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Abstract  

In this work, we suggest an analytic technique with triangular fuzzy and triangular intuitionistic fuzzy numbers to 

compute the membership functions of considerable state-executing proportion in Erlang service models. The inter-

entry rate, which is Poisson, and the admin (service) rate, which is Erlang, are both fuzzy-natured in this case, with 

𝐹𝐸𝑘 designating the Erlang probabilistic deviation with 𝑘 exponentially phase. The numeric antecedents are shown 

to validate the model's plausibility, 𝐹𝑀/𝐹𝐸𝑘/1. A contextual inquiry is also carried out, comparing individual 

fuzzy figures. Intuitionistic fuzzy queuing models that are comprehensible are more categorical than fuzzy queuing 

models. Expanding the fuzzy queuing model to an intuitionistic fuzzy environment can boost the implementation 

of the queuing model. The purpose of this study is to assess the performance of a single server Erlang queuing 

model with infinite capacity using fuzzy queuing theory and intuitionistic fuzzy queuing theory. The fuzzy queuing 

theory model's performance evaluations are reported as a range of outcomes, but the intuitionistic fuzzy queuing 

theory model provides a myriad of values. In this context, the arrival and the service rate are both triangular and 

intuitionistic triangular fuzzy numbers. An assessment is made to find evaluation criteria using a design protocol 

in which fuzzy values are kept as they are and not made into crisp values, and two statistical problems are solved 

to understand the existence of the method. 
 

Key Words: Queuing theory; Triangular fuzzy numbers; Triangular intuitionistic fuzzy numbers; Erlang service; 

Performance measures; Infinite capacity. 

 

1. Introduction  

Collaborating with fuzzy queuing theory necessitates first recognizing the real-world system of relevance, 

investigating it, and devising a mathematical model to represent it. The findings are then evaluated by examining this 

mathematical model, which purportedly pertains to the original system as well. The notions of compression and 

extrapolation are inherent in the process of developing a mathematical model; the analyzer must discard numerous 

elements that he or she feels are extraneous to the primary areas of focus. Approximations must be made in most 

circumstances when processing raw and often partial data into mathematical values that will enable the model to be 

scrutinized. It's not typical for an analyst to make endless hypotheses about the functioning of an actual system, based 

primarily on intuition and experience instead of any credible evidence that the system operates in this manner. From 

these considerations, it is reasonable to conclude that, in most contexts, assessments of parameters derived by a fuzzy 
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queuing analysis should only be regarded as approximate indications of their magnitude in the real world. As a result, 

using fuzzy queuing theory to poke holes in existing operating systems, the dimensions to improve these structures, 

and the estimated values that some of the system's controllable variables must assume to reach a satisfactory degree 

of performance are quite beneficial. 

The exponential family of probability distributions provides a lot less modelling flexibility than the Erlang family. 

When actual data does not support the significant exponential application, Erlang can provide increased functionality 

by effectively replicating reality. The relationship between Erlang and the exponential distribution with the Markovian 

property is another reason why it's beneficial in queuing analysis. 

In recent decades, there have been various attempts on the topic of fuzzy queuing. Several researchers (Buckley, 1990; 

Li and Lee, 1989; Negi and Lee, 1992; Prade, 1980) were among the first to explore fuzzy queuing systems. Kao et 

al. (1999) used a parameterized planning methodology with 𝛼-cut tactic to scrutinize the fuzzy queuing system. 

Buckley et al. (2001) showed some examples in which they used the probability theory in the fuzzy theory to optimize 

a number of servers by evaluating the timeframe between two concurrent entrances and the serving time. Addressing 

the fuzzy parametric planning technique, Chen (2005) developed a model that used the fuzzy membership function 

and took into account the fuzzy response time and fuzzy cost. Chen (2006) devised a nonlinear arithmetic mixed-

integer scheduling with state variables based on the probability hypothesis for a bunch arrival model with varying 

quantities in each group and fuzzy arrival and service times. Ritha et al. (2011) investigated the 𝑁 policy for infinite 

lines with unclear arrival and service information. The uncertainty associated with the input parameters was estimated 

using fuzzy set theory, and the model was analyzed using the triangular membership function. Using two fuzzy 

queuing models of 𝑀/𝑀/1 and 𝑀/𝐸2/1, Barak et al. (2012) investigated two models of organizing queuing systems 

and their impact on the costs of every system. They hypothesized that the rates of arrivals and the rate of service were 

ambiguous facts, as were the system expenses. They compared two realistic systems to investigate the various 

preconditions of the manufacturer's allotment in real-world queuing systems. Intuitionistic fuzzy queuing models have 

been characterized by multiple researchers, namely K.Atanavssov (1999); that publication has been the first approach 

to providing a broader and comprehensive account of intuitionistic fuzzy set theory and it is more adapted in a range 

of domains. K.Atanassov (1989) incorporated the intuitionistic fuzzy set, and he also departed from the temporal 

intuitionistic fuzzy sets. F. Ferdowsi (2019) proposed an intuitionistic fuzzy measure to handle the uncertainty where 

he used credibility measure to convert fuzzy to crisp model.  

Erlang fuzzy queuing models have been propounded by numerous researchers, namely A. Mohammed Shapique 

(2016) used the DSW algorithm to define the membership functions of the Erlang queuing model. K. Usha Prameela 

et al. (2019) utilized 𝛼 - cut method and DSW algorithmic rule with different types of fuzzy numbers to find the 

execution proportions in 𝐹𝑀/𝐹𝐸𝑘/1 queuing model. V. Ashok Kumar (2011) created the nonlinear computing 

framework to extract the membership functions of the Erlang service queuing model. S. Hanumantha Rao et al. (2016) 

studied the Erlang queuing model with 2 phases and operated 𝑁-policy using generating functions to solve steady-

state equations. S. Narayanamoorthy et al. (2020) used L-R arithmetic to solve Erlang fuzzy queuing model. In the 

intuitionistic Erlang queuing model, S. Narayanamoorthy et al. (2020) used Atanassov's extension principle and 

(𝛼, 𝛽)- cut approach. G. A. Zverkina (2021) used the convergence rate's upper bound value and those values based on 

the state of the system. Mohamed Bisher Zeina (2020) used the neutrosophic statistical interval method to compute 

the performance measures. Konstantin Kogan et al. (2023) used an Erlang queuing model to analyze software license 

demand and calculate the likelihood that an access request will be denied. 

A heuristic approach has been devised to solve Erlang queuing models using both fuzzy and intuitionistic fuzzy 

numbers without turning them into classical ones and competently retrieving the result. As a result, this paper 

introduces a new method for handling Erlang queuing problems that employ fuzzy and intuitionistic fuzzy numbers. 

That is, a straightforward approach to solving Erlang queuing issues is recommended. Performance metrics are given 

as values in queuing theory. Fuzzy queuing theory has a range of data, and intuitionistic fuzzy queuing theory provides 
a broad range of data. The performance measurements of the Erlang fuzzy queuing model are within the computed 

benchmarks of the Erlang intuitionistic fuzzy queuing model, according to the results of the investigation. 

This paper examined the intuitionistic Erlang queuing model and its applications. As far as the authors are aware, no 

prior works have discussed the contrast between fuzzy and intuitionistic fuzzy in the context of queuing theory. The 

following are the study's core elements:  

1. The novel Erlang queuing model under intuitionistic fuzzy sets is introduced. 

2. It is recommended to formulate 𝐹𝑀/𝐹𝐸𝑘/1 queue with an Erlang service rate. 
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3. A mathematical formulation is also addressed to exemplify the usability of the suggested queuing model. 

