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Abstract  

         The current paper presented new two-parameter life processes distribution, the Marshall-Olkin Pranav 

(MOEP) distribution. This study combines the Marshall-Olkin method with the Pranav distribution to produce a 
more accessible and flexible model for data survival techniques. Some of its critical statistical features are presented 

in this study. For instance, we mentioned its survival, hazard, reversed hazard, and cumulative hazard rate function. 

Then we discussed its Moment generating functions, The characteristic function, Incomplete moments, R`enyi and 

Entropies, and stochastic orderings. The research utilized maximization of chance in estimating parameters. These 

tests are done through simulations to achieve the desired results. With an assurance that the combined model has 

larger applications, such as in the strength of airplane glass and survival data set, the two real-world examples are 

given to explain the great possibility and validity of the extended distribution. These results demonstrate the 

usefulness of the proposed distribution and the need for more tilt parameters. 

 

 

Key Words: Marshall-Olkin family of distributions; Pranav distribution; Stochastic ordering; Maximum 

likelihood, Quantile; Incomplete moments; Generating function.  

 

1. Introduction  

      Developing classical distributions is as geriatric as statistics itself, and it has long been regarded as beneficial as 

many other valuable issues. These inferences began with the addition of new location, scale, or shape factors. This 

statistics case has concentrated in recent years, and several new generalized classes of distributions have been 

presented.  

      One of the main goals of offering and developing (models or classes) is to illustrate how the lifespan phenomenon 

arises in domains like statistics, probability, operation research, management science, medical, computer science, 

insurance, physics, engineering, biology, industry, communications, life-testing, Etc. The extended classes of 

distributions of modern distribution theory have been introduced using various methods. For instance, adding an extra 

parameter to a two-parameter Weibull distribution was proposed by Mudholkar and Srivastava (1993). Shaw and 

Buckley (2009) pioneered yet another well-known technique including a parameter in a family of distributions. Other 
authors have used it to extend notable distributions in recent years. Granzotto et al. (2017) introduced the Cubic 

Transmutation method as a new way of producing distributions. Rahman et al. (2018) have presented a general family 

of transmuted distributions. Kumaraswamy (1980) proposed the Kumaraswamy distribution, a two-parameter 

distribution on (0,1). Eugene et al. (2002) suggested the beta-generated technique, which develops, beta-produced 

distributions using the beta distribution with parameters α and λ as the generator. Mahdavi and Kundu (2017) proposed 

Alpha Power Transformation for presenting new statistical distributions. Ahmad (2020) recently introduced the 

Zubair-G family, a novel method for creating new distributions using the CDF. Marshall and Olkin (1997) pioneered 

a straightforward way of adding a single parameter to a family of distributions. If 𝑄(𝑥) is the cumulative distribution 
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function (CDF) and 𝑄̅(𝑥) = 1 − 𝑄(𝑥) is the survival rate function (SRT), then the SRF of the Marshall-Olkin (MO) 

family is as follows: 

𝐹̅(𝑥, 𝜗) =
𝜆𝑄̅(𝑥;𝜗)

1−(1−𝜆)𝑄̅(𝑥;𝜗)
                              (1) 

 

Where  ϑ the parameters of the original distribution. An original distribution can be obtained with λ = 1. The 

parameter λ is generally referred to as the "tilt parameter". The probability density function of the family developed 

by Marshall Olkin is: 

𝑓(𝑥, 𝜗) =
𝜆𝑞(𝑥)

[1−(1−𝜆)𝑄̅(𝑥)]2,   −∞ < 𝑥 < ∞, 𝜆 > 0       (2) 

KK (2018) introduces a distribution with only one parameter, known as the Pranav distribution, based on its 

probability density function  

𝑞(𝑥; 𝜃) =
𝜃4

𝜃4+6
(𝜃 + 𝑥3)𝑒−𝜃𝑥; 𝑥 > 0 , 𝜃 > 0.           (3) 

According to Shukla, the probability distribution function (PDF) is a blend of two distributions: the exponential 

distribution with a scale parameter and the gamma distribution with a scale parameter and shape parameter 4. The 

following is its cumulative distribution function:  

𝑄(𝑥; 𝜃) = 1 − [1 +
𝜃𝑥( 𝜃2𝑥2+3𝜃𝑥+6) 

𝜃4+6
] 𝑒−𝜃𝑥;   𝑥 > 0 , 𝜃 > 0.  (4) 

where 𝑥 > 0, 𝜃 > 0. The corresponding the survival function (SRF) is given as 

𝑄̅(𝑥; 𝜃) = [1 +
𝜃𝑥( 𝜃2𝑥2+3𝜃𝑥+6) 

𝜃4+6
] 𝑒−𝜃𝑥;  𝑥 > 0 , 𝜃 > 0.      (5) 

Several writers have adapted their strategy to expand many distributions in recent years. Cordeiro and Lemonte (2013) 

investigated the mathematical properties and applications of the Marshall-Olkin extended (MOE) Weibull distribution. 

