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Abstract  

 

Panel data is commonly used for the numerical response variables, while the literature for forecasting categorical 

variables on the panel data structure is limited. This study aimed to forecast multiclass or categorical variables on 

the panel data structure. The proposed forecasting models were autoregressive multinomial logit and autoregressive 

C5.0 Decision Tree. We add autoregressive effects and fixed predictor variables such as location, time, and dummy 

of the month into models. The autoregressive effect ∑ 𝜙𝑙,𝑐
𝑞
𝑙=1 𝑦𝑖,𝑡−𝑙 was assumed to be a fixed effect and treated as 

a dummy variable. The data used was the category of land conditions through the Area Sampling Frame (ASF) 

survey conducted by Statistics Indonesia. The evaluation of both models was based on classification and forecasting 

performance. Classification performance was obtained by dividing the dataset into 75% training data for modeling 

and 25% test data for validation and then repeated 200 times. The classification results showed that the 

autoregressive C5.0 accuracy was 86.48%, while the multinomial logit was 83.97%. A comparison of forecasting 

performance was obtained by dividing the data into training and testing based on the time sequence. The result 
showed that the forecasting performance is not as good as the classification performance. Autoregressive C5.0 had 

a forecasting accuracy of 77.43%, while autoregressive multinomial logit had 77.77%. This research has 

contributed to forecasting multi-categorical response variables on the panel data structure for the next period using 

autoregressive multinomial logit and C5.0. 
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1. Introduction 

 

Panel data is cross-sectional unit data observed in several consecutive periods (time series). One of the advantages of 

panel data is that it can provide more information than just cross-section or time-series data. If N units of observation 

are observed for T units of time, then the total unit of observation in the panel data is NT, so the panel data provides 

a larger amount of data. This causes the degree of freedom to increase. 

The panel data structure consists of the response and predictor variables nested in cross-section and time-series units. 

Suppose 𝑖 is the unit cross-section (𝑖 =  1, 2, … , 𝑁), 𝑡 is the time-series (𝑡 =  1, 2, … , 𝑇), 𝑦𝑖𝑡 is the observed value of 

the response variable from the 𝑖-th unit and is observed at 𝑡-th time, 𝑥𝑖𝑡 is a predictor variable from the 𝑖-th unit and 

the 𝑡-th time. The panel data modeling can consider the effect of location and time. Panel data modeling can also 

include autoregressive (AR) effects called dynamic panel data with the equation: 𝑔(𝐸(𝑦𝑖𝑡)) = 𝛼 + ∑ 𝜙𝑖
𝑝
𝑙=1 𝑦𝑖𝑡−𝑙 +

𝜏𝑖 + 𝛿𝑡 + ∑ 𝜃𝑗𝑥𝑖𝑡
𝑘
𝑗=1  where 𝜏𝑖 is the dummy effect of the 𝑖-th location and 𝛿𝑡 is the dummy effect of the 𝑡-th time 
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(Ardiansyah et al., 2021). Suppose the past values of the dependent variable affect the present and subsequent values. 

In that case, it is better to use a dynamic panel data model rather than a non-dynamic panel model (Pasha et al., 2007).  

The development of panel data literature has increased rapidly in recent years, including non-linear panel data, high-

dimensional panel data, factor models in economics and finance, pseudo panel, and many others (Sarafidis and 

Wansbeek, 2021). Panel data development generally aims to increase the precision of statistical inference by dealing 
with statistical problems (Saeed and Aslam, 2016; Juodis and Sarafidis, 2020; Khan et al., 2021). 

The panel data also has the potential for forecasting response variables in the future. The problem is that the literature 

on panel data is mainly in the form of numerical response variables. In contrast, the literature on panel data for 

categorical response variables still needs to be covered. Moreover, the literature on panel data for forecasting multi-

categorical response variables is difficult to find. This motivates the author to forecast multi-categorical response 

variables on the panel data structure for the next period. 

The research question is how to forecast multi-categorical variables on panel data with many classes. One of the issues 

in modeling categorical variables that gets much attention is how to get better accuracy. This problem becomes more 

complicated when the number of categories increases or multiclass. In the basic scenario of multiclass classification, 

it is assumed that only one class label is assigned to each observation. This study raises the problem of forecasting 

multi-categorical response variables on panel data structures with many classes. 

Forecasting is essential because it is helpful for government and company policies. Forecasting gives a picture of what 
will happen in the future -for example, forecasting multi-category variables resulting from the Area Sampling Frame 

(ASF) survey. Forecasting using ASF data is helpful for the government as a policy basis for calculating the potential 

for rice harvested area. The government can determine the potential scarcity and excess of national rice, including the 

policy on the number of rice imports needed. 

This study aimed to forecast multiclass or categorical variables on the panel data structure. The proposed forecasting 

models are autoregressive multinomial logit and autoregressive C5.0 Decision Tree. Adding an autoregressive effect 

is the strategy applied so that both models can be used for forecasting. In addition, the effects of location, time, and 

dummy of the month are added to improve accuracy. The model can forecast the next month because all predictors 

are available in the case of panel data with an autoregressive effect. The predicted value of the previous lag response 

variable (�̂�𝑖𝑡−𝑙) can be used to forecast two months or more. Meanwhile, the effect of location, time, and month's 
dummy is fixed to be directly used for forecasting without pre-estimation. 