4. Graphical representations are provided to assist the decision-maker in comprehending the solution. 

The design of the article is summarised as follows: Component 2 provides the necessary definitions. Component 3 is 

where you'll find the system model. Manuals and preconceptions are displayed in component 4. A few basic theorems 

are discussed in component 5. The layout method for dealing with the current model is shown in component 6. The 
planned lining model is provided in component 7. Component 8 provides and solves a mathematical illustration to 

showcase the practicality of the suggested method. The outcomes and discourses are addressed in component 9. 

Component 10 is the penultimate component of the system. 

2. Preliminaries 

The motive of this division is to give some basic definitions, annotations, and outcomes that are used in our subsequent 

calculations. 

Definition 2.1: (Ming Ma et al. 1999) “A fuzzy set 𝐴̃ is defined on R, the set of real numbers is called a fuzzy number 

if its membership function 𝜇𝐴: 𝑅 → [0,1] has the following conditions: 

(a) 𝐴̃ is convex, which means that there exists 𝑥1, 𝑥2 ∈ 𝑅 and 𝜆 ∈ [0,1], such that𝜇𝐴(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥
𝑚𝑖𝑛{𝜇𝐴(𝑥1), 𝜇𝐴(𝑥2)} 

(b) 𝐴̃ is normal, which means that there exists an 𝑥 ∈ 𝑅 such that 𝜇𝐴(𝑥) = 1 

(c) 𝐴̃ is piecewise continuous.” 

Definition 2.2: (Ming Ma et al. 1999) “A fuzzy number 𝐴̃ is defined on 𝑅, the set of real numbers is said to be a 

triangular fuzzy number (TFN) if its membership function 𝜇𝐴: 𝑅 → [0,1] which satisfy the following conditions:” 

𝜇𝐴(𝑥)=

{
 
 

 
 

𝑥−𝑎̃1

𝑎̃2−𝑎̃1
for 𝑎̃1 ≤ 𝑥 ≤ 𝑎̃2

1 for 𝑥 = 𝑎̃2
𝑎̃3−𝑥

𝑎̃3−𝑎̃2
 for 𝑎̃2 ≤ 𝑥 ≤ 𝑎̃3

0 otherwise

 

Definition 2.3: (Ming Ma et al. 1999) “Let the two triangular fuzzy numbers be 𝑃̃ ≈ (𝑎̃1, 𝑎̃2, 𝑎̃3) = (𝑚̃1, 𝛼̃1, 𝛽̃1) and 

𝑄̃ ≈ (𝑏̃1, 𝑏̃2, 𝑏̃3) = (𝑚̃2, 𝛼̃2, 𝛽̃2) and then the arithmetic operations on TFN be given as follows: 

 (A)Addition 

𝑃̃ + 𝑄̃ ≈ (𝑚̃1 + 𝑚̃2,𝑚𝑎𝑥{𝛼̃1, 𝛼̃2} , 𝑚𝑎𝑥{𝛽̃1, 𝛽̃2})          (1)

 
(B)Subtraction 

𝑃̃ − 𝑄̃ ≈ (𝑚̃1 − 𝑚̃2,𝑚𝑎𝑥{𝛼̃1, 𝛼̃2} , 𝑚𝑎𝑥{𝛽̃1, 𝛽̃2})             (2) 

 (C) Multiplication 

𝑃̃. 𝑄̃ ≈ (𝑚̃1. 𝑚̃2,𝑚𝑎𝑥{𝛼̃1, 𝛼̃2} ,𝑚𝑎𝑥{𝛽̃1, 𝛽̃2})                 (3) 

 

(D) Division 

𝑃̃

𝑄̃
≈ (

𝑚̃1

𝑚̃2
,𝑚𝑎𝑥{𝛼̃1, 𝛼̃2} ,𝑚𝑎𝑥{𝛽̃1, 𝛽2})”                        (4) 

(E) Scalar Multiplication 

𝑘𝑃̃ ≈     
(𝑘𝑎2, 𝛼1, 𝛽1), 𝑘 ≥ 0 
(−𝑘𝑎2, 𝛼1, 𝛽1), 𝑘 < 0

                                                                                       (5) 

Definition 2.4: “For every triangular fuzzy number 𝑃̃ ≈ (𝑎̃1, 𝑎̃2, 𝑎̃3) ∈ 𝐹(𝑅) ranking function ℜ: 𝐹(𝑅) → 𝑅 is 

defined by graded mean as”
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ℜ(𝑃̃) =
(𝑎̃1 + 4𝑎̃2 + 𝑎̃3)

6
 

For any two TFN 𝑃̃ ≈ (𝑎̃1, 𝑎̃2, 𝑎̃3) and
 
𝑄̃ ≈ (𝑏̃1, 𝑏̃2, 𝑏̃3) We have the following comparisons, 

(𝑎)𝑃̃ ≻ 𝑄̃ ⇔ ℜ(𝑃̃) > ℜ(𝑄̃) 

(𝑏)𝑃̃ ≺ 𝑄̃ ⇔ ℜ(𝑃̃) < ℜ(𝑄̃)

 
(𝑐)𝑃̃ ≈ 𝑄̃ ⇔ ℜ(𝑃̃) = ℜ(𝑄̃)

 
(𝑑)𝑃̃ − 𝑄̃ ≈ 0 ⇔ ℜ(𝑃̃) −ℜ(𝑄̃) = 0

 
A triangular fuzzy number 𝑃̃ ≈ (𝑎̃1, 𝑎̃2, 𝑎̃3) ∈ 𝐹(𝑅)

 
is known to be positive if ℜ(𝑃̃) > 0 and defined by  𝑃̃ ≻ 0.” 

Definition 2.5:(Shaw et al. 2012) Let a non–empty set be X . An Intuitionistic fuzzy set (IFS) A  is defined as 𝐴̃′ =
{(𝑥, 𝜇𝐴′(𝑥), 𝛾𝐴′(𝑥)/𝑥 ∈ 𝑋)}, where 𝜇𝐴′ : 𝑋 → [0,1] and 𝛾𝐴′ : 𝑋 → [0,1] denotes the degree of membership and degree 

of non–membership functions respectively where 𝑥 ∈ 𝑋 , for every 𝑥 ∈ 𝑋, 0 ≤ 𝜇𝐴′(𝑥) + 𝛾𝐴′(𝑥) ≤ 1” 

Definition 2.6:(Shaw et al. 2012) An intuitionistic fuzzy set 𝐴̃′
 described on R, the real numbers are said to be an 

Intuitionistic fuzzy number (IFN) if its membership function 𝜇𝐴′ : 𝑅 → [0,1] and its non – membership function 

𝛾𝐴′ : 𝑅 →[0,1] should be agreeable to the following conditions: 

i) 𝐴̃′ is normal, which means that there exists an 𝑥 ∈ 𝑅, such that 𝜇𝐴′(𝑥) = 1, 𝛾𝐴′(𝑥) = 0 

ii)  𝐴̃
′ is convex for the membership functions 

A



, which means that there exists 𝑥1, 𝑥2 ∈ 𝑅 and 𝜆 ∈ [0,1]  such 

that 𝜇𝐴′(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥ 𝑚𝑖𝑛{𝜇𝐴′(𝑥1), 𝜇𝐴′(𝑥2)} 

iii) 𝐴̃′ is concave for the non – membership function 𝛾𝐴′  , which means that there exists 𝑥1, 𝑥2 ∈ 𝑅 and 𝜆 ∈ [0,1] 

such that” 𝛾𝐴′(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤ 𝑚𝑎𝑥{𝛾𝐴′(𝑥1), 𝛾𝐴′(𝑥2)}

 Definition 2.7:(Shaw et al. 2012) A fuzzy number 𝐴̃′
 on R is said to be a triangular intuitionistic fuzzy number 

