1048

DOI: http://dx.doi.org/10.18187/pjsor.v18i4.4059

Table 4 95% Cls of TLMM under UP with 10% Censoring
Parameter Size  Loss Functions
n SELF PLF WBLF GELF
a1 =07 0.47286  0.86384  0.43737  0.91413  0.39410 0.97235 0.50729  0.80635
B1=0.9 0.44910 1.23554 0.44054 1.29119 0.43625 1.34390  0.58122 1.03490
M =08 0.49126 1.16975 0.47708 1.21983 0.46512 1.26858  0.55437 1.03811
p1=0.5 20 033389 0.66034  0.25776  0.72242  0.15010  0.81622  0.32396  0.69554
a2 =12 0.71458 1.46272 0.74887 1.46148 0.78505 1.45886  0.91242 1.22145
B2=13 0.63247 1.74176 0.71540 1.72517 0.80095 1.70785  0.92718 1.35721
A2=0.6 0.33438 1.03473 0.28457 1.13118 0.23015 1.23416  0.26846  0.98748
a1 =0.7 0.57375  0.80619  0.55273  0.83230  0.52724  0.86289  0.59319  0.77799
B1=0.9 0.64780 1.11460 0.64115 1.13728 0.63483 1.15976  0.72490 1.01059
=028 0.60896  1.01056  0.59344  1.03899  0.57659  1.06887  0.65538  0.94035
p1=0.5 60 040492 059336  0.36330  0.63033  0.30486  0.68415 0.39648  0.61015
=12 0.92707  1.40443  0.95132  1.39286  0.97482  1.38212  1.04637 1.26423
B.=1.3 0.92686  1.60174  0.97658  1.57536  1.02332  1.55216  1.10304  1.38710
X=0.6 0.40689  0.84706  0.35996  0.91397  0.30124  0.99298 0.39424  0.81992
a1 =07 0.60376 ~ 0.78431  0.58726  0.80387  0.56731  0.82688 0.61911 0.76362
B1=0.9 0.70730  1.07025  0.70135  1.08582  0.69533  1.10150 0.76818  0.99274
M=08 0.65056  0.96103  0.63694  0.98241  0.62183  1.00533 0.68869  0.90872
p1=0.5 100 0.42651  0.57247  0.39477  0.60143  0.35021  0.64323  0.41932  0.58467
=12 0.99237  1.36684  1.01121  1.35573  1.02913  1.34556  1.08638  1.25964
B2=1.3 1.01546 1.54195 1.05327 1.51821 1.08808 1.49754  1.15436 1.37902
X2 =0.6 0.44422  0.78809  0.40385  0.84089  0.35233  0.90497 0.43965 0.76886
a1 =07 0.65825  0.73937  0.65061  0.74763  0.64141  0.75743  0.66555  0.73098
B.=0.9 0.81616  0.97934  0.81263  0.98480  0.80890  0.99047  0.84491  0.94715
M=08 0.73168  0.87063  0.72434  0.87954  0.71609  0.88935 0.75059  0.84889
p1=0.5 500 046727 053254  0.45346 054579  0.43403 056467  0.46347  0.53733
ax=12 1.11097 1.28092 1.11904 1.27442 1.12651 1.26852 1.15463 1.23446
B2=1.3 1.17699 1.41452 1.19286 1.40148 1.20703 1.39014  1.24175 1.34471
A2 =0.6 0.52544 0.68103 0.50444 0.70465 0.47717 0.73453  0.52729  0.67443
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Table 5 95% Cls of TLMM under UP with 20% Censoring
Parameter Size  Loss Functions
n SELF PLF WBLF GELF
a1 =0.7 0.47488 0.91232 0.44080 0.96424 0.40037 1.02272  0.50460  0.85171
B1=0.9 0.45004 1.27381 0.44684 1.32748 0.44912 1.37716  0.57962 1.06593
=08 0.37543  1.27898  0.36639  1.35112  0.36518  1.41794  0.45051  1.08568
p1=0.5 20 030091  0.67062  0.21002  0.74302  0.07951  0.85539  0.29465  0.70817
az=12 0.69830 155291  0.74587  1.54711  0.79559 153995  0.90840  1.28119
B2=13 0.60022 1.79437 0.69432 1.77649 0.79193 1.75753  0.91087 1.37818
2=0.6 0.14238  1.09160  0.06845  1.25753  0.00508  1.43035 0.10920 0.96359
a1 =0.7 0.57164  0.82386  0.54990  0.85152  0.52372  0.88364  0.59122  0.79376
B1=09 0.64634  1.12792  0.64056  1.15063  0.63530  1.17298  0.72439  1.02089