Other instances include the Marshall-Olkin Marshall-Olkin Kappa distribution, which was introduced by Javed et al. 
(2019). The Marshall-Olkin Lindley-Log-logistic (MOLLLoG) distribution is a novel generalized distribution that 

was recently introduced by Moakofi et al. (2021). The Marshall-Olkin-odd power generalized Weibull (MO-OPGW-

G) distribution is introduced by Chipepa et al. (2022) as a novel family of distributions. 

In this paper, we develop the Pranav model using the (MO) approach. The primary reason for developing the new 
model is that it provides many additional features. Also, its pdf and HRF are simple, containing only two parameters. 

Furthermore, the splendor of the proposed model lies in its ability to fit a wide range of real data sets. Consequently, 

we introduce this model, hoping it will deliver a more accurate fit in specific applicable contexts than other Marshall-

Olkin models. 

        Following is a summary of the paper's outline. In Section 2, the statistical functions are associated with the 

presented distribution. Section 3 examines the statistical properties. Section 4 offers a maximum likelihood estimation 

of the unknown parameters and a simulation approach. In Section 5, we discuss applications of the newly produced 

model. The final section of the paper discusses the summary. 

2. The suggested model  

     This section proposes a new distribution, namely, the Marshal-Olkin Pranav distribution (MOEP) distribution. 

By using two Equations (1) and (5), the SRF of the MOEP model is given by  
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𝑆𝑅𝐹(𝑥; 𝜆, 𝜃) =
𝜆𝑒−𝜃𝑥[(𝜃4+6)+𝜃𝑥(𝜃2𝑥2+3𝜃𝑥+6)]

(𝜃4+6)−(1−𝜆)𝑒−𝜃𝑥[(𝜃4+6)+𝜃𝑥(𝜃2𝑥2+3𝜃𝑥+6)]
   (6) 

Also, the cumulative (CDF) and density PDF function of the Marshall-Olkin Pranav distribution, respectively given 

as:  

𝐹(𝑥; 𝜆, 𝜃) = 1 − SRF(𝑥; 𝜆, 𝜃) = 1 −
𝜆𝑄̅(𝑥)

1 − (1 − 𝜆)𝑄̅(𝑥)
=

1 − 𝑄̅(𝑥) + 𝜆𝑄̅(𝑥) − 𝜆𝑄̅(𝑥)

1 − (1 − 𝜆)𝑄̅(𝑥)
=

1 − 𝑄̅(𝑥)

1 − (1 − 𝜆)𝑄̅(𝑥)

=
𝑄(𝑥; 𝜃)

1 − (1 − 𝜆)𝑄̅(𝑥)
 

By substituting (4) and (5) into 
𝑄(𝑥;𝜃)

1−(1−𝜆)𝑄̅(𝑥)
, we obtained the CDF of the proposed MOEP model as 

𝐹(𝑥; 𝜆, 𝜃) =
(𝜃4+6)−[(𝜃4+6)+𝜃𝑥( 𝜃2𝑥2+3𝜃𝑥+6)]𝑒−𝜃𝑥

(𝜃4+6)−(1−𝜆)[(𝜃4+6)+𝜃𝑥( 𝜃2𝑥2+3𝜃𝑥+6)]𝑒−𝜃𝑥      (7 

The associated PDF of the suggested MOEP model is provided as 

𝑓(𝑥; λ, θ) =
𝑑

𝑑𝑥
𝐹(𝑥; 𝜆, 𝜃) =

𝑑

𝑑𝑥
[

𝑄(𝑥; 𝜃)

1 − (1 − 𝜆)𝑄̅(𝑥)
] =

𝜆𝑞(𝑥; 𝜃)

[1 − (1 − 𝜆)𝑄̅(𝑥)]2
 

By substituting (3) and (5) into 
𝜆𝑞(𝑥;𝜃)

[1−(1−𝜆)𝑄̅(𝑥)]2, we obtained the PDF of the proposed MOEP model 

𝑓(𝑥; λ, θ) =
λθ4(θ4+6)(θ+𝑥3)𝑒−θ𝑥

[(θ4+6)−(1−λ)[(θ4+6)+θ𝑥( θ2𝑥2+3θ𝑥+6)]𝑒−θ𝑥]
2     (8) 

 

Where −∞  < 𝑥 < ∞, λ > 0, θ > 0.  