(TIFN) if its membership function 𝜇𝐴′ : 𝑅 →[0,1] and non – membership function 𝛾𝐴′ : 𝑅 → [0,1] have the following 

conditions:
  

𝜇𝐴′(𝑥)=

{
 
 

 
 

𝑥−𝑎̃1

𝑎̃2−𝑎̃1
for 𝑎̃1 ≤ 𝑥 ≤ 𝑎̃2

1 for 𝑥 = 𝑎̃2
𝑎̃3−𝑥

𝑎̃3−𝑎̃2
 for 𝑎̃2 ≤ 𝑥 ≤ 𝑎̃3

0 otherwise

 

and                           

      𝛾𝐴′(𝑥)=

{
 
 

 
 
           1 for 𝑥 < 𝑎̃1

′ , 𝑥 > 𝑎̃3
′

𝑎̃2−𝑥

𝑎̃2−𝑎̃1
′  for 𝑎̃1

′ ≤ 𝑥 ≤ 𝑎̃2

0 for 𝑥 = 𝑎̃2

      
𝑥−𝑎̃2

𝑎̃3−𝑎̃2
 for  𝑎̃2 ≤ 𝑥 ≤ 𝑎̃3   

′

 

and is given by 𝐴̃′ = (𝑎1, 𝑎2, 𝑎3; 𝑎1
′ , 𝑎2, 𝑎3

′ ) where 𝑎̃1
′ ≤ 𝑎̃1 ≤ 𝑎̃2 ≤ 𝑎̃3 ≤ 𝑎̃3

′ ” 

Cases: Let 𝐴̃′ = (𝑎1, 𝑎2, 𝑎3; 𝑎1
′ , 𝑎2, 𝑎3

′ ) be a TIFN then the following cases arise. 

Case:1 If 𝑎̃1
′ = 𝑎̃1, 𝑎̃3

′ = 𝑎̃3 then 𝐴̃′ represent a TFN. 

Case:2 If  𝑎̃1
′ = 𝑎̃1 = 𝑎̃2 = 𝑎̃3

′ = 𝑎̃3 = 𝑚̃ then 𝐴̃′ represent a real number 𝑚̃. The parametric form of TIFN 𝐴̃′ is 

represented as 𝐴̃′ = (α,𝑚, β; α′,𝑚, 𝛽′) where 𝛼̃, 𝛼̃′&𝛽̃, 𝛽̃′represents the left spread and right spread of membership 

functions and non – membership functions respectively.” 
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Definition 2.8: “The extension of fuzzy arithmetic operations of Ming Ma et al. (1999) to the set of TIFN based upon 

both location indices and functions of fuzziness indices. The location indices number is taken in the regular arithmetic 

while the functions of fuzziness indices are assumed to follow the lattice rule, which is the least upper bound in the 

lattice 𝐼′. For any two arbitrary TIFN 𝑃̃′ ≈ (𝑚̃1, 𝛼̃1, 𝛽̃1; 𝑚̃1, 𝛼̃1
′ , 𝛽̃1

′ ) and 𝑄̃′ ≈ (𝑚̃2, 𝛼̃2, 𝛽2; 𝑚̃2, 𝛼̃2
′ , 𝛽̃2

′ ) and ∗∈

{+, −,×,÷}, then the arithmetic operations on TIFN are defined by𝑃̃′ ∗ 𝑄̃′ = (𝑚̃1 ∗ 𝑚̃2, 𝛼̃1 ∨ 𝛼̃2, 𝛽̃1 ∨ 𝛽̃2; 𝑚̃1 ∗

𝑚̃2, 𝛼̃1
′ ∨ 𝛼̃2

′ , 𝛽̃1
′ ∨ 𝛽̃2

′ ). 

 In particular, for any two TIFNs 𝑃̃′ ≈ (𝑚̃1, 𝛼̃1, 𝛽̃1; 𝑚̃1, 𝛼̃1
′ , 𝛽̃1

′ ) and 𝑄̃′ ≈ (𝑚̃2, 𝛼̃2, 𝛽̃2; 𝑚̃2, 𝛼̃2
′ , 𝛽̃2

′ )
 
the arithmetic 

operations are defined as    

𝑃̃′ ∗ 𝑄̃′ = (𝑚̃1, 𝛼̃1, 𝛽̃1; 𝑚̃1, 𝛼̃1
′ , 𝛽̃1

′ ) ∗ (𝑚̃2, 𝛼̃2, 𝛽̃2; 𝑚̃2, 𝛼̃2
′ , 𝛽̃2

′ ) 

𝑃̃′ ∗ 𝑄̃′ = (𝑚̃1 ∗ 𝑚̃2,𝑚𝑎𝑥{𝛼̃1, 𝛼̃2} , 𝑚𝑎𝑥{𝛽̃1, 𝛽̃2} ; 𝑚̃1 ∗ 𝑚̃2,𝑚𝑎𝑥{𝛼̃1
′ , 𝛼̃2

′ } ,𝑚𝑎𝑥{𝛽̃1
′ , 𝛽̃2

′ }) 

𝑃̃′ ∗ 𝑄̃′ = (𝑚̃1 ∗ 𝑚̃2, 𝛼̃1 ∨ 𝛼̃2, 𝛽̃1 ∨ 𝛽̃2; 𝑚̃1 ∗ 𝑚̃2, 𝛼̃1
′ ∨ 𝛼̃2

′ , 𝛽̃1
′ ∨ 𝛽̃2

′ ) 

In particular, for any two TIFN 𝑃̃′ ≈ (𝑎̃1, 𝑎̃2, 𝑎̃3; 𝑎̃1
′ , 𝑎̃2

′ , 𝑎̃3
′ ) ≈ (𝑚̃1, 𝛼̃1, 𝛽̃1; 𝑚̃1, 𝛼̃1

′ , 𝛽̃1
′ ), 𝑄̃′ ≈

(𝑏̃1, 𝑏̃2, 𝑏̃3; 𝑏̃1
′ , 𝑏̃2

′ , 𝑏̃3
′ ) ≈ (𝑚̃2, 𝛼̃2, 𝛽2; 𝑚̃2, 𝛼̃2

′ , 𝛽̃2
′ )we define:” 

Addition 

𝑃̃′ + 𝑄̃′ =(𝑚1 +𝑚2,𝑚𝑎𝑥{𝛼1, 𝛼2} ,𝑚𝑎𝑥{𝛽1, 𝛽2} ;𝑚1 +𝑚2,𝑚𝑎𝑥{𝛼1
′ , 𝛼2

′ } ,𝑚𝑎𝑥{𝛽1
′ , 𝛽2

′})                          (6) 

Subtraction 

𝑃̃′ − 𝑄̃′ =(𝑚1 −𝑚2,𝑚𝑎𝑥{𝛼1, 𝛼2} ,𝑚𝑎𝑥{𝛽1, 𝛽2} ;𝑚1 −𝑚2,𝑚𝑎𝑥{𝛼1
′ , 𝛼2

′ } ,𝑚𝑎𝑥{𝛽1
′ , 𝛽2

′})                                (7) 

Multiplication    

𝑃̃′ × 𝑄̃′ =(𝑚1 ×𝑚2,𝑚𝑎𝑥{𝛼1, 𝛼2} ,𝑚𝑎𝑥{𝛽1, 𝛽2} ;𝑚1 ×𝑚2,𝑚𝑎𝑥{𝛼1
′ , 𝛼2

′ } , 𝑚𝑎𝑥{𝛽1
′ , 𝛽2

′ })                        (8) 