M =08 0.54464 1.07198 0.52714 1.11172 0.50891 1.15249  0.60205  0.97404
p1=0.5 60 038991  0.60126  0.34230  0.64298  0.27520  0.70423  0.38161  0.61996
=12 0.92071  1.43091  0.94811  1.41787  0.97460  1.40583  1.04624  1.28112
B.=1.3 0.90792  1.62525  0.96188  1.59759  1.01278 157326  1.09372  1.39593
X=0.6 0.33197  0.88101  0.27217  0.97275 0.19770  1.08002 0.32234  0.83328
a1 =07 0.60105  0.79620  0.58373  0.81706  0.56286  0.84148  0.61691  0.77401
B1=0.9 0.70536  1.07916  0.69976  1.09492  0.69417  1.11073  0.76736  0.99942
M=08 0.60052  1.00925  0.58429  1.03893  0.56659  1.07019  0.64840  0.93698
p1=0.5 100 0.41570  0.57911  0.37970  0.61160  0.32907  0.65875 0.40825  0.59278
=12 0.98696  1.38420  1.00765  1.37215  1.02732  1.36116  1.08575  1.27042
B2=1.3 1.00040 1.55980 1.04120 1.53486 1.07886 1.51316 1.14711 1.38593
X2 =0.6 0.39171  0.81632  0.34154  0.88577  0.27744  0.96945 0.38800  0.78536
a1 =07 0.65603  0.74341  0.64785  0.75230 0.63802  0.76284  0.66380  0.73437
B.=0.9 0.81451  0.98238  0.81094  0.98799  0.80717  0.99380  0.84399  0.94924
M=08 0.70911  0.89279  0.69975  0.90490 0.68923  0.91816  0.73357 0.86341
p1=0.5 500 047488 091232  0.44080  0.96424  0.40037  1.02272  0.50460  0.85171
=12 0.45004  1.27381  0.44684  1.32748  0.44912 137716 0.57962  1.06593
B2=13 0.37543  1.27898  0.36639  1.35112  0.36518  1.41794  0.45051  1.08568
X=0.6 0.30091  0.67062  0.21002  0.74302  0.07951  0.85539  0.29465 0.70817
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A large airplane's windshield is a complicated piece of equipment with a thick upper layer and a heated layer at the
bottom with numerous layers of material. The data regarding windshield of airplane was reported by Murthy et al.
(2004). Windshield failure statistics and censored times for a certain type of Windshield are included in dataset. There
are 153 observations in the windshield data, with 65 service times of windshields that had not failed at the time of
observation and the remaining 88 as failing windshields. Based on the cause of failure, it is now assumed that the item
belongs to subpopulation-I or subpopulation-Il. It is assumed that the windshield is expected to fail in the given
circumstance due to either a heating system failure or damage to the non-structural outer layer. As a result, the data is
randomly constructed into two subpopulations utilizing probabilistic mixing p, = 0.5 in order to run the Bayesian
analysis assuming the 2-component combination of TLD. The following is a summary of the information acquired
from the above data that is required for our suggested model:

For 10% Censoring

X, =018,n; =77,1 =70, L7, x;; = 146.88,n, = 76,1, = 69, L2 x,; = 151.33

For 20% Censoring

X, =018,n; =77,13 =62, L7, x1; = 116.51,n, = 76,1, = 61, L2 x,; = 121.10

For the Windshield Failure Data, we first conduct a goodness of fit test to see if the data set under consideration
followed the TLMM. The K-S test resulted in a value of 0.08339 with a p-value of 0.953, indicating that the
aforementioned real-life data set fits the TLMM reasonably well.