Fig 1. (d) represents cumulative function at different parameter values. Fig. 1(a), (b), and (c) depict the manners of 

the density function. It shows that the skewness of the density carries a smaller value as θ decreases, while the 

distribution exhibits unimodal, positively skewed behavior as λ increases.  
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Figur1: Density function (a), (b) and (c) and cumulative function (d) at different parameter values using R 

programming. 

The corresponding hazard rate function of MOEP distribution is given as  

ℎ𝑟𝑓(𝑥; 𝜆, 𝜃) =
𝑓(𝑥)

SRF(x)
=

𝜆𝑞(𝑥)

[1 − (1 − 𝜆)𝑄̅(𝑥)]2
×

1 − (1 − 𝜆)𝑄̅(𝑥)

𝜆𝑄̅(𝑥)
=

𝑞(𝑥)

𝑄̅(𝑥)[1 − (1 − 𝜆)𝑄̅(𝑥)]
 

By substituting (3) and (5) , we obtained the ℎ𝑟𝑓(𝑥; 𝜆, 𝜃)  of the proposed MOEP model 

=
𝜃4(𝜃 + 𝑥3)𝑒−𝜃𝑥(𝜃4 + 6)2

(𝜃4 + 6) [(𝜃4 + 6) − (1 − 𝜆)𝑒−𝜃𝑥[(𝜃4 + 6) + 𝜃𝑥(𝜃2𝑥2 + 3𝜃𝑥 + 6)]][(𝜃4 + 6) + 𝜃𝑥(𝜃2𝑥2 + 3𝜃𝑥 + 6)]𝑒−𝜃𝑥
 

ℎ𝑟𝑓(𝑥; 𝜆, 𝜃) =
𝜃4(𝜃4+6)(𝜃+𝑥3)

[(𝜃4+6)−(1−𝜆)𝑒−𝜃𝑥[(𝜃4+6)+𝜃𝑥(𝜃2𝑥2+3𝜃𝑥+6)]][(𝜃4+6)+𝜃𝑥(𝜃2𝑥2+3𝜃𝑥+6)]
     (9) 

The reversed rate hazard function of the MOEP distribution is given as  

𝑅ℎ𝑟 =
𝒇(𝒙)

𝑭(𝒙)
=

𝝀 𝒒(𝒙)

𝑸(𝒙)[𝟏−(𝟏−𝝀)𝑄̅(𝑥)]
=

𝝀 𝜃4(𝜃4+6)(𝜃+𝑥3)𝑒−𝜃𝑥

[(𝜃4+6)−(1−𝜆)𝑒−𝜃𝑥[(𝜃4+6)+𝜃𝑥(𝜃2𝑥2+3𝜃𝑥+6)]][(𝜃4+6)−𝑒−𝜃𝑥[(𝜃4+6)+𝜃𝑥(𝜃2𝑥2+3𝜃𝑥+6)]]
          

(10) 

The cumulative hazard rate function of the MOEP is given as  

𝑐ℎ𝑟𝑓(𝑥; 𝜆, 𝜃) = −ln [
𝜆 𝑄̅(𝑥)

𝟏−(𝟏−𝝀)𝑄̅(𝑥)
] = − ln [

𝜆𝑒−𝜃𝑥[(𝜃4+6)+𝜃𝑥(𝜃2𝑥2+3𝜃+6)]

(𝜃4+6)−(1−𝜆)𝑒𝜃𝑥[(𝜃4+6)+𝜃𝑥(𝜃2𝑥2+3𝜃𝑥+6)]
]                 (11) 

Figure 2. (a) shows the survival rate function and (b) represents a reversed hazard rate function. Fig 2. (c) and (d) 

depict the behavior of the hazard rate function at different parameter values.  