Division 

𝑃̃′÷ 𝑄̃′ =(𝑚1 ÷𝑚2,𝑚𝑎𝑥{𝛼1, 𝛼2} ,𝑚𝑎𝑥{𝛽1, 𝛽2} ;𝑚1 ÷𝑚2,𝑚𝑎𝑥{𝛼1
′ , 𝛼2

′ } , 𝑚𝑎𝑥{𝛽1
′ , 𝛽2

′}) ”                           (9) 

Scalar Multiplication 

  (𝑘𝑎2, 𝛼1, 𝛽1; 𝑘𝑎2, 𝛼1
′ , 𝛽1

′), for 𝑘 ≥ 0                                                                              (10) 

𝑘𝑃̃′ =            (−𝑘𝑎2, 𝛼1, 𝛽1; −𝑘𝑎2, 𝛼1
′ , 𝛽1

′), for 𝑘 < 0 

Definition 2.9: “Consider an arbitrary TIFN 𝑃̃′ = (𝑎1, 𝑎2, 𝑎3; 𝑎1
′ , 𝑎2, 𝑎3

′ ) = (𝑚, α, β;𝑚, α′, β′) and the magnitude of 

TIFN 𝑃̃′ is given by  

𝑚𝑎𝑔(𝑃̃′) =
1

2
∫ (𝛽 + 𝛽′ + 6𝑚 − α − 𝛼′)𝑓(𝑟)𝑑𝑟
1

0

 

In real-life scenarios, decision-makers select the value of 𝑓(𝑟̃ ′) based on their circumstances. Here for our ease, we 

choose  𝑓(𝑟̃ ′) = 𝑟̃ ′2  

𝑚𝑎𝑔(𝑃̃′) = (
𝛽 + 𝛽′ + 6𝑚 − α − 𝛼′

6
)

 For any two TIFN 𝑃̃′ ≈ (𝑚1, 𝛼1, 𝛽1;𝑚1, 𝛼1
′ , 𝛽1

′), 𝑄̃′ ≈ (𝑚2, 𝛼2, 𝛽2;𝑚2, 𝛼2
′ , 𝛽2

′) in 𝐹(𝑅), we define 

(𝑎)𝑃̃′ ≥ 𝑄̃′ ⇔𝑚𝑎𝑔(𝑃̃′) ≥ 𝑚𝑎𝑔(𝑄̃′) 

(𝑏)𝑃̃′ ≤ 𝑄̃′ ⇔𝑚𝑎𝑔(𝑃̃′) ≤ 𝑚𝑎𝑔(𝑄̃′) 

                                                        (𝑐)𝑃̃′ ≈ 𝑄̃′ ⇔𝑚𝑎𝑔(𝑃̃′) = 𝑚𝑎𝑔(𝑄̃′)” 
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3. Model description 

In this 𝐹𝑀/𝐹𝐸𝑘/1 approach, the user arrives at a solo server facility with a Poisson arrival rate 𝜆̃ & 𝜆̃′ and an Erlang 

service rate 𝜇 & 𝜇′. The unit is divided into 𝐾 stages here. The introduction of a brand adds 𝑘 phases of service, while 

the departure of one unit reduces the number of phases of service. The services criteria are presumed to be first in, 

first out, and the system capacity is unbounded. The Erlang 𝑘 type distribution consists of independent and identically 

distributed and comparable exponential phases, each with a mean of 
1

𝑘𝜇̃
. Figure 1 depicts this situation. 

Both TFN and TIFN are used to calculate the arrival and service rates. The main purpose is to determine performance 

measurements using both fuzzy and intuitionistic fuzzy numbers, and models are compared based on the mean number 

of customers in the queue and system, while also their transit (awaiting) time in the queue and system. The service 

rates are assumed to be Erlang's nature in this scenario. The disputes are resolved by keeping the fuzziness values until 

the end, i.e., without altering them to crisp. As a result, it is more applicable in real-life circumstances. 

 

 

Figure 1: Erlang service time 

4. Speculations and Syntaxes 

4.1. Speculations 

i) Consider the endless capacity 𝐹𝑀/𝐹𝐸𝑘/1 fuzzy queuing model under FCFS discipline with Erlang service 

rate. 

ii) The system is served by a single server. 

iii) The time between arrivals follows a Poisson distribution. 

iv) Service (Erlang) time is distributed exponentially. 

v) The arrival and service rate are taken as TFN and TIFN. 

4.2. Syntaxes 

Here we are using the following notations: 

𝜆̃, 𝜆̃′ → The mean no. of consumers who arrive in a predetermined period of time. 

𝜇, 𝜇′ → The mean no. of consumers being serviced per unit of time. 

𝜌̃ →Traffic intensity. 

𝑁𝑞 , 𝑁𝑞
′ → The mean no. of consumers in the line.  

𝑁𝑠, 𝑁𝑠
′ →The mean no. of consumers in the system. 
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𝑇̃𝑞 , 𝑇̃𝑞
′ → The mean sojourn time of the consumers in the queue. 

𝑇̃𝑠 , 𝑇̃𝑠
′ → The mean sojourn time of the consumers in the system. 

𝑃̃, 𝑃̃′ → Interarrival rate. 

𝑄̃, 𝑄̃′ → Service rate. 

𝑋 → Arrival time schedule. 

𝑌 →Service time schedule. 

𝐹𝑀 →Fuzzified exponential diffusion. 

𝐹𝐸𝑘 →Fuzzified Erlang diffusion. 

5. NON-POISSON QUEUING MODEL/ IMBEDDED MARKOV CHAIN TECHNIQUE 

 In this queuing System of Poisson arrivals, Erlang service time with 𝑘 phases and a single server. 

Let,  𝑃̃𝑛
′(𝑡) = Probability that there are 𝑛 phases in the system (waiting and in-service) at time 𝑡̃′. 

𝑛 = total number of phases in the system (waiting and in-service) and 

𝑘 = number of phases in one entity 

Therefore, 𝜆̃𝑛
′ = 𝜆̃′ phases arrive per unit time 

       µ̃𝑛
′ = 𝑘µ̃′ phases served per unit time 

Theorem 5.1. In the (𝐹𝑀/𝐹𝐸𝑘/1): (∞/𝐹𝐼𝐹𝑂) queuing model, at the initial state, when there are no units in the state 

𝑛 = 0 at the time (𝑡̃′ + ∆𝑡̃′), prove that the rate is 𝜆̃′𝑃̃0
′ = 𝑘𝜇′𝑃̃1

′. 

Proof. For 𝑛 = 0, 

The possibility that somehow there won’t be any entities in the system at (𝑡̃′ + 𝛥𝑡̃′) will be equal to the sum of the 

next two separate probabilities: 

i) 𝑃̃0
′(𝑡̃′)(1 − 𝜆̃′𝛥𝑡̃′) is the statistical likelihood that there would be no entity in the system at  𝑡̃′ and no 

arrival at 𝛥𝑡̃′ 
ii) 𝑃̃1

′(𝑡̃′). 𝑘𝜇′𝛥𝑡̃′. (1 − 𝜆̃′𝛥𝑡̃′) ≅ 𝑃̃1
′(𝑡̃′)𝑘𝜇′𝛥𝑡̃′ + 𝑜(𝛥𝑡̃′) is the statistical likelihood that one unit is present 

in the system at 𝑡̃′ , one unit is serviced at  𝛥𝑡̃′, and no arrival at  𝛥𝑡̃′.  
As a result, the probability of  𝑛 = 0 is 

 𝑃̃0
′(𝑡̃′ + 𝛥𝑡̃′) = 𝑃̃0

′(𝑡̃′)(1 − 𝜆̃′𝛥𝑡̃′) + 𝑃̃1
′(𝑡̃′)𝑘𝜇′𝛥𝑡̃′ + 𝑜(𝛥𝑡̃′)                           (11) 