 

2. Proposed Methods 

2.1 Autoregressive Multinomial Logit 

The autoregressive multinomial logit model develops the multinomial logit model by adding an autoregressive effect. 

The model can be applied to the panel data structure. The response variable in this model is assumed to follow a 

multinomial distribution. This model can forecast multiclass on panel data. Suppose 𝒚 = (𝑦1, 𝑦2, . . . , 𝑦𝐾) is a set of 

random variables representing the number of events. 𝑦𝑘 ∈ {0, … , 𝑛} represents the number of 𝑘-th events in 𝑛 

independent trials. Suppose 𝜋𝑘 represents the probability of the 𝑖-th event that occurs in any given experiment. The 

multinomial logit model deals with one nominal/ ordinal response variable with more than two categories, whether 

nominal or ordinal (Abdalla, 2012). The multinomial probability mass function is 

𝑝(𝑦|𝜋) =
𝑛!

𝑦1! 𝑦2! … 𝑦𝐾!
𝜋1

𝑦1𝜋2
𝑦2 … 𝜋𝐾

𝑦𝐾  

= exp {𝑦1log(𝜋1) + ⋯ + 𝑦𝐾log(𝜋𝐾) + log (
𝑛!

𝑦1! 𝑦2! … 𝑦𝐾!
)} 

= exp {∑ 𝑦𝑘 log𝜋𝑘

𝐾

𝑘=1

+ log (
𝑛!

𝑦1! 𝑦2! … 𝑦𝐾!
)}                                               (1) 

There are two constraints in multinomial logit modeling: ∑ 𝑦𝑘
𝐾
𝑘=1 = 𝑛  and 𝑦𝐾 = 𝑛 −  ∑ 𝑦𝑘

𝐾−1
𝑘=1 , so that  𝑦𝐾 = 𝑛 −

 ∑ 𝑦𝑘
𝐾−1
𝑘=1  and 𝜋𝐾 = 1 − ∑ 𝜋𝑘

𝐾−1
𝑘=1 , then 

∑ 𝑦𝑘log𝜋𝑘 

𝐾

𝑘=1

 = (∑ 𝑦𝑘 

𝐾−1

𝑘=1

+ 𝑦𝐾) log(𝜋𝑘) 



Pak.j.stat.oper.res.  Vol.19  No. 1 2023 pp 145-154  DOI: http://dx.doi.org/10.18187/pjsor.v19i1.4053 

 

 
Multiclass Forecasting on Panel Data Using Autoregressive Multinomial Logit and C5.0 Decision Tree 147 

 

= ∑ 𝑦𝑘log𝜋𝑘 

𝐾−1

𝑘=1

+ (𝑛 − ∑ 𝑦𝑘  

𝐾−1

𝑘=1

) log (1 − ∑ 𝜋𝑘  

𝐾−1

𝑘=1

) 

= ∑ log (
𝜋𝑘

1 − ∑ 𝜋𝑘  𝐾−1
𝑘=1

) 𝑦𝑘 

𝐾−1

𝑘=1

+ 𝑛log (1 − ∑ 𝜋𝑘  

𝐾−1

𝑘=1

)                             (2) 

Substitute (2) into (1) and note the constraint 𝜋𝐾 = 1 − ∑ 𝜋𝑘
𝐾−1
𝑘=1  then log (

𝜋𝑘

1−∑ 𝜋𝑘  𝐾−1
𝑘=1

) = log (
𝜋𝑘

𝜋𝐾
), so 

𝑝(𝑦|𝜋) = exp {∑ log (
𝜋𝑘

𝜋𝐾

) 𝑦𝑘 

𝐾−1

𝑘=1

+ 𝑛log(𝜋𝐾) + log (
𝑛!

𝑦1! 𝑦2! … 𝑦𝐾!
)}. 

Suppose category 𝐾 is the baseline; then there are as many as 𝐾 − 1 logit equations. Suppose 𝜃𝑘 = log (
𝜋𝑘

𝜋𝐾
), then 

𝑒𝜃𝑘 =
𝜋𝑘

𝜋𝐾
 so that 𝜋𝑘 = 𝜋𝐾𝑒𝜃𝑘. Using the fact that 𝜋𝐾 = 1 − ∑ 𝜋𝑘 𝐾−1

𝑘=1 then 

𝜋𝑘 =
𝑒𝜃𝑘

1+∑ 𝑒𝜃𝑘𝐾−1
𝑘=1

                                                                                           (3)                                                           

The autoregressive multinomial logit on panel data can be written as follows: 

 𝑔(E(𝑌𝑖𝑡)) = 𝑙𝑛 (
𝜋(𝑦𝑖𝑡=𝑘)

𝜋(𝑦𝑖𝑡=𝐾)
) = ∑ 𝜙𝑙,𝑘

𝑞
𝑙=1 𝑦𝑖,𝑡−𝑙 + 𝜏𝑠 + 𝛿𝑚 + ∑ 𝜃𝑗𝑥𝑖𝑗,𝑡

𝑝
𝑗=1                                   (4) 

where 𝑖 is the cross-section unit (𝑖 =  1, 2, … , 𝑁). 𝑡 is the time-series unit (𝑡 =  1, 2, … , 𝑇). 𝜏𝑠 is the dummy effect of 

location groups (segment) and 𝛿𝑚 is the dummy effect of the time groups (month). 𝑦𝑖𝑡 is the observed value of the 

response variable from the 𝑖-th unit and the 𝑡-th time. 𝑥𝑖𝑡  is the predictor variable of the 𝑖-th unit and the 𝑡-th time. 