 

Figure 2: The survival rate plot (a), Plot of the reversed hazard rate function (b), hazard rate function (c) and 

(d) at different parameter values using R software. 
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2.1 The linear representation 

To easily comprehend the possessions of the MOEP distribution, it is required to obtain the explicit term of the 

distribution. For this goal, we use some expansion functions that follow the generalized binomial theorem:  

(𝑏 − 𝑧)−𝑛 = ∑(−1)𝛿 (
𝑛 + 𝛿 − 1

𝛿
) 𝑧𝛿𝑏−(𝑛+𝛿)

∞

𝛿=0

 

(𝑏 + 𝑧)𝑛 = ∑ (
𝑛

𝛿
) 𝑏(𝑛−𝛿)𝑧𝛿

𝑛

𝛿=0

,    𝑛 > 0 

Then, 

[(𝜃4 + 6) − (1 − 𝜆)[(𝜃4 + 6) + 𝜃𝑥( 𝜃2𝑥2 + 3𝜃𝑥 + 6)]𝑒−𝜃𝑥]
−2

=   ∑ ∑ ∑ ∑ 𝑃𝑘𝑖𝑗𝛿

𝑗

𝛿=0

𝑖

𝑗=0

𝑘

𝑖=0

∞

𝑘=0

𝑥𝑖+𝑗+𝛿𝑒−𝜃𝑥𝑘  

Where 𝑃𝑘𝑖𝑗𝛿 = (𝑘+1
𝑘

)(𝑘
𝑖
) (𝑖

𝑗
) (𝑗

𝛿
)(−1)𝑘6𝑖−𝑗3𝑗−𝛿(1 − 𝜆)𝑘(𝜃4 + 6)−(𝑖+2)𝜃𝑖+𝑗+𝛿 

Then, the pdf of the MOP density can be expressed as:  

𝑓(𝑥; 𝜆, 𝑥) = ∑ ∑ ∑ ∑ 𝑃𝑘𝑖𝑗𝛿
𝑗
𝛿=0 𝜆𝜃4(𝜃4 + 6)𝑖

𝑗=0 (𝜃 + 𝑥3)𝑥𝑖+𝑗+𝛿𝑘
𝑖=0 𝑒−𝜃𝑥(𝑘+1)∞

𝑘=0         (12)       

 

Thus, Equation (12) is the linear expression of (8).  

3. Statical Properties 

This section contains unique phrases for some of the new distribution’s most important attributes:  

3.1 Moment generating functions (mgf) 

The MOEP mgf for a random variable X is defined as  

𝑀𝑋(𝑡) = ∑ ∑ ∑ ∑ 𝑃𝑘𝑖𝑗𝛿

𝑗

𝛿=0

𝑖

𝑗=0

𝑘

𝑖=0

∞

𝑘=0

𝜆𝜃4(𝜃4 + 6) ∫ (𝜃 + 𝑥3)𝑥𝑖+𝑗+𝛿𝑒−𝜃𝑥(𝑘+1)+𝑡𝑥𝑑𝑥
∞

0

 

𝑀𝑋(𝑡) = 𝐶0[𝜃(𝜃(𝑘 + 1) + 𝑡)−(𝑖+𝑗+𝛿+1)Γ(𝑖 + 𝑗 + 𝛿 + 1) + (𝜃(𝑘 + 1) + 𝑡)−(𝑖+𝑗+𝛿+1)Γ(𝑖 + 𝑗 + 𝛿 + 4)]                                       

(13)                                                                                                                    

Where 𝐶0 = ∑ ∑ ∑ ∑ 𝑃𝑘𝑖𝑗𝛿
𝑗
𝛿=0

𝑖
𝑗=0

𝑘
𝑖=0

∞
𝑘=0 𝜆𝜃4(𝜃4 + 6) 

3.2 The characteristic function  
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𝜑𝑋 = 𝐸(𝑒𝑧𝑡𝑥) = ∑
(𝑧𝑡)𝑟

𝑟!
𝐸[𝑥𝑟]

∞

𝑟=0

 

𝜑𝑋 = 𝐶1 [𝜃(𝜃(𝑘 + 1))
−(𝑖+𝑗+𝛿+𝑟+1)

Γ(𝑖 + 𝑗 + 𝛿 + 𝑟 + 1) + (𝜃(𝑘 + 1))
−(𝑖+𝑗+𝛿+𝑟+4)

Γ(𝑖 + 𝑗 + 𝛿 + 𝑟 + 4)]                                                       

(14)                                                                                                                  

Where 𝐶1 = ∑ ∑ ∑ ∑ ∑
𝑧𝑡𝑟

𝑟!
𝑃𝑘𝑖𝑗𝛿

∞
𝑟=0

𝑗
𝛿=0

𝑖
𝑗=0

𝑘
𝑖=0

∞
𝑘=0 𝜆𝜃4(𝜃4 + 6). 