Table 26 Windshield Failure Data

Subpopulation-| Subpopulation-II

0.040, 2.154, 3.595, 1.183, 3.003, 0.309, | 0.301, 2.190, 3.699, 1.244, 3.102, 1.249,
2.194, 3.779, 2.223, 3.924, 1.262, 4.035, | 3.304, 0.557, 3.483, 0.943, 2.224, 1.070,
1.360, 3.500, 1.436, 3.622, 1.124, 3.665, | 2.229, 4.121, 2.300, 4.167, 1.492, 4.240,
1.248, 2.324, 1.281, 2.349, 4.255, 1.281, | 1.580, 3.695, 1.719, 4.015, 1.794, 4.628,
2.385, 4.278, 1.303, 2.481, 4.305, 1.432, | 1.915, 4.806, 1.920, 4.881, 1.963, 5.140,
2.610, 4.376, 1.480, 2.625, 4.449, 1.505, | 1.978, 1.506, 2.640, 4.570, 2.053, 1.615,
2.632, 4.485, 1.568, 2.661, 4.602, 2.065, | 2.688, 4.663, 2.117, 1.652, 2.902, 0.140,
1.619, 2.823, 4.694, 2.137, 1.652, 2.890, | 2.163, 1.795, 2.962, 0.248, 2.240, 1.911,
0.046, 2.141, 1.757, 2.934, 0.150, 2.183, | 3.114, 0.487, 2.543, 1.914, 3.166, 0.900,
1.866, 2.964, 0.280, 2.341, 1.876, 3.000, | 2.592, 2.010, 3.376, 0.996, 2.670, 2.038,
0.313, 2.435, 1.899, 3.103, 0.389, 2.464, | 3.385, 1.003, 2.717, 2.085, 3.443, 1.010,
1.912, 3.117, 0.622, 2.560, 1.981, 3.344, | 2.819, 2.820, 2.097, 3.478, 1.092, 2.878,
0.952, 2.600, 2.089, 3.467, 1.085 2.135, 3.578, 1.152, 2.950

Findings are as follows:
e By comparing the performance of BEs, in terms of LFs under the UP and IP, Tables 27-30 shows that the
PRs in majority of cases under GELF are smaller for the unknown parameters as compared to those under
SELF, PLF and WBLF.

e We considered 10% and 20% censoring rates and by comparing the findings of 10% and 20% censored data,
one can see that more precise results have been obtained in case of 10% censored data as compared to 20%
censored data.

e The PRs for 10% censored data are smaller than the PRs for 20% censored data. Also, the trend of the
intervals presented in Tables 27-30 shows that the width of intervals under the GP is narrower as compared
to the width of the intervals under the UP which reveals that BEs under the GP are more likely to be precise
as compared to the BEs under the UP.
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Table 27 BEs and PRs of TLMM under UP