                                     𝑃̃0
′(𝑡̃′ + 𝛥𝑡̃′) − 𝑃̃0

′(𝑡̃′) = −𝜆̃′𝛥𝑡̃′𝑃̃0
′(𝑡̃′) + 𝑃̃1

′(𝑡̃′)𝑘𝜇′𝛥𝑡̃′ + 𝑜(𝛥𝑡̃′) 

Now dividing the aforementioned equation by 𝛥𝑡̃′ and assuming the limit as 𝛥𝑡̃′ → 0, hence it transforms into: 

𝛥𝑡̃′ → 0 [
𝑃̃0
′(𝑡̃′ + 𝛥𝑡̃′) − 𝑃̃0

′(𝑡̃′)

𝛥𝑡̃′
] = −𝜆̃′𝑃̃0

′(𝑡̃′) + 𝑘𝜇′𝑃̃1
′(𝑡̃′); 𝑛 = 0 

                               𝑃̃0
′(𝑡̃′) = −𝜆̃′𝑃̃0

′(𝑡̃′) + 𝑘𝜇′𝑃̃1
′(𝑡̃′) for 𝑛 = 0                                                                   (12) 

In the scenario of a steady state where 𝑡̃′ → ∞, 𝑃̃𝑛
′(𝑡̃′) → 𝑃̃𝑛

′ (independent of 𝑡̃′) and consequently 𝑃̃𝑛
′(𝑡̃′) → 0. 

Eventually, the steady-state difference equations of the system are provided by 
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0 = −𝜆̃′𝑃̃0
′ + 𝑘𝜇′𝑃̃1

′   (From 12) 

Furthermore, 𝜆̃′𝑃̃0
′ = 𝑘𝜇′𝑃̃1

′; 𝑛 = 0            

                                    𝑃̃1
′ = (

𝜆̃′

𝑘𝜇̃′
) 𝑃̃0

′ 

                                     𝑃̃1
′ = 𝜌̃′𝑃̃0

′ for 𝑛 = 0                                                                                        (13) 

Theorem 5.2. In the (𝐹𝑀/𝐹𝐸𝑘/1): (∞/𝐹𝐼𝐹𝑂) queuing model, at the state 𝑛 ≥ 1, prove that the rate is (𝜆̃′ + 𝑘µ̃′)𝑃̃𝑛
′ =

𝜆̃′𝑃̃𝑛−𝑘
′ + 𝑘µ̃′𝑃̃𝑛+1. 

Proof. For 𝑛 ≥ 1, 
When independent conditions are incorporated together, the probability will be shown as:    

i) At any time  𝑡̃′ , there are 𝑛 entities in the system are 𝑃̃𝑛
′(𝑡̃′). However, at  𝛥𝑡̃′, there are no arrivals and no 

services respectively, (1 − 𝜆̃′𝛥𝑡̃′) and (1 − 𝑘𝜇′𝛥𝑡̃′). As a consequence, the probability is provided as  

⇒ 𝑃̃𝑛
′(𝑡̃′)(1− 𝜆̃′𝛥𝑡̃′)(1 − 𝑘𝜇′𝛥𝑡̃′) 

                                                  ⇒ 𝑃̃𝑛
′(𝑡̃′) (1− 𝛥𝑡̃′(𝜆̃′ + 𝑘𝜇′)) + 𝑜1(𝛥𝑡̃

′)                                      (14) 

ii) At any time  𝑡̃′ , there are (𝑛 − 𝑘) entities in the system are 𝑃̃𝑛−𝑘
′ (𝑡̃′); there is one entrance at  𝛥𝑡̃′ is 𝜆̃′𝛥𝑡̃′ 

and no assistance at 𝛥𝑡̃′is (1 − 𝑘𝜇′𝛥𝑡̃′). As a result, the probability is given as  

                                                    ⇒ 𝑃̃𝑛−𝑘
′ (𝑡̃′)𝜆̃′𝛥𝑡̃′(1 − 𝑘𝜇′𝛥𝑡̃′) 

                                                                ⇒ 𝜆̃′𝛥𝑡̃′𝑃̃𝑛−𝑘
′ (𝑡̃′) + 𝑜2(𝛥𝑡̃

′)                                               (15) 

iii) At any time  𝑡̃′ , there are (𝑛 + 1) units in the system are 𝑃̃𝑛+1
′ (𝑡̃′); there is no inflow at  𝛥𝑡̃′ is (1 − 𝜆̃′𝛥𝑡̃′) 

and one service at 𝛥𝑡̃′ is 𝑘𝜇′𝛥𝑡̃′. As an outcome, the probability is given as  

⇒ 𝑃̃𝑛+1
′ (𝑡̃′)(1 − 𝜆̃′𝛥𝑡̃′)𝑘𝜇′𝛥𝑡̃′ 

                                                                    ⇒ 𝑘𝜇′𝛥𝑡̃′𝑃̃𝑛+1
′ (𝑡̃′) + 𝑜3(𝛥𝑡̃

′)                                    (16) 

By adding (14), (15) & (16), we obtain 

𝑃̃𝑛
′(𝑡̃′ + 𝛥𝑡̃′) = 𝑃̃𝑛

′(𝑡̃′)[1 − (𝜆̃′ + 𝑘𝜇′)𝛥𝑡̃′] + 𝜆̃′𝛥𝑡̃′𝑃̃𝑛−𝑘
′ (𝑡̃′) + 𝑘𝜇′𝛥𝑡̃′𝑃̃𝑛+1

′ (𝑡̃′) + 𝑜(𝛥𝑡̃′)            (17) 

The above equation now becomes 𝑃̃𝑛
′(𝑡̃′) by dividing it by 𝛥𝑡̃′ and presuming that  𝛥𝑡̃′ → 0 is the limit; hence it 

transforms into: 

𝑃̃𝑛
′(𝑡̃′) = −(𝜆̃′ + 𝑘𝜇′)𝑃̃𝑛

′(𝑡̃′) + 𝜆̃′𝑃̃𝑛−𝑘
′ (𝑡̃′) + 𝑘𝜇′𝑃̃𝑛+1

′ (𝑡̃′); 𝑛 ≥ 1                                                   (18) 

In the circumstance of a steady state where 𝑡̃′ → ∞, 𝑃̃𝑛
′(𝑡̃′) → 𝑃̃𝑛

′ (independent of 𝑡̃′) and hence 𝑃̃𝑛
′(𝑡̃′) → 0. So, the 

system of steady-state difference equations is given by 

0 = −(𝜆̃′ + 𝑘𝜇′)𝑃̃𝑛
′ + 𝜆̃′𝑃̃𝑛−𝑘

′ + 𝑘𝜇′𝑃̃𝑛+1
′ ; 𝑛 ≥ 1   (From 18) 

Hence, (𝜆̃′ + 𝑘𝜇′)𝑃̃𝑛
′ = 𝜆̃′𝑃̃𝑛−𝑘

′ + 𝑘𝜇′𝑃̃𝑛+1
′ ; 𝑛 ≥ 1                     (19) 

Divide by 𝑘𝜇′ throughout the above equation and also using 𝜌̃′ = (
𝜆̃′

𝑘𝜇̃′
), we obtain 

(1 + 𝜌̃′)𝑃̃𝑛
′ = 𝜌̃′𝑃̃𝑛−𝑘

′ + 𝑃̃𝑛+1
′ ; 𝑛 ≥ 1                                                                                              (20) 

Theorem 5.3. In the (𝐹𝑀/𝐹𝐸𝑘/1): (∞/𝐹𝐼𝐹𝑂) queuing model, solve the system of equations and prove the steady 

state equation of the model. 