The autoregressive effect ∑ 𝜙𝑙,𝑐
𝑞
𝑙=1 𝑦𝑖,𝑡−𝑙 is assumed to be a fixed effect and treated as a dummy variable. Thus, our 

proposed forecasting models in matrix notation are 

𝑔(𝐸(𝒀)) = 𝑿𝜷                                                                            (5) 

where 𝑿 = [

1 𝑦1,0 … 𝑥1𝑝,1

⋮ ⋮ … ⋮
1 𝑦𝑁,𝑇−1 … 𝑥𝑁𝑝,𝑇

], and 𝜷 = (𝛽0,𝑐 , 𝜙1,𝑐 , 𝝉𝑠 , 𝜹𝑚 , 𝜽𝑝)
𝐓
. The parameters in the model (5) are estimated 

using the Fisher Scoring algorithm 𝜷𝑘 = 𝜷𝑘−1 + (𝐗′𝐖𝐤−𝟏𝐗)−1𝐗′(𝐘 − 𝒏𝝅𝒌−𝟏), where 𝐖 is the diagonal matrix 

(𝑛𝑖𝑡𝜋𝑖𝑡(1 − 𝜋𝑖𝑡)), or it can be reformulated with iterative reweighted least-squares (IRLS) (Dutang, 2017) by replacing 

the matrix 𝐔 = 𝐗′(𝐘 − 𝒏𝝅𝒌−𝟏) with a Score Function 𝐒(𝜷𝒌−𝟏) = 𝐗′𝐖𝐤−𝟏(𝐗𝜷𝒌−𝟏 + (𝒀 − 𝒏𝝅𝒌−𝟏)[𝒏𝝅𝒌−𝟏(𝟏 −

𝝅𝒌−𝟏)]
−𝟏

, so the Fisher Scoring algorithm becomes 𝜷𝑘 = 𝜷𝑘−1 + (𝐗′𝐖𝐤−𝟏𝐗)−1𝐒(𝜷𝒌−𝟏). Wald test can be used to 

test for the significance of parameters. If 𝐻0: 𝜷 = 𝛿, then Wald's test statistic: 𝑧 =
𝛽𝑘−𝛿

𝑆𝑒(�̂�)
  where 𝑆𝑒(�̂�) = [

𝑆𝑒(�̂�0)
⋮

𝑆𝑒(�̂�𝑝−1)
]. 

𝑧2 is approximated by a chi-square distribution with degrees of freedom 1 (Ardiansyah et al., 2021). 

2.2 Autoregressive C5.0 DT 

The C5.0 Decision Tree (DT) algorithm is an improvement from the previous algorithm, namely Iterative 

Dichotomiser 3 (ID3) and C4.5. The C5.0 algorithm forecasts multiclass by adding the autoregressive effect as a 

feature or predictor variable. In this research, the decision tree algorithm C5.0, by adding the autoregressive effect as 

a feature or predictor variable, is called Autoregressive C5.0 DT. The data structure used is the same as in the 

autoregressive multinomial logit model. 

The C5.0 algorithm has advantages over the ID3 and C4.5. Padya and Padya (2015) state that the advantages of the 

C5.0 algorithm are as follows: (a) it can anticipate which variables are relevant and which are irrelevant in the 

classification, (b) it is faster than ID3 and C4.5, (c) memory usage is more efficient than ID3 and C4.5, (d) get a 

smaller decision tree, (e) have a lower error rate so that the accuracy is better than ID3 and C4.5, (f) automatically 

allows removing unhelpful variables. 
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The working steps of the C5.0 are similar to the C4.5 algorithm. The similarities between the two include the 

calculation of entropy and information gain (IG). The difference is that the C4.5 algorithm stops until the IG, while 

the C5.0 algorithm will continue by calculating the gain ratio using the existing IG and entropy. 