Parameters Loss Functions

SELF PLF WBLF GELF
10% Censoring
a, 147422  (0.01298) 1.47862 (0.00879) 1.48303  (0.00594) 1.46672 (0.00178)
B 0.88409  (0.00760) 0.88838  (0.00858) 0.89269  (0.00963) 0.87679 (0.00288)
A 0.80726  (0.00326) 0.80928  (0.00404) 0.81130  (0.00498) 0.80354 (0.00165)
D1 0.50000 (0.00182) 0.49818 (0.00364) 0.49637  (0.00732) 0.50329 (0.00234)
a, 116329  (0.01058) 1.16783  (0.00907) 1.17238 (0.00775) 1.15586 (0.00220)
B 1.26587  (0.02009) 1.27378 (0.01582) 1.28174  (0.01238) 1.25276 (0.00358)
Ay 0.62686  (0.00639) 0.63193  (0.01015) 0.63705  (0.01600) 0.61659 (0.00609)
20% Censoring
a, 147412  (0.01406) 1.47888 (0.00952) 1.48365 (0.00643) 1.46599 (0.00193)
B 0.88331  (0.00843) 0.88807 (0.00952) 0.89286  (0.01069) 0.87524 (0.00319)
A 0.80811  (0.00442) 0.81084  (0.00546) 0.81357  (0.00672) 0.80307 (0.00224)
D1 0.50005 (0.00205) 0.49799  (0.00411) 0.49595  (0.00826) 0.50376 (0.00264)
a, 1.16604  (0.01109) 1.17079 (0.00949) 1.17555  (0.00809) 1.15821 (0.00231)
B2 1.26643  (0.02203) 1.27510 (0.01734) 1.28383  (0.01355) 1.25205 (0.00393)
Ay 0.62634 (0.00751) 0.63231 (0.01194) 0.63834 (0.01879) 0.61434 (0.00712)
Table 28 95% Cls of TLMM under UP
Parameters  Loss Functions
SELF PLF WBLF GELF
10% Censoring
a, 1.25094 1.69751 1.29485 1.66238 1.33202 1.63404  1.38407  1.54937
B 0.71321 1.05497 0.70686 1.06989 0.70034 1.08503  0.77155  0.98202
M 0.69531 0.91920 0.68476  0.93379 0.67297 0.94963  0.72390  0.88319
D1 0.41647 0.58354 0.37994  0.61642 0.32870 0.66405  0.40851  0.59808
a; 0.96173 1.36485 0.98113 1.35452 0.99979 1.34497  1.06402  1.24770
B2 0.98809 1.54366 1.02727 1.52029 1.06366 1.49982  1.13547  1.37005
Ay 0.47017 0.78354 0.43443  0.82943 0.38910 0.88500  0.46369  0.76949
20% Censoring
a, 1.24172 1.70651 1.28762 1.67013 1.32651 1.64080 1.37999  1.55199
b1 0.70336 1.06327 0.69686 1.07929 0.69022 1.09550  0.76455  0.98593
M 0.67781 0.93840 0.66601  0.95566 0.65288 0.97427  0.71035  0.89579
p1 0.41133  0.58876 0.37240  0.62358 0.31780 0.67410  0.40304  0.60447
a, 0.95963 1.37245 0.97983 1.36174 0.99925 1.35185  1.06391  1.25252
B2 0.97549 1.55737 1.01701 1.53319 1.05566 151200 1.12919  1.37490
A, 0.45647 0.79622 0.41817  0.84645 0.36968 0.90699  0.44899  0.77968
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Table 29 BEs and PRs of TLMM under GP with
(ai, by, ay, by, ¢y, dy, 5, dy, €4, €5) =(0.5,0.5, 0.8, 1.0, 0.4, 0.3, 1.5, 2.0, 2.0, 2.5)