Proof. By the definition of generating function, 
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𝐺. 𝐹 ≡ 𝑃′(𝑍) = ∑ 𝑃̃𝑛
′𝑍𝑛∞

𝑛=0                                                                                                               (21) 

Multiply equation (21) by equation (20), and we obtain 

(1 + 𝜌̃′)∑ 𝑃̃𝑛
′𝑍𝑛∞

𝑛=1 = 𝜌̃′∑ 𝑃̃𝑛−𝑘
′ 𝑍𝑛∞

𝑛=1 + ∑ 𝑃̃𝑛+1
′ 𝑍𝑛∞

𝑛=1                                                                  (22) 

Using equation (13), we have 𝑃̃1
′ = 𝜌̃′𝑃̃0

′ 

Adding both equations (13) and (22), we obtain 

𝜌̃′𝑃̃0
′ + (1 + 𝜌̃′)∑ 𝑃̃𝑛

′𝑍𝑛∞
𝑛=1 = 𝑃̃1

′ + 𝜌̃′∑ 𝑃̃𝑛−𝑘
′ 𝑍𝑛∞

𝑛=1 + ∑ 𝑃̃𝑛+1
′ 𝑍𝑛∞

𝑛=1                                           (23) 

By adding and subtracting  𝑃̃0
′ on L.H.S. of (23), we can write it as 

𝜌̃′𝑃̃0
′ + (1 + 𝜌̃′)∑ 𝑃̃𝑛

′𝑍𝑛∞
𝑛=1 + 𝑃̃0

′ − 𝑃̃0
′ = 𝑃̃1

′ + 𝜌̃′∑ 𝑃̃𝑛−𝑘
′ 𝑍𝑛∞

𝑛=1 + ∑ 𝑃̃𝑛+1
′ 𝑍𝑛∞

𝑛=1   

(1 + 𝜌̃′)[𝑃̃0
′ +∑ 𝑃̃𝑛

′𝑍𝑛∞
𝑛=1 ] − 𝑃̃0

′ = 𝜌̃′∑ 𝑃̃𝑛−𝑘
′ 𝑍𝑛∞

𝑛=1 +∑ 𝑃̃𝑛+1
′ 𝑍𝑛∞

𝑛=0   

Multiply and divide by 𝑍 on R.H.S. of the 2nd term alone, and we obtain 

(1 + 𝜌̃′)∑ 𝑃̃𝑛
′𝑍𝑛∞

𝑛=0 − 𝑃̃0
′ = (

1

𝑍
)∑ 𝑃̃𝑛+1

′ 𝑍𝑛+1∞
𝑛=0 + 𝜌̃′∑ 𝑃̃𝑛−𝑘

′ 𝑍𝑛∞
𝑛=0                                             (24) 

Substitute (𝑛 + 1) = 𝑖; (𝑛 − 𝑘) = 𝑚 ⇒ 𝑛 = 𝑚 + 𝑘 put the value of  𝑚 in the R.H.S. of the equation (24) and adjust 

limits, 

 (1 + 𝜌̃′)∑ 𝑃̃𝑛
′𝑍𝑛∞

𝑛=0 − 𝑃̃0
′ = (

1

𝑍
)∑ 𝑃̃𝑖

′𝑍𝑖∞
𝑖=1 + 𝜌̃′∑ 𝑃̃𝑚

′ 𝑍𝑚+𝑘∞
𝑚=0                                                  (25) 

By adding and subtracting  𝑃̃0
′ on the first term R.H.S. of (25), we can write it as 

(1 + 𝜌̃′)∑ 𝑃̃𝑛
′𝑍𝑛∞

𝑛=0 − 𝑃̃0
′ = (

1

𝑍
)∑ 𝑃̃𝑖

′𝑍𝑖∞
𝑖=1 + 𝑃̃0

′ − 𝑃̃0
′ + 𝜌̃′∑ 𝑃̃𝑚

′ 𝑍𝑚+𝑘∞
𝑚=0   

(1 + 𝜌̃′)∑ 𝑃̃𝑛
′𝑍𝑛∞

𝑛=0 − 𝑃̃0
′ = (

1

𝑍
)∑ 𝑃̃𝑖

′𝑍𝑖 − 𝑃̃0
′∞

𝑖=0 +𝜌̃′𝑍𝑘∑ 𝑃̃𝑚
′ 𝑍𝑚∞

𝑚=0  

(1 + 𝜌̃′)[𝑃′(𝑍)] − 𝑃̃0
′ = (

1

𝑍
) [𝑃′(𝑍) − 𝑃̃0

′] + 𝜌̃′𝑍𝑘𝑃′(𝑍) (As ∑ 𝑃̃𝑛
′𝑍𝑛∞

𝑛=0 = 𝑃′(𝑍)) 

(1 + 𝜌̃′)[𝑃′(𝑍)] − (
1

𝑍
)𝑃′(𝑍) − 𝜌̃′𝑍𝑘𝑃′(𝑍) = −

1

𝑍
𝑃̃0
′ + 𝑃̃0

′  

(
1

𝑍
)𝑃′(𝑍) + 𝜌̃′𝑍𝑘𝑃′(𝑍) − (1 + 𝜌̃′)[𝑃′(𝑍)] =

1

𝑍
𝑃̃0
′ − 𝑃̃0

′  

𝑃′(𝑍) [
1

𝑍
+ 𝜌̃′𝑍𝑘 − (1 + 𝜌̃′)] = 𝑃̃0

′ (
1

𝑧
− 1)  

𝑃′(𝑍) =
𝑃̃0
′(1−𝑍)

1+𝜌̃′𝑍𝑘+1−(1+𝜌̃′)𝑍
=

𝑃̃0
′(1−𝑍)

(1−𝑍)−𝜌̃′𝑍(1−𝑍𝑘)
  

𝑃′(𝑍) =
𝑃̃0
′

1−𝜌̃′𝑍(
1−𝑍𝑘

1−𝑍
)
= 𝑃̃0

′ [1 − 𝜌̃′𝑍 (
1−𝑍𝑘

1−𝑍
)]
−1
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𝑃′(𝑍) = 𝑃̃0
′ [1 + 𝜌̃′𝑍 (

1−𝑍𝑘

1−𝑍
) + (𝜌̃′𝑍)2 (

1−𝑍𝑘

1−𝑍
)
2

+⋯]  

𝑃′(𝑍) = 𝑃̃0
′∑ (𝜌̃′𝑍)𝑛 (

1−𝑍𝑘

1−𝑍
)
𝑛

∞
𝑛=0   

As the sum of the series (1 + 𝑍 + 𝑍2 +⋯+ 𝑍𝑘−1) = (
1−𝑍𝑘

1−𝑍
). Hence, 

𝑃′(𝑍) = 𝑃̃0
′∑ (𝜌̃′𝑍)𝑛[1 + 𝑍 + 𝑍2 +⋯+ 𝑍𝑘−1]𝑛∞

𝑛=0                                                                    (26) 

To find 𝑃̃0
′, (put 𝑧 = 1) 

𝑃′(1) = 𝑃̃0
′ ∑ 𝜌̃′

𝑛∞
𝑛=0 [1 + 1 + ⋯+ 𝑘 𝑡𝑖𝑚𝑒𝑠]𝑛  

𝑃′(1) = 𝑃̃0
′ ∑ 𝜌̃′𝑛𝑘𝑛∞

𝑛=0         (Put ∑ (𝜌̃′𝑘)𝑛 =
1

1−𝜌̃′𝑘
∞
𝑛=0  sum of infinite G.P.) 