The pseudocode for C5.0 is as follows. Let 𝐶 be the labeling of the required set 𝑆 with 𝑛 number of items in class 

𝐶1, . . . , 𝐶𝑟. Let 𝑝𝑖 be the probability that an item is in 𝑆 and 𝐶𝑖. The entropy of the set 𝑆 can be expressed by 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = − ∑ 𝑝𝑗log2𝑝𝑗
𝑘
𝑗=1                                                             (6) 

where 𝑆 is the case set, 𝑘 is the number of classes on feature A. 𝑝𝑗  is the probability of 𝑆𝑗  and 𝑆. For each available 

feature A, consider the set V(A) of the expected values of A, and for 𝑣 ∈ 𝑉 (A), 𝑆𝑣 is the set containing every 

component of 𝑆 with a value of 𝑣 for feature A. The IG of feature A about 𝑆 is denoted by |𝑆| and expressed as 

Information Gain (𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑
|𝑆𝑣|

𝑆
× 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣)𝑣∈𝑉 .                              (7) 

Then calculate the Gain Ratio by utilizing IG and entropy with the formula (Saeed et al., 2020):  

𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 (𝑆, 𝐴).                                      (8)  

The C5.0 algorithm uses a recursive process (repeated until certain conditions are satisfied) to create a decision tree. 

2.3 Evaluation  

The performance evaluation of the two models is measured using a comparison between the actual category value and 

its predicted value. The measure used is the accuracy and Cohen's Kappa score calculated using the Confusion matrix 

in Table 1. 

Table 1: Comparison between Actual and Predicted Data using a Confusion Matrix 

 

Actual Predicted Total 

�̂�𝑘=1 … �̂�𝑘=𝐾 

𝑦𝑘=1 𝐶11 … 𝐶1𝐾 𝑡𝑘=1 

.. … … … … 

𝑦𝑘=𝐾 𝐶𝐾1 … 𝐶𝐾𝐾 𝑡𝑘=𝐾 

Total 𝑝𝑘=1 … 𝑝𝑘=𝐾 𝑠 

The formula can calculate the accuracy and Cohen's Kappa score:  

Accuracy =
∑ 𝐶𝑘𝑘

𝐾
𝑘

𝑠
;  

Cohen's Kappa score =
(∑ 𝐶𝑘𝑘

𝐾
𝑘 )×𝑠−∑ 𝑝𝑘×𝑡𝑘

𝐾
𝑘

𝑠2−∑ 𝑝𝑘×𝑡𝑘
𝐾
𝑘

;                                                     (9) 

where 𝑠 = ∑ ∑ 𝐶𝑖𝑗
𝐾
𝑗

𝐾
𝑖  is the total number of elements; 𝑝𝑘 = ∑ 𝐶𝑘𝑖

𝐾
𝑖  is the number of times class 𝑘 is predicted (column 

total); 𝑡𝑘 = ∑ 𝐶𝑖𝑘
𝐾
𝑖  is the number of times class 𝑘 occurred (rows total) (Grandini et al., 2020). 

3. Real Data Modeling 

In this study, the real data for modeling is the category of land conditions through the Area Sampling Frame (ASF) 

survey conducted by Statistics Indonesia. The ASF methodology is based on a collaboration between Statistics 

Indonesia and the Agency for the Assessment and Application of Technology through technology-based agricultural 

statistical data collection activities. The ASF survey aims to estimate the harvested area by extrapolating the sample 

to the population. 

The population in ASF is the entire mainland of Indonesia. The population is divided into 4 sub-populations, namely 

strata-0, strata-1, strata-2, and strata-3. Each stratum is divided into large rectangular blocks measuring 6×6 km2, and 

then each large block is further divided into 400 squares (segments) of 300×300 m2. A sample is a segment measuring 

300×300 m2. Each segment is divided into 9 grids measuring 100×100 m2.  
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Statistics Indonesia takes the sample in two stages. The primary sampling unit is the segment. The secondary sampling 

unit is the 9 midpoints of the grid (BPS, 2018). ASF officers observe the observation points on the last 7 days of each 

month. The technology used is an android mobile phone that has been installed with the ASF application to take 

pictures and determine the growing phase of rice or other land conditions.  
 

Harvested area of strata-ℎ is the multiplication between the proportion of the harvests and an area of strata-ℎ. The 

average proportion of harvests in strata-ℎ is obtained by the formula �̅�ℎ =
1

𝑛ℎ
∑ 𝑝𝑖

𝑛ℎ
𝑖=1 , ℎ = 1,2,3 where 𝑝𝑖 is the 

proportion of harvest in the segment-𝑖. �̅�ℎ is the proportion of harvest in strata-ℎ. 𝑛ℎ is the number of segment instances 

in the strata-ℎ.  
 

The results of the ASF observations were 8 land condition labels which were then recoded into 9 land condition labels. 

The harvest and the post-harvest (rice fallow cropland areas) codes were the same. It was necessary to separate the 

harvest code from the post-harvest code to calculate the proportion of the harvested area. The land condition labels 

became the response variables in this study. The description of the response variable labels can be seen in Table 2. 
 

Table 2: ASF Survey Category Codes  

Labels 
Example of 

label pictures 
Labels description 

0 

 

Rice field preparation 

1 

 

Early vegetative phase: the growth phase of rice plants from the 

beginning of planting to maximum tillers 

2 

 

The late vegetative phase: the growth phase of the rice plant starting 

from the maximum tiller until before the panicle emerges 

3 

 

The generative phase: the growing phase of the rice plant starting from 
panicle exit, maturation until before harvest 

4 

 

Rice crop harvest: the phase when rice is being or has been harvested 

5 

 

Post-harvest: rice fallow cropland areas 

6 

 

Crop failure: damaged rice fields or unproductive rice 

7 

 

Non-paddy agricultural land 

8 

 

Not agricultural land 

Table 2 shows 9 categories of land status collected in the ASF survey. Codes 0 to 5 can have an ordinal pattern. While 

codes 6 to 8 do not include ordinal. Therefore, the data collected on the ASF survey can be semi-ordinal. 