3.3 Incomplete moments 

𝜓 = ∫ 𝜈𝑟𝑓(𝜈)𝑑𝜈
𝑥

0
= ∑ ∑ ∑ ∑ 𝑃𝑘𝑖𝑗𝛿

𝑗
𝛿=0

𝑖
𝑗=0

𝑘
𝑖=0

∞
𝑘=0 𝜆𝜃4(𝜃4 + 6) ∫ (𝜃 + 𝜈3)𝜈𝑖+𝑗+𝛿𝑒−𝜃𝜈(𝑘+1) 𝑑𝜈

𝑥

0
         

= ∑ ∑ ∑ ∑ 𝑃𝑘𝑖𝑗𝛿𝜆𝜃4(𝜃4 + 6)(𝜃(𝑘 + 1))
−(𝑖+𝑗+𝛿+𝑟+1)𝑗

𝛿=0
𝑖
𝑗=0

𝑘
𝑖=0

∞
𝑘=0 Γ(𝑖 + 𝑗 + 𝛿 + 𝑟 + 1, 𝜃(𝑘 + 1)𝑥)                                                       

(15)                                                                                                             

Where Γ(𝑎, 𝑥) is incomplete gamma functions. 

3.4 R ́enyi Entropies  

A random variable’s entropy is a measure of its uncertainty fluctuation. The MOEP distribution’s R ényi entropy is 

calculated as follows:  

𝐼𝑅𝐸(𝑋) = (1 − 𝑎)−1 log{∫ ∑ ∑ ∑ ∑ [𝑃𝑘𝑖𝑗δλθ4(θ4 + 6)]
𝑎

(θ + 𝑥3)𝑎𝑥𝑎(𝑖+𝑗+δ)𝑒−𝑎(θ𝑥(𝑘+1))𝑗
δ=0

𝑖
𝑗=0

𝑘
𝑖=0

∞
𝑘=0

∞

0
}  

= (1 − 𝑎)−1log {   𝐶 2[𝑎(θ𝑥(𝑘 + 1))]
−(3ζ+(𝑖+𝑗+δ)𝑎+1)

  Γ(3 ζ + (𝑖 + 𝑗 + δ)𝑎 + 1)) }      (16) 

Where  𝐶2 = ∑ ∑ ∑ ∑ [𝑃𝑘𝑖𝑗𝛿𝜆𝜃4(𝜃4 + 6)]
𝑎

∑ (𝑎
𝜁
)𝑎

𝜁=0
𝑗
𝛿=0 𝜃𝑎−𝜁𝑖

𝑗=0
𝑘
𝑖=0

∞
𝑘=0  

3.5 Stochastic orderings  

If the following ordering holds, X is said to be smaller than Y, if X and Y are independent random variables with 

CDFs Fx and Fy, respectively. (see Shaked and Shanthikumar (2007)):  

• if 𝐹𝑋(𝑥) ≥ 𝐹𝑌(𝑥)for x, then (𝑋  ≤  𝑠𝑡  𝑌) Stochastic order. 

• if 𝑓𝑋(𝑥)/𝑓𝑌(𝑥) is decreasing in x, then (𝑋 ≤𝑙𝑟 𝑌) Likelihood ratio order.  

• if ℎ𝑋(𝑥) ≥ ℎ𝑌(𝑥) for all x, then (𝑋 ≤ℎ𝑟 𝑌) Hazard rate order. 

• if 𝑚𝑋(𝑥) ≥ 𝑚𝑌
(𝑥) for all x, then (𝑋 ≤𝑚𝑟𝑙 𝑌) Mean residual life order.  

Theorem 1. Assume 𝑋  ∼ MOP (𝜆1, 𝜃1) and 𝑌 ∼ 𝑀𝑂𝑃(𝜆2, 𝜃2) . If 𝜆1  >  𝜆2,  𝜃1  > 𝜃2, then   

𝑋 ≤𝑙𝑟 𝑌, 𝑋 ≤ℎ𝑟  𝑌, 𝑋 ≤𝑚𝑟𝑙 𝑌, 𝑎𝑛𝑑 𝑋  ≤  𝑠𝑡  𝑌. 

Proof  

It is sufficient to show 
𝑓𝑋(𝑥)

𝑓𝑌(𝑥)
 is a decreasing function of x, the likelihood ratio  
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𝑓𝑋(𝑥)

𝑓𝑌(𝑥)
=

𝜆1𝜃1
4(𝜃1

4+6)(𝜃1+𝑥3)𝑒−𝜃1𝑥

[(𝜃1
4+6)−(1−𝜆1)[(𝜃1

4+6)+𝜃1𝑥( 𝜃1
2𝑥2+3𝜃1𝑥+6)]𝑒−𝜃1𝑥]