Parameters Loss Functions

SELF PLF WBLF GELF
10% Censoring
a, 146613  (0.01250) 1.47038 (0.00851) 1.47465 (0.00578) 1.45898 (0.00169)
B 0.87934  (0.00743) 0.88355  (0.00843) 0.88778 (0.00951) 0.87228 (0.00279)
A 0.81886  (0.00296) 0.82066  (0.00361) 0.82247  (0.00439) 0.81539 (0.00154)
D1 0.50178  (0.00182) 0.49996  (0.00363) 0.49815 (0.00728) 0.50509 (0.00236)
a, 1.15599  (0.00999) 1.16030 (0.00862) 1.16463  (0.00742) 1.14907 (0.00204)
B 1.23623  (0.01719) 1.24317 (0.01386) 1.25014  (0.01112) 1.22557 (0.00289)
Ay 0.65630  (0.00394) 0.65930  (0.00599) 0.66231  (0.00907) 0.64898 (0.00439)
20% Censoring
a, 1.46630 (0.01359) 1.47093 (0.00926) 1.47557  (0.00628) 1.45852 (0.00184)
B 0.87882  (0.00826) 0.88351  (0.00937) 0.88822  (0.01058) 0.87098 (0.00309)
A 0.82155  (0.00402) 0.82400  (0.00489) 0.82645 (0.00592) 0.81682 (0.00210)
D1 0.50203  (0.00205) 0.49999  (0.00410) 0.49794  (0.00821) 0.50578 (0.00266)
a, 1.16128  (0.01074) 1.16589  (0.00923) 1.17053  (0.00790) 1.15376 (0.00222)
B2 1.23571  (0.01903) 1.24339 (0.01535) 1.25111 (0.01231) 1.22392 (0.00320)
Ay 0.65852  (0.00478) 0.66214  (0.00724) 0.66578  (0.01090) 0.64965 (0.00531)
Table 30 95% Cls of TLMM under GP with
(aq, by, ay, by, c1,d4, 5, dy, €4, €)= (0.5,0.5, 0.8, 1.0, 0.4, 0.3, 1.5, 2.0, 2.0, 2.5)
Parameters Loss Functions
SELF PLF WBLF GELF
10% Censoring
a, 1.24703 1.68522 1.28957 1.65119 1.32564 1.62365 1.37834  1.53961
B 0.71043 1.04825 0.70364 1.06347 0.69661 1.07896 0.76881  0.97575
M 0.71224 0.92548 0.70290 0.93842 0.69255 0.95239  0.73843  0.89235
D1 0.41817 0.58538 0.38183 0.61810 0.33093 0.66538  0.40992  0.60026
a; 0.96013 1.35185 0.97830 1.34230 0.99582 1.33343  1.06053  1.23761
B2 0.97929 1.49317 1.01240 1.47393 1.04345 1.45682  1.12013  1.33101
Ay 0.53324 0.77936 0.50756 0.81103 0.47565 0.84897 0.51908  0.77887
20% Censoring
aq 1.23779 1.69481 1.28236 1.65949 1.32022 1.63092  1.37442  1.54262
b1 0.70069 1.05695 0.69374 1.07327 0.68660 1.08984  0.76196  0.97999
A 0.69727 0.94583 0.68698 0.96101 0.67562 0.97727 0.72690 0.90674
D1 0.41323 0.59084 0.37452 0.62545 0.32032 0.67557  0.40460  0.60696
a, 0.95812 1.36444 0.97756 1.35423 0.99628 1.34478  1.06138  1.24614
B 0.96535 1.50608 1.00055 1.48623 1.03367 1.46855  1.11300 1.33484
A, 0.52300 0.79404 0.49537 0.82891 0.46111 0.87045  0.50677  0.79252
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4  Conclusion

We considered the Transmuted Lomax Mixture Model Bayesian Analysis using IP and NIP under various LFs. Based
on the characteristics of the posterior distribution, we draw the conclusion that IP performs roughly equally to NIP
and has lower PR. In terms of the selection of LF, it is clear from the information supplied that the GELF is preferable
to other symmetrical LFs (based on PR). One trend emerged: PRs decreased as sample size increased. Be aware that
PRs earned using the SELF are likewise smaller, placing them second. Future extensions of this work to 3-component
analysis are possible, and a single component analysis of the Transmuted Lomax distribution using the Metropolis
hasting algorithm within a Gibbs sampler is an option. We also used Lindley's approximation to evaluate BEs and
their associated PRs, although it would be interesting to compare this method with MCMC and the quadrature method.
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