The challenge in forecasting the rice growth phase in this study is the various ages of rice. There are short-lived rice 

plants; some are long-lived, even up to six months. This causes the length of each phase of rice growth to be different. 

There are several fields whose land preparation takes up to 2 months. Some fields have a vegetative phase of up to 3 

months. Even the age of rice plants in some fields is up to 6 months. This is expected to cause the level of classification 

accuracy to be not optimal.  
 

The research location is in Seruyan, Central Kalimantan Province. The data collected has a panel data structure that 

combines location points as a cross-section unit and the month of observation as a time series. There are N=144 
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observation points as cross-section units. Each observation point was observed for T=40 months from September 2018 

to December 2021. The distribution of observation points for the ASF Survey in Seruyan can be seen in Figure 1. 

 

 

 

 

 

 

 

 

 

 

Figure 1: ASF Survey Observation Points in Seruyan-Indonesia, 2021 

ASF officers observe the sample points in Figure 1 at the end of each month. The coordinates of the selected 

observation points in Figure 1 are locked to take pictures, so officers must visit the ASF sample locations. After the 

data is obtained, arrange the data into the panel data structure presented in Table 3.  

Table 3: Data Structure for Panel Data Model 

𝑖 𝑡 𝑦𝑖,𝑡  𝑦𝑖,𝑡−1 
Strata Time Groups 

(Month) 

Location Groups 

(Segment) 

Used as 

1 1 𝑦1,1 𝑦1,0 S1 January Segment 1 

Training data in 

forecasting models 

2 1 𝑦2,1 𝑦2,0 S2 January Segment 1 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ 
n 1 𝑦𝑛,1 𝑦𝑛,0 S2 January Segment S 

1 2 𝑦1,2 𝑦1,1 S1 February Segment 1 

2 2  𝑦2,2  𝑦2,1 S2 February Segment 1 

⋮ ⋮ ⋮ ⋮  ⋮  ⋮ 
n 2 𝑦𝑛,2 𝑦𝑛,1 S2 February Segment S 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
1 t 𝑦1,𝑡 𝑦1,𝑡−1 S1 December Segment 1 

2 t 𝑦2,𝑡 𝑦2,𝑡−1 S2 December Segment 1 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ 
n t 𝑦𝑛,𝑡 𝑦𝑛,𝑡−1 S2 December Segment S 

1 t+1 �̂�1,𝑡+1 𝑦1,𝑡 S1 January Segment 1 

Testing data in 

forecasting models 

2 t+1 �̂�2,𝑡+1 𝑦2,𝑡 S2 January Segment 1 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ 
n t+1 �̂�𝑛,𝑡+1 𝑦𝑛,𝑡 S2 January Segment S 

1 t+2 �̂�1,𝑡+2 �̂�1,𝑡+1 S1 February Segment 1 

2 t+2 �̂�2,𝑡+2 �̂�2,𝑡+1 S2 February Segment 1 

⋮ ⋮ ⋮ ⋮  ⋮  ⋮ 
n t+2 �̂�𝑛,𝑡+2 �̂�𝑛,𝑡+1 S2 February Segment S 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

MAP OF INDONESIA  

100 × 100 m2 

The midpoint 

of the grid 

MAP OF 
SERUYAN 
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Table 3 shows the five predictor variables used for forecasting: response variables in the previous lag, location (𝑖), 
time (𝑡), stratification, time groups (month), and location groups (segment). The model can forecast the next time 

because all predictors are available. The predicted value of the previous lag response variable (�̂�𝑖𝑡−𝑙) can be used to 
forecast two months or more. The effects of location, time, stratification, and month are fixed to be directly used for 

forecasting without pre-estimation.  

The modeling is done with R software. There are two libraries used, namely library(nnet) by Ripley and Venables 

(2022) and library(C50) by Kuhn et al. (2022). The classification performance is measured based on 75% training 

data, validated using 25% testing data, and repeated 200 times (Ardiansyah et al., 2022). The forecasting performance 

was obtained by dividing the dataset into training and testing based on the time sequence. The modeling uses past 

data, while the validation uses the following data. For example, modeling is carried out using monthly data from 2018 

to 2020. Then forecasting is carried out for monthly data in 2021. 

4. Results  

4.1 Classification Performance Comparison 

Accuracy and Cohen's Kappa score measure the comparison of classification performance. Classification modeling 

uses 75% training data, validation uses 25% test and is repeated 200 times. The comparison of classification 

performance can be seen in Table 4. 