2 ×

                                                  
[(𝜃2

4+6)−(1−𝜆2)[(𝜃2
4+6)+𝜃2𝑥( 𝜃2

2𝑥2+3𝜃2𝑥+6)]𝑒−𝜃2𝑥]
2

𝜆2𝜃2
4(𝜃2

4+6)(𝜃2+𝑥3)𝑒−𝜃2𝑥     (17)                                                    

Therefore,  

𝑑

𝑑𝑥
log

𝑓𝑋(𝑥)

𝑓𝑌(𝑥)
=

3𝑥

𝜃1+𝑥3 − 𝜃1 −
3𝑥

𝜃2+𝑥3 + 𝜃2 −
2(1−𝜆1)𝜃1

4𝑒−𝜃1𝑥(𝜃1+𝑥3)

(𝜃1
4+6)−(1−𝜆1)[(𝜃1

4+6)+𝜃1𝑥( 𝜃1
2𝑥2+3𝜃1𝑥+6)]𝑒−𝜃1𝑥    +

                                                
2(1−𝜆2)𝜃2

4𝑒−𝜃2𝑥(𝜃2+𝑥3)

(𝜃2
4+6)−(1−𝜆2)[(𝜃2

4+6)+𝜃2𝑥( 𝜃2
2𝑥2+3𝜃2𝑥+6)]𝑒−𝜃2𝑥 < 0   (18)                                                    

Thus, 
𝑓𝑋(𝑥)

𝑓𝑌(𝑥)
 is decreasing in x and hence 𝑋 ≤𝑙𝑟 𝑌 . In the same way, we can deduce that for  𝑋 ≤ℎ𝑟 𝑌, 𝑋 ≤𝑚𝑟𝑙 𝑌, and 

𝑋 ≤𝑠𝑡 𝑌. 

4. Maximum likelihood estimation  

Assume that random variable X belongs to the observed distribution and that the parameter vector (𝜃, 𝜆)𝑇 has size n. 

The sample likelihood function is calculated in the following way:  

∏ 𝑓(𝑥; 𝜃, 𝜆)𝑛
𝑖=0 == 𝜆𝑛𝜃4𝑛(𝜃4 + 6)𝑛 ∏

(𝜃+𝑥3)𝑒−𝜃𝑥

[(𝜃4+6)−(1−𝜆)[(𝜃4+6)+𝜃𝑥( 𝜃2𝑥2+3𝜃𝑥+6)]𝑒−𝜃𝑥]
2

𝑛
𝑖=0        (19) 

The log-likelihood function is 

𝐿 = 𝑛𝑙𝑜𝑔(𝜆) + 4𝑛𝑙𝑜𝑔(𝜃) + 𝑛𝑙𝑜𝑔(𝜃4 + 6) + ∑ 𝑙𝑜𝑔(𝜃 + 𝑥3) − 𝜃𝑥 − 2 ∑ 𝑙𝑜𝑔 Λ   (20) 

Where Λ = (𝜃4 + 6) − (1 − 𝜆)𝑒−𝜃𝑥[(𝜃4 + 6) + 𝜃𝑥( 𝜃2𝑥2 + 3𝜃𝑥 + 6)].  

To obtain the ML estimates of the unknown parameters of the Marshall-Olkin-Pranav distribution, we must 

maximize the log-likelihood function given in Eq. (19). We do this by taking the first derivative of the log-

likelihood equation concerning the parameters and setting them to zero.  

          
𝜕𝐿

𝜕𝜆
=

𝑛

𝜆
−

2𝑒−𝑡𝑥[(𝜃4+6)+𝜃𝑥(𝜃2𝑥2+3𝜃𝑥+6)]

Λ
                            (21)                                                          

        
𝜕𝐿

𝜕𝜃
=

4𝑛

𝜃
+

4𝑛𝜃3

𝜃4+6
− 𝜃 + ∑

1

𝜃+𝑥3 − 2 ∑
𝜃3(4+(1−𝜆)𝑒−𝜃𝑥(𝜃𝑥+𝑥4−4))

Λ
         (22)   

The accurate solution of the generated ML estimator of equations (20)-(21) for unknown parameters is indeed 

impossible. As a result, it’s more practical to employ non-linear optimization algorithms like the Newton-Raphson 

algorithm to maximize the likelihood function numerically. To obtain 𝜆̂ and 𝜃, we used R’s optimum function.  