𝑃′(1) =
𝑃̃0
′

(1−𝜌̃′𝑘)
  

By the law of total probability, we have 𝑃′(1) = ∑ 𝑃̃𝑛
′∞

𝑛=0 = 1 

𝑃̃0
′

(1−𝜌̃′𝑘)
= 1  

𝑃̃0
′ = 1 − 𝜌̃′𝑘                                                                                                                                    (27) 

𝑃̃𝑛
′ = 𝜌̃𝑛(1 − 𝜌̃

′𝑘)                               (28) 

6. (𝑭𝑴/𝑭𝑬𝒌/𝟏): (∞/𝑭𝑪𝑭𝑺) Queues 

In this model, the customer arrives at one server facility with a Poisson arrival rate 𝜆̃, 𝜆̃′ and Erlang service rate 𝜇, 𝜇′. 

We assume a single-server Erlang fuzzy queuing system with infinite capacity. The customers are served in 𝑘 phases. 

The inter-arrival rate 𝑃̃ and the service rate 𝑄̃ are nearly comprehended and depicted by a fuzzy set, 

𝑃̃ = {𝑝, 𝜇𝑃̃(𝑝)/𝑝 ∈ 𝑋} 

𝑄̃ = {𝑞, 𝜇𝑄̃(𝑞)/𝑞 ∈ 𝑌} 

In this, 𝑋 is the inter-entrance period configuration and 𝑌 is the service time configuration. 𝜇𝑃̃(𝑝) is the inter-entrance 

time's membership function and 𝜇𝑄̃(𝑞) is the enlistment capacity of the service time. In addition to that, consider a 

single server intuitionistic Erlang fuzzy queuing system with infinite capacity. The inter-arrival rate 𝑃̃′ and the service 

rate 𝑄̃′ are nearly comprehended and depicted by an intuitionistic fuzzy set, 

𝑃̃′ = {𝑝, 𝜇𝑃̃′(𝑝), 𝛾𝑃̃′(𝑝)/𝑝 ∈ 𝑋} 

𝑄̃′ = {𝑞, 𝜇𝑄̃′(𝑞), 𝛾𝑄̃′(𝑞)/𝑞 ∈ 𝑌} 

In this, 𝑋 is the inter-entrance duration customization and 𝑌 is the service time customization. 𝜇𝑃̃′(𝑝)&𝛾𝑃̃′(𝑝) is the 

membership and non-membership functions respectively of the inter-arrival time. 𝜇𝑄̃′(𝑞)&𝛾𝑄̃′(𝑞) is the membership 

and non-membership functions, respectively of the service time. 

7. Single server Erlang fuzzy queuing model with infinite capacity 
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Let 𝜆̃ and 𝜆̃′ be the fuzzy and intuitionistic fuzzy arrival rates respectively. Let 𝜇 and 𝜇′ be the fuzzy and intuitionistic 

fuzzy service rates, respectively. At the steady-state, the FCFS discipline is upheld, and the capacity is unlimited. 

The following are the fabrication characteristics of the above model: 

i) The mean no. of customers in the queue, 

𝑁𝑞 =
𝑘+1

2𝑘

𝜆̃2

𝜇̃(𝜇̃−𝜆̃)
            (29)

 
ii) The mean no. of customers in the system, 

𝑁𝑠 =
𝑘+1

2𝑘

𝜆̃2

𝜇̃(𝜇̃−𝜆̃)
+

𝜆̃

𝜇̃
                            (30)

 
iii) The mean waiting time of the customers in the queue, 

𝑇̃𝑞 =
𝑘+1

2𝑘

𝜆̃

𝜇̃(𝜇̃−𝜆̃)
                          (31)

 
iv) The mean waiting time of the customers in the system, 

𝑇̃𝑠 = 𝑇̃𝑞 +
1

𝜇̃
             (32) 

8. Mathematical description 

Consider the characteristics presented by a set of 𝑘 traffic signals in (𝐹𝑀/𝐹𝐸𝑘/1): (∞/𝐹𝐶𝐹𝑆) fuzzy queuing system. 

To investigate the system as a queuing problem, we will use the terms to signify the customer's (vehicles) arrival rate 

per minute and denote the service rate per minute (i.e., for a shorter amount of time, the traffic signals will look green, 

permitting vehicles to start moving in under a minute.). After that, assume an endless source population, a limitless 

queue length, and an FCFS queue discipline. In the examination of the queuing problem associated with 𝑘 traffic 

signals, each of the output parameters 𝑁𝑞 & 𝑁𝑞
′ , 𝑇̃𝑞 & 𝑇̃𝑞

′ , 𝑁𝑠 & 𝑁𝑠
′  and 𝑇̃𝑠  & 𝑇̃𝑠

′ is skeptical. Let 𝑘 =  2 (i.e., a queuing 

system with two traffic signals), and the customer (vehicle) arrival rate per minute is 𝜆̃ = 3 and 𝜇 = 13 (i.e., thirteen 

vehicles are permitted to move through the system in one minute) for the sake of convenience. 

8.1 Single server fuzzy Erlang queuing model with infinite capacity  

Consider an automated process in which the service is divided into two phases, with an arrival rate 𝜆̃ = (2,3,4) and 

service rate 𝜇 = (12,13,14) with 𝑘 = 2. Determine the TFN in the form of (𝑚̃, 𝛼̃, 𝛽̃) as 𝜆̃ = (3,1,1) and 𝜇 =
(13,1,1). To determine the values of a no. of customers and their sojourn time in the queue as well as a system 

respectively using suitable formulas among (29), (30), (31), & (32). It is necessary to use the appropriate arithmetic 
operations described in (1), (2), (3), (4), and (5) for add, sub, multiply, divide, and scalar multiply, respectively. For 

instance, the value of  𝑁𝑞 is calculated and given in Appendix A. 

 

The metrics of performance are calculated and tabulated in Table 1. 

 

 

Table 1: Performance Measures using triangular fuzzy numbers 

S. No Parameters Quantifiable Metrics 

Using TFN 

1 𝑁𝑞 (−0.9481,0.0519,1.0519) 

2 𝑁𝑠 (−0.7174,0.2826,1.2826) 

3 𝑇̃𝑞 (−0.9827,0.0173,1.0173) 

4 𝑇̃𝑠 (−0.9058,0.0942,1.0942) 

 

8.2. Single server fuzzy Erlang queuing model with infinite capacity  
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Consider an automated process in which the service is divided into two phases, with an arrival rate 𝜆̃′ = (2,3,4; 1,3,5) 
and service rate 𝜇′ = (12,13,14;11,13,15) with 𝑘 = 2. Determine the TIFN in the form of (𝑚, α, β;𝑚, α′, β′) as 𝜆̃′ =
(3,1,1; 3,2,2) and 𝜇′ = (13,1,1; 13,2,2). To determine the values of a no. of customers and their sojourn time in the 

queue as well as a system respectively using suitable formulas among (29), (30), (31), & (32). It is necessary to use 

the appropriate arithmetic operations described in (6), (7), (8), (9), and (10) for add, sub, multiply, divide, and scalar 

multiply, respectively. For instance, the value of 𝑁𝑞
′  is calculated and given in Appendix B. 

The metrics of performance are calculated and tabulated in Table 2. 

Table 2: Performance Measures using triangular intuitionistic fuzzy numbers 

S. No Parameters Quantifiable Metrics Using TIFN 

1 𝑁𝑞
′  (−0.9481,0.0519,1.0519;−1.9481,0.0519,2.0519) 

2 𝑁𝑠
′  (−0.7174,0.2826,1.2826;−1.7174,0.2826,2.2826) 

3 𝑇̃𝑞
′  (−0.9827,0.0173,1.0173;−1.9827,0.0173,2.0173) 

4 𝑇̃𝑠
′ (−0.9058,0.0942,1.0942;−1.9058,0.0942,2.0942) 

 

The following figures depict the visualizations of Tables 1 and 2. 