Table 4: Descriptive Statistics of Accuracy and Cohen's Kappa Score between models 

Statistics Autoregressive multinomial logit Autoregressive C5.0 DT 

Accuracy Kappa Accuracy Kappa 

Mean 0.8397 0.8056 0.8648 0.8365 

Median 0.8405 0.8080 0.8647 0.8368 

Min 0.8120 0.7736 0.8462 0.8153 

Max 0.8590 0.8281 0.8882 0.8652 

Range 0.0470 0.0545 0.0420 0.0499 

Std. dev 0.0083 0.0097 0.0082 0.0097 

Table 4 shows that autoregressive C5.0 DT has better average accuracy than autoregressive multinomial logit. The 

average accuracy of autoregressive C5.0 is 0.8648, while the autoregressive multinomial logit is 0.8397. This is in 

line with the Kappa score comparison. Autoregressive C5.0 has an average Kappa score of 0.8365, higher than the 

autoregressive multinomial logit of 0.8056. To see whether there are outliers or the stability of the model is presented 

in Figure 2. 

  

Figure 2: Comparison of the Boxplot Level of Accuracy and Cohen's Kappa Score between Autoregressive 

Multinomial Logit and Autoregressive C5.0 DT 
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Figure 2 shows that Autoregressive C5.0 DT is more stable than autoregressive multinomial logit. There are 2 outliers 

in the autoregressive multinomial logit model from 200 repetitions. Thus, it shows that the performance of land 

condition classification using autoregressive C5.0 DT is better than autoregressive multinomial logit. 

4.2 Forecasting Performance Comparison 

Comparison of forecasting performance is measured based on accuracy and Cohen's Kappa score. The modeling uses 

data from September 2018 to June 2021 as training data and from July to December 2021 as testing data. The 

description of training and testing data can be seen in Table 3. The first is to forecast using the autoregressive 

multinomial logit model. Category 0 is the baseline. The response variable is multinomial with 9 categories presented 

in Table 3, so there are 8 logit equations. Therefore, the number of estimated parameters is 37×8 equations = 296 

parameters presented in Table 5. 

Table 5: Autoregressive Multinomial Logit Equations 

Logit  Predictors 

ln (
𝜋(𝑦𝑖𝑡 = 1)

𝜋(𝑦𝑖𝑡 = 0)
) = −5.08 + 14.14�̂�𝑖𝑡−1(1) − 7.76�̂�𝑖𝑡−1(2) + 11.76�̂�𝑖𝑡−1(3) + 1.26 �̂�𝑖𝑡−1(4) − 1.39�̂�𝑖𝑡−1(5) − 0.58�̂�𝑖𝑡−1(6) 

−1.01�̂�𝑖𝑡−1(7) + 0.64�̂�𝑖𝑡−1(8) + 4.11Apr + 2.98Dec + 5.79Feb + 5.31Jan + 2.41Jul +   4.85Jun + 5.73Mar 

+3.93May + 2.56Nov +  2.99Oct − 4.99Sep + 0.91Loc2 − 1.01Loc3 + 0.43Loc4 + 0.49Loc5 + 0.14Loc6 

+0.50Loc7 + 2.68Loc8 + 1.67Loc9 + 2.80Loc10 + 0.80Loc11 + 0.16Loc12 + 1.86Loc13 + 2.08Loc14 

+1.71Loc15 + 2.07Loc16 + 1.46S2 + 0.02time         

ln (
𝜋(𝑦𝑖𝑡 = 2)

𝜋(𝑦𝑖𝑡 = 0)
) = −8.26 + 17.82�̂�𝑖𝑡−1(1) + 19.22�̂�𝑖𝑡−1(2) + 10.72�̂�𝑖𝑡−1(3) − 9.35 �̂�𝑖𝑡−1(4) − 11.59�̂�𝑖𝑡−1(5) + 0.31�̂�𝑖𝑡−1(6) 

+0.86�̂�𝑖𝑡−1(7) + 1.33�̂�𝑖𝑡−1(8) + 6.97Apr + 2.96Dec + 5.97Feb + 5.42Jan + 3.78Jul + 5.79Jun + 6.62Mar 

+5.05May + 0.98Nov − 10.34Oct + 0.65Sep − 0.24Loc2 − 1.68Loc3 − 1.00Loc4 − 0.69Loc5 + 0.36Loc6 

+1.16Loc7 + 3.19Loc8 + 3.20Loc9 + 4.74Loc10 + 0.09Loc11 + 1.23Loc12 + 2.73Loc13 + 3.31Loc14 

+2.08Loc15 + 3.06Loc16 + 2.48S2 + 0.02time         

ln (
𝜋(𝑦𝑖𝑡 = 3)

𝜋(𝑦𝑖𝑡 = 0)
) = −15.70 + 24.90�̂�𝑖𝑡−1(1) + 30.18𝑦𝑖𝑡−1(2) + 29.97�̂�𝑖𝑡−1(3) − 0.75 �̂�𝑖𝑡−1(4) − 0.38�̂�𝑖𝑡−1(5) − 5.06�̂�𝑖𝑡−1(6) 

+0.16�̂�𝑖𝑡−1(7) + 3.01�̂�𝑖𝑡−1(8) + 5.42Apr − 2.68Dec + 3.87Feb + 1.45Jan + 2.36Jul + 4.75Jun + 4.13Mar 