5. Application  

5.1 Simulation  

We used the Monte Carlos simulation approach with 10,000 repeats to test the performance of the Marshall-Olkin-
Pranav distribution based on the bias and mean square error of the predicted parameters of the maximum likelihood 

estimation method. The simulation is carried out in the following manner: G(x) = u/u generates data, where u is 

uniformly distributed (0, 1). The actual parameter values are assumed to be (λ =5, θ=20), (λ =20, θ=10). The 

simulation is run for the values n = 20, 150, and 200. The results of the Monte Carlos simulation study are shown in 
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Table 1. We assess biases, mean square errors (MSE), and the mean of the predicted values. These results are based 

on the anticipated first-order asymptotic theory, which signifies that bias and MSEs will drop near zero as the 

sample size increases. Table 1 shows that as sample size increases, the MSE of the ML estimators of λ and  

𝜃 reduces, and their biases decay, approaching 0. The MSE of estimated parameters rises as shape parameters 

increase. 

Table 1:  MOEP parameters estimations. 

True parameters 
Sample size parameters Mean    bias 

   MSE 

𝜆 𝜃 

5 20 20 𝜆 9.189 

 

 

 

4.189 11.116 

   𝜃 

 

21.167 1.167 5.709 

  150 𝜆 

 

5.548 0.548 1.748 

   𝜃 

 

20.301 0.301    2.117 

  200 𝜆 

 

5.266 0.266 1.349 

   𝜃 20.047 0.047 1.810 

20 10 20 𝜆 

 

75.671 55.671 137.015 
   𝜃 12.788 2.799 2.990 

  150 𝜆 

 

24.604 4.604 9.331 

   𝜃 10.619 0.619 0.891 

  200 𝜆 

 

24.417 4.417 7.961 

   𝜃 10.525 0.525 0.764 

5.2 Goodness of fit 

In this part, real-world examples are used to demonstrate the new model’s capabilities and flexibility compared to 

some other existing lifespan models. Bjerkedal et al. (1960) reported the survival periods in days of 72 guinea pigs 

infected with virulent tubercle bacilli in the first data set. The second data set contains the data from Fuller Jr et al. 

(1994) on the strength of airplane glass.  

 

Table 2: Data set for 72 guinea pigs afflicted with virulent tubercle bacilli (survival in days). 

10, 33, 44, 56, 59, 72, 74, 77, 92, 93, 96, 100, 100, 102, 105, 107,107, 108, 108, 108, 109, 112, 113, 

115, 116, 120, 121, 122, 122, 124, 130, 134, 136, 139, 144, 146, 153, 159, 160, 163, 163, 168, 171, 

172, 176, 183, 195, 196, 197, 202, 213, 215, 216, 222, 230, 231,240, 245, 251, 253, 254, 254, 278, 

293, 327, 342, 347, 361, 402, 432, 458, 555  

Table 3: data set of the strength of airplane glass. 

18.83, 20.8, 21.657, 23.03, 23.23, 24.05, 24.321, 25.5, 27.67, 29.9, 31.11, 33.2, 33.73, 33.76, 33.89, 
34.76, 35.75, 44.045, 45.29, 45.381,25.52,25.8, 26.69,26.77, 26.78,27.05, 35.91, 36.98, 37.08,37.09, 

39.59  
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Table 4: Descriptive statistics for First data set. 

Min 1st Qu. Median Mean 3rd Qu Max Skewness Kurtosis 

10.0 108.0 149.5 176.8 224.0 555.0 1.342 4.991 

 

Table 5: Descriptive statistics for Second data set. 

Min 1st Qu. Median Mean 3rd Qu Max Skewness Kurtosis 

18.83 25.51 29.90 30.81 35.83 45.38 0.405 2.286 

The descriptive statistics for all the data sets are shown in Tables 4, and 5. The MOEP distribution and the Pranav, 

quasi-Lindley, and new weighted Lindley distributions were fitted to the given datasets. The other existing models’ 

PDF and CDF functions are provided below.  

Quasi Lindley distribution by Shanker and Mishra (2013)  

𝑓(𝑥, 𝜃, 𝛽) =
𝜃(𝛽 + 𝑥𝜃)

𝛽 + 1
𝑒−𝜃𝑥 ,    𝜃, 𝛽 > 0 

𝐹(𝑥) = 1 −
1 + 𝛽 + 𝜃𝑥

𝛽 + 1
𝑒−𝜃𝑥 ,   𝜃, 𝛽 > 0 

A new weighted Lindley distribution by Asgharzadeh et al. (2016) 

𝑓(𝑥) =
𝜃2(1 + 𝛽)2(1 + 𝑥)

𝛽𝜃(1 + 𝛽) + 𝛽(2 + 𝛽)
(1 − 𝑒−𝜃𝛽𝑥)𝑒−𝜃𝑥 , 𝜃, 𝛽 > 0 

𝐹(𝑥) = 1 −
𝑒−𝜃𝑥[(1 + 𝛽)2(1 + 𝜃 + 𝜃𝑥) − [𝜃(1 + 𝛽)(1 + 𝑥) + 1]𝑒−𝛽𝜃𝑥]

𝛽𝜃(1 + 𝛽) + 𝛽(2 + 𝛽)
, 𝜃, 𝛽 > 0 

We use the log-likelihood function (2L), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), 

Consistent Akaike Information Criterion (CAIC), Hanna-Quinn Information Criterion (HQIC), and Kolmogorov-

Smirnov (K-S) quality of fit measurements to compare our model to other existing models.  