 

Figure 2: Number of vehicles in the queue 𝑁𝑞
 

 

 

Figure 3: Number of vehicles in the system 𝑁𝑠 

  
Figure 4: Waiting time of vehicles in the queue 𝑇̃𝑞 

 
Figure 5: Waiting time of vehicles in the system 𝑇̃𝑠 
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Figure 6: The membership(𝜇) and the non-

membership(𝛾̃) functions of the number of vehicles in 

the queue 𝑁𝑞
′  

”  

Figure 7: The membership(𝜇) and the non-

membership(𝛾̃) functions of the number of vehicles 

in the system 𝑁𝑠
′  

 

Figure 8: The membership(𝜇) and the non-

membership(𝛾̃) functions of waiting time of vehicles 

in the system 𝑇̃𝑠
′ 

 
Figure 9: The membership(𝜇) and the non-

membership(𝛾̃) functions of waiting time of vehicles 

in the queue 𝑇̃𝑞
′

9. Results and Conclusions 

The results are presented in Tables 1-2, which illustrate distinct assessments for a variety of membership functions 

(TFN and TIFN). 

i) The mean value of  𝑁𝑞 = 0.0519 and the left spread and right spread values are −0.9481 and 

1.0519 respectively signalling that the queue length of the vehicles is closely between −0.9481 and 1.0519. 

Its most typical value is 0.0519. 

ii) The mean value of  𝑁𝑠 = 0.2826 and the left spread and right spread values are −0.7174 and 1.2826 

respectively signalling that the system length of the vehicles is closely between −0.7174 and 1.2826. Its 

most typical value is 0.2826. 

iii) The mean value of  𝑇̃𝑞 = 0.0173 and the left spread and right spread values are −0.9827 and 

1.0173 respectively signalling that the waiting time of the vehicles in the queue is closely between −0.9827 

and 1.0173. Its most typical value is 0.0173(1 second). 

iv) The mean value of  𝑇̃𝑠 = 0.0942 and the left spread and right spread values are −0.9058 and 1.0942 

respectively signalling that the waiting time of the vehicles in the system is closely between −0.9058 and 

1.0942. Its most typical value is 0.0942(6 seconds). 
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v) The mean value of  𝑁𝑞
′ = 0.0519 and the left and right fuzziness of the membership(𝜇) functions are 

−0.9481 and 1.0519 respectively and the left and right fuzziness of non-membership(𝛾̃) functions are 

−1.9481 and 2.0519 respectively. Its most typical value is 0.0519. 

vi) The mean value of  𝑁𝑠
′ = 0.2826 and the left and right fuzziness of the membership(𝜇) functions are 

−0.7174 and 1.2826 respectively and the left and right fuzziness of non-membership(𝛾̃) functions are 

−1.7174 and 2.2826 respectively. Its most typical value is 0.2826. 

vii) The mean value of  𝑇̃𝑞
′ = 0.0173 and the left and right fuzziness of the membership(𝜇) functions are 

−0.9827 and 1.0173 respectively and the left and right fuzziness of non-membership(𝛾̃) functions are 

−1.9827 and 2.0173 respectively. Its most typical value is 0.0173(1 second). 

viii) The mean value of  𝑇̃𝑠
′ = 0.0942 and the left and right fuzziness of the membership(𝜇) functions are −0.9058 

and 1.0942 respectively and the left and right fuzziness of non-membership(𝛾̃) functions are −1.9058 and 

2.0942 respectively. Its most typical value is 0.0942(6 seconds). 

10. Conclusion 

IFS appears to have some propensity for Decision Making Problems. Decision-makers may be unable to properly 

communicate their opinions on the situation in some cases due to a lack of meticulous, reliable, or precise information 

about the problem or because they are reluctant explicitly delineate the degree to which one alternative is preferable 

to others. The decision-maker may exhibit certain preferences for alternatives in some cases, but it's possible that they 
aren't completely convinced. Many academics have concentrated on IFS theory to address the demand for optimization 

issues involving ambivalence and inconsistency.  

The (𝐹𝑀/𝐹𝐸𝑘/1): (∞/𝐹𝐶𝐹𝑆) queuing model is investigated in this work using the algebraic operations technique. 

Assume that the arrival and service times are ambiguous. The results of this procedure are also a little hazy. This 

technique's effectiveness is demonstrated numerically. It has been discovered that boosting the confluence of variables 

can enhance the success of the lining model. The proposed model will aid enterprises, distributors, and merchants in 

properly determining the queuing system's optimal performance indicators. There are several ways to expand the scope 

of the report. One of them is to interpret the arrival rate and service rate as a fluctuating random variable or fuzzy 

random variable. Furthermore, it is widely known in the fuzzy logic literature that analytical conclusions derived in 

an intuitionistic fuzzy environment are more beneficial for software developers and programmers than those acquired 

in a fuzzy model since they are more realistic and instructive. 
The mean queue and system lengths, as well as the mean sojourn time of a single server fuzzy queue in an Erlang 

service and system with unlimited capacity, are interpreted in this study. The fuzzy and intuitionistic fuzzy queue 

under the Erlang service rate is more precisely stated, and the prediction model is used to provide scientific results. 

TFN and TIFN numerical descriptions are used to assess the soundness of the proposed queuing system. The 

intuitionistic fuzzy queuing model is substantially more productive and convenient in assessing and evaluating 

measures of queuing models because this intuitionistic fuzzy theory is more flexible and scalable. Fuzzy results deliver 

a range of solutions, whereas intuitionistic fuzzy results provide a broader range of solutions. Hence the decision-

makers can choose the best among the worst in an uncertain environment. The analysis's research shows that the fuzzy 

queuing model's performance measurements fall within the ballpark of the intuitionistic fuzzy queuing model's 

estimated performance measures. As a result, intuitionistic fuzzy queuing is one of the better ways of computing 

assessment tasks since the information compiled from the application is easier to grasp and interpret, according to this 
study. In the future, the proposed queuing model may eventually be expanded to include multiple objectives in Erlang. 

The proposed model can be used to explore new facets of intuitionistic set extensions like neutrosophic sets. 
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Appendix A 

The mean no. of customers in the queue,  𝑁𝑞 =
𝑘+1

2𝑘

𝜆̃2

𝜇̃(𝜇̃−𝜆̃)
     (From 29) 

Since the value of 𝜆̃ = (3,1,1), 𝜇 = (13,1,1) and 𝑘 = 2, the value of 𝑁𝑞 is calculated as follows: 

 𝑁𝑞 =
3

4

(3,1,1)2

(13,1,1)(10,1,1)
 

 𝑁𝑞 = (0.75)
(9,1,1)

(130,1,1)
 

𝑁𝑞 = (0.75)(0.0692,1,1) 

𝑁𝑞 = (0.0519,1,1) 

𝑁𝑞 = (−0.9481,0.0519,1.0519) 

Similarly, calculate the remaining parameters for the fuzzy queuing model. 

Appendix B 

Since the value of 𝜆̃′ = (3,1,1; 3,2,2), 𝜇′ = (13,1,1; 13,2,2) and 𝑘 = 2, the value of 𝑁𝑞
′  is calculated as follows: 

𝑁𝑞
′ =

3

4

(3,1,1; 3,2,2)2

(13,1,1; 13,2,2)(10,1,1; 10,2,2)
 

𝑁𝑞
′ =

3

4
 

(9,1,1; 9,2,2)

(130,1,1; 130,2,2)
 

𝑁𝑞
′ =

(27,1,1; 27,2,2)

(520,1,1; 520,2,2)
 

𝑁𝑞
′ = (0.0519,1,1; 0.0519,2,2) 

𝑁𝑞
′ = (−0.9481,0.0519,1.0519;−1.9481,0.0519,2.0519) 

Similarly, calculate the remaining parameters for the intuitionistic fuzzy queuing model. 