+4.89May − 12.10Nov − 3.96Oct + 0.63Sep − 2.12Loc2 − 4.22Loc3 − 2.61Loc4 − 3.00Loc5 + 0.36Loc6 

+0.40Loc7 + 6.52Loc8 + 3.69Loc9 + 5.55Loc10 + 0.86Loc11 + 1.60Loc12 + 2.39Loc13 + 3.16Loc14 

+2.20Loc15 + 3.77Loc16 + 2.86S2 + 0.06time         

ln (
𝜋(𝑦𝑖𝑡 = 4)

𝜋(𝑦𝑖𝑡 = 0)
) = −15.75 + 16.50�̂�𝑖𝑡−1(1) + 26.84𝑦𝑖𝑡−1(2) + 31.06�̂�𝑖𝑡−1(3) + 0.29 �̂�𝑖𝑡−1(4) − 0.01�̂�𝑖𝑡−1(5) − 0.77�̂�𝑖𝑡−1(6) 

−0.99�̂�𝑖𝑡−1(7) + 1.37�̂�𝑖𝑡−1(8) + 5.59Apr − 7.07Dec + 0.40Feb − 3.11Jan + 4.04Jul + 6.30Jun + 4.13Mar 

+5.08May − 4.56Nov − 2.86Oct + 1.26Sep − 1.80Loc2 − 3.58Loc3 − 2.61Loc4 − 1.66Loc5 + 2.27Loc6 

+1.24Loc7 + 12.03Loc8 + 3.54Loc9 + 5.78Loc10 + 0.95Loc11 + 2.37Loc12 + 3.34Loc13 + 3.99Loc14 

+6.30Loc15 + 5.88Loc16 + 4.55S2 + 0.01time         

ln (
𝜋(𝑦𝑖𝑡 = 5)

𝜋(𝑦𝑖𝑡 = 0)
) = −11.61 + 10.96�̂�𝑖𝑡−1(1) + 15.50𝑦𝑖𝑡−1(2) + 17.74�̂�𝑖𝑡−1(3) + 13.15 �̂�𝑖𝑡−1(4) + 13.16�̂�𝑖𝑡−1(5) + 0.27�̂�𝑖𝑡−1(6) 

+2.10�̂�𝑖𝑡−1(7) + 5.21�̂�𝑖𝑡−1(8) + 2.06Apr − 2.08Dec − 1.44Feb − 4.90Jan + 1.65Jul + 2.72Jun + 3.28Mar 

+0.72May − 1.85Nov − 2.22Oct − 0.99Sep + 1.00Loc2 + 0.79Loc3 + 0.87Loc4 + 1.65Loc5 + 0.73Loc6 

+1.37Loc7 + 3.36Loc8 + 2.46Loc9 + 3.14Loc10 + 1.75Loc11 − 1.70Loc12 + 2.66Loc13 + 1.63Loc14 

+2.44Loc15 + 2.50Loc16 + 1.42S2 + 0.00time         

ln (
𝜋(𝑦𝑖𝑡 = 6)

𝜋(𝑦𝑖𝑡 = 0)
) = −4.59 + 15.06�̂�𝑖𝑡−1(1) + 18.57�̂�𝑖𝑡−1(2) + 19.35�̂�𝑖𝑡−1(3) − 5.18�̂�𝑖𝑡−1(4) − 5.27�̂�𝑖𝑡−1(5) + 5.66�̂�𝑖𝑡−1(6) 

−5.78�̂�𝑖𝑡−1(7) − 3.31�̂�𝑖𝑡−1(8) + 2.68Apr − 0.51Dec + 3.25Feb − 1.37Jan + 0.78Jul + 1.97Jun + 0.16Mar 

+1.25May − 1.81Nov − 3.48Oct + 0.73Sep − 2.18Loc2 − 1.92Loc3 − 1.75Loc4 − 1.66Loc5 − 0.90Loc6 

−2.28Loc7 + 4.87Loc8 + 2.79Loc9 − 3.34Loc10 − 1.34Loc11 + 2.74Loc12 − 3.35Loc13 − 4.28Loc14 

−5.13Loc15 − 3.06Loc16 − 0.89S2 + 0.02time         
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ln (
𝜋(𝑦𝑖𝑡 = 7)

𝜋(𝑦𝑖𝑡 = 0)
) = 

−20.03 + 11.68�̂�𝑖𝑡−1(1) + 10.60𝑦𝑖𝑡−1(2) + 17.05�̂�𝑖𝑡−1(3) + 16.81�̂�𝑖𝑡−1(4) + 15.31�̂�𝑖𝑡−1(5) + 15.97�̂�𝑖𝑡−1(6) 

+19.67�̂�𝑖𝑡−1(7) + 17.57�̂�𝑖𝑡−1(8) + 3.36Apr − 0.34Dec + 1.46Feb − 0.29Jan + 1.36Jul + 2.35Jun + 3.06Mar 

+1.20May − 0.72Nov + 0.87Oct − 0.62Sep + 0.17Loc2 + 0.68Loc3 + 0.68Loc4 + 1.52Loc5 + 0.80Loc6 