The estimated parameters and goodness of fit of two real data sets are shown in Tables 6 - 9. The AIC, BIC, CAIC, 

HQIC, K-S, and p-value of the newly constructed MOEP distribution are lower than those of the Pranav, QLD, and 

NWL distributions and are thus regarded the best-fit model, as displayed in the tables 6-9. Figures 3, and 4 depict 

the data histogram (right side) with the calculated pdf curves and represent the estimated and empirical CDF curves 
(left side). The MOEP distribution, when compared to other existing models, shows a more suitable fit, as seen in 

the figures and tables. All findings are conducted using the R language.  
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Table 6: The parameters estimate, K-S, and p-values of the fitted model using First data. 

 

 

 

 

 

 

Table 7: Statistics for (First Data set). 

 

 

 

Table 8: The parameters estimate, K-S, and p-values of the fitted model of the second data set 

 

 

Table 9 : Statistics for (Second data set). 

 

 

 

 

Model Parameters Estimates (Std.Error) K-S P-value 

𝜃 𝛽̂ 

MOP(𝜽, 𝜷) 0.016348(0.004094) 0.32051(0.25264) 0.069875 0.8735 

Pranav(𝜽, 𝜷) 0.02264(0.001331) - 0.10706 0.3812 

QLD(𝜽, 𝜷) 0.01133814(0.00126) 0.00001(0.19144) 0.16899 0.03274 

NWL(𝜽, 𝜷) 0.016865537(NaN) 0.008430701(NaN) 0.096919 0.5082 

Model -2L AIC BIC CAIC HQIC 

MOP(𝜽, 𝜷) 851.4876 855.4876 860.0409 855.6615 857.3003 

Pranav(𝜽, 𝜷) 854.5282 856.5282 858.8049 856.5853 857.4345 

QLD(𝜽, 𝜷) 858.194 862.194 866.7473 862.3679 864.0067 

NWL(𝜽, 𝜷) 851.5944 855.5944 860.1477 855.7683 857.4071 

Model Parameters Estimates (Std.Error) K-S P-value 

𝜃 𝛽̂ 

MOP(𝜽, 𝜷) 0.31537(0.0394) 73.52025(68.116) 0.14351 0.5007 

Pranav(𝜽, 𝜷) 0.12982(0.01166) - 0.25372 0.03021 

QLD(𝜽, 𝜷) 0.06491528(0.007534971) 0.00001000(NaN) 0.35861 0.0004476 

NWL(𝜽, 𝜷) 0.09588328(0.02122129) 0.00001000(0.39111114) 0.30193 0.005285 

Model -2L AIC BIC CAIC HQIC 

MOP(𝜽, 𝜷) 212.1008 216.1008 218.9688 216.5294 217.0357 

Pranav(𝜽, 𝜷) 232.7762 234.7762 236.2102 234.9141 235.2436 

QLD(𝜽, 𝜷) 252.2316 256.2316 259.0996 256.6602 257.1665 

NWL(𝜽, 𝜷) 241.3072 245.3072 248.17522 245.7358 246.2421 
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Figure 3: The fitted densities (a) and estimated CDF (b) for the first data using R software. 

 

 

Figure 4 :  The fitted densities (a) and estimated CDF(b) for the second data using R software . 

6. Conclusions  

The Marshall-Olkin technique is used in this research to create adaptable distributions for two parameters Marshall-

Olkin Pranav. It has been possible to deduce some of its helpful statistical characteristics. The suggested MOEP 

distribution’s flexibility behavior was investigated using simulation studies. The maximum likelihood technique was 

used to estimate the suggested MOEP distribution parameters, and its numerical applications were examined using 

two real data sets. The proposed MOEP distribution has superior goodness of fit for the two datasets studied than the 

Pranav, QLD, and NWL distributions. As a result, in addition to Pranav, QLD, and NWL, the MOP distribution 

might be utilized to represent real-life circumstances. Additional studies can examine other statistical properties of 

the suggested model that were not addressed in this study.  
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