+1.35Loc7 + 4.85Loc8 + 3.96Loc9 + 4.02Loc10 − 0.62Loc11 + 0.98Loc12 + 2.86Loc13 + 1.53Loc14 

+1.38Loc15 − 0.25Loc16 + 1.71S2 + 0.06time         

ln (
𝜋(𝑦𝑖𝑡 = 8)

𝜋(𝑦𝑖𝑡 = 0)
) = 

−22.73 + 12.50�̂�𝑖𝑡−1(1) + 15.36𝑦𝑖𝑡−1(2) + 17.55�̂�𝑖𝑡−1(3) + 11.05�̂�𝑖𝑡−1(4) + 10.64�̂�𝑖𝑡−1(5) + 10.99�̂�𝑖𝑡−1(6) 

+11.79�̂�𝑖𝑡−1(7) + 18.19�̂�𝑖𝑡−1(8) + 4.86Apr + 0.30Dec + 1.83Feb + 0.05Jan + 2.53Jul + 3.65Jun + 4.21Mar 

+1.63May + 1.09Nov + 1.17Oct − 0.99Sep + 7.79Loc2 + 7.22Loc3 + 7.01Loc4 − 2.64Loc5 + 6.84Loc6 

+2.48Loc7 + 11.62Loc8 − 0.44Loc9 + 11.09Loc10 + 3.25Loc11 + 1.46Loc12 + 11.07Loc13 + 10.43Loc14 

+9.06Loc15 + 9.42Loc16 + 7.20S2 + 0.01time         

Table 5 shows 8 logit equations with the baseline code 0. The blue indicates that the variable is insignificant at the 5% 

significance level. As an example of interpretation, let's look at the fourth equation, namely the logit between the 

harvest phase (code 4) and land preparation (code 0). The factors that affect ln (
𝜋(𝑦𝑖𝑡=4)

𝜋(𝑦𝑖𝑡=0)
) are the autoregressive effect, 

month, location groups (segment), stratification, and time. For example, when viewed from the effect of 

autoregressive. The ln (
𝜋(𝑦𝑖𝑡=4)

𝜋(𝑦𝑖𝑡=0)
) is influenced by the early vegetative (code 1), late vegetative (code 2), and generative 

phases (code 3). In contrast, codes 4, 5, 6, 7, and 8 have no significant effect. This is logical because it is impossible 

for non-agricultural land in the previous month; the current month is coded as harvest (code 4). Or the previous month's 

crop failure (code 6), the current condition is the harvest (code 4), etc. Then, for example, seen from the month of 

observation. The months that significantly affect ln (
𝜋(𝑦𝑖𝑡=4)

𝜋(𝑦𝑖𝑡=0)
) are March, April, May, June, and July, while other 

months have no significant effect. This is because the proportion of harvests is higher in these months. 

The next is forecasting using Autoregressive C5.0 DT. The result is a sequence of variables that have an essential role 

in modeling (attribute usage): autoregressive effect; location influence; observed month effect; times effect; and 

stratification effect. The decision tree is not shown because it is so complex that it is difficult to understand visually. 

After modeling using both models, the next step is forecasting.  

The result is that the forecasting performance is worse than the classification performance. The autoregressive 

predictor used is the predicted values (�̂�𝒊𝒕−𝟏), except for forecasting the following month using the actual value. 

Autoregressive C5.0 DT has an accuracy of 77.43%, while autoregressive multinomial logit has almost the same 

accuracy, 77.77%. 

5. Conclusion 

The autoregressive multinomial logit develops the multinomial logit model by adding autoregressive effects. The 

model can be applied to forecast multiclass on panel data structures. Likewise, the autoregressive C5.0 develops the 

C5.0 algorithm by adding the autoregressive effect as a predictor variable. The first step so that the two models can 

be used for forecasting is to arrange the predictor variables according to the panel data structure in Table 3. The 

predictor variables are response variables in the previous lag, location, stratification, month of observation, and time 

sequence variables. 

Furthermore, the dataset is divided into two parts to compare the predictive stability of multiclass classification. 75% 

of the datasets were taken randomly as training data and 25% as testing data and then repeated 200 times. Modeling 

is done using training data and then validated using data testing. The ASF Survey data is used in Seruyan Regency, 

Central Kalimantan, Indonesia. The response variable is the land status categories. The autoregressive effect 

∑ 𝜙𝑙,𝑐
𝑞
𝑙=1 𝑦𝑖,𝑡−𝑙 is assumed to be a fixed effect and treated as a dummy variable.  

The performance of both models is measured based on classification and forecasting performance. The classification 

performance of autoregressive C.50 is better than the autoregressive multinomial logit. The average accuracy of the 

autoregressive C.50 is 0.8648, and the autoregressive multinomial logit is 0.8397. The Cohen's Kappa score of 

autoregressive C5.0 is 0.8365, higher than the autoregressive multinomial logit is 0.8056. The forecasting performance 
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between the two models can be almost the same. The accuracy of autoregressive C5.0 is 77.43%, while the accuracy 

of autoregressive multinomial logit is 77.77%. However, classification performance is better than forecasting 

performance. This may be due to the autoregressive predictor being the estimation value (�̂�𝑖𝑡−1). 
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