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Abstract

Two families of probability distributions are characterized through the conditional expectations of dual
generalized order statistics (dgos ) and spacing of two dgos conditioned on a non-adjacent dual
generalized order statistics. Further, some of its deductions are also discussed.
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1. Introduction

The concept of generalized order statistics (gos) has been introduced as a unified
approach to a variety of models of ordered random variables with different interpretation
(Kamps, 1995), such as ordinary order statistics, sequential order statistics, progressive
type Il censoring, record values and Pfeifer’s records. Generalized order statistics serve
as a common approach to a structural similarities and analogies. Several of these models
can be effectively applied, e.g., in reliability theory. Using this concept of gos,
Burkschat et al. (2003) introduced the concept of dual generalized order statistics ( dgos )

that enables a common approach to descending ordered random variables like reverse
ordered order statistics, lower record values etc.

Let X,,X,,...,X, be asequence of independent and identically distributed (iid) random

variable with absolutely continuous distribution function (df’) F (x) and the probability

density function (pdf) f(x), xe(a,p). Further, let neN, n=22, k2>1,
n—1

m=(my,my, - ,m,_1) € w1 M, = ij , such that y, =k+n—-r+M, >1, for all
j=r

re{l,2,...,n—1}. Then, X'(r,n,m, k), r=1,2,...,n are called dgos if their joint pdf

is given by

n—1 n—1
Kl T17; {H[F(xi)]m"f(xi)][F(xn)]k_lf(xn) (1.1)
j=1

i=1
for F'()>x,>x,>...>2x, >F ' (0).
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Here we will assume two cases:

Casel: m;=my,=---=m,_, =m.
The pdf of the pi dgos is given by (Burkschat et al., 2003)
c _ -
Fxtrmmp (X) = 2 ’_’11),[1’ O f()[g, FENT (1.2)
The joint pdf ofthe r and s™ dgos is
Cs— m r—1
fX'(r,",m,k),X'(S’"’mak) ()C,y) = (I" —1)'(S 1_ r— 1)'[F()C)] f()C) En (F(X))
[y (FO) = hy(FCO) " FOI T (), a<y<x<p, (1.3)
where
1 L R
hy(x)=9 m+1
—logx , m=-—1
and

gm(X)=hy (x)=hy, (D, xe[01).
The conditional pdf of X'(s,n,m,k) given X'(r,n,mk)=x, 1<r<s<n

_ Cs—1
fs\r(y | x) = (s—r—Dle,_

(FO)™ ! —(FO)™ M 1 F(y))s!
(m+1)* " F(x))r
Casell: y,#y, i+ j,i,j=1,..,n—1.

L

F») (1.4)

The pdf of ther™ dgos is given by (Burkschat ef al., 2003)
P g

X m i@ =c,q f() Y a;(r) [Fo™ (1.5)

i=1
and the joint pdf of the r™ and s™ dgos 1s

K - F 7j
FX o, i ) X (s i, k) GO V) =51 D a; '(s) [(y)}

jer+l F(x)
SR v | ) f) 1.6
(Elal (r) [F(x)] ]F(x) FO) (1.6)
where
r 1
ai\r)= ) ]/757/[’ 1<i<r<nm (1.7)
" ]1_[:1(7j_7i) /
j#i
and
M@= T ! _ - 1.8
a;”’(s)= ., Vi#*Vi, r+l1<i<s<n (1.8)
jl_r[H (vj =7 /
Ji
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Thus, the conditional pdf of X'(s,n,m,k) given X'(r,n,m,k)=x, 1<r<s<n is

1
i & o FOY fW)
fs|r(y|x)—cr_1 i;a, (s)(F(x)] o0 x>y (1.9)

If m=0, k=1, then X'(r,n,m,k) reduces to X the (n—r+1)"order statistics,

n—r+ln?
from a sample of size n and when m =—1, then X'(r,n,m,k) reduces to the r™ k—

lower record value (Pawlas and Szynal, 2001). A number of results on characterization of
distributions of dual generalized order statistics are available in the literature. For a
detailed survey one may refer to Ahsanullah (2004), Mbah and Ahsanullah (2007), Khan
et al. (2009) and Khan et al. (2010) and references contained therein. In this paper, two
general classes of distributions

F(x)=e ", a#0,xe(a,p) (1.10)
and

F(x)=[ah(x)+b]", xe(a,pf) (1.11)
have been characterized through conditional expectation of function of dgos ,where
a,b,c and h(x) are so chosen that F(x)in (1.10) and (1.11) are df .

It may be noted that the df F(x) and the pdf f(x) in (1.10) and (1.11) are related
respectively as

_ )
F(x) = o (1.12)
and
f(x)= ach'(x) (1.13)

F(x) [ah(x)+Db]

Khan et al. (2010) have characterized the general class of distributions through
conditional expectation of dgos conditioned on non-adjacent dgos .We have extended

the result of Khan et al. (2010) for the difference of the conditional expectations
conditioned on non-adjacentdgos , its particular cases for order statistics, lower record

statistics as obtained by Khan et a/l. (2011) and Faizan and Khan (2011) are discussed.

2. Characterizations of distributions when
yi iyjiij,i,jzl,...,l’l—l.

Theorem 2.1: Let X be an absolutely continuous random variable with the df F(x) and
the pdf  f(x) in the interval (o, f), where a and f may be finite or infinite, then for
1<r<s<t<n,
E[h{X (s,n,m,k)} —h{X'(t,n,m,k)}| X'(I,n,m, k)= x]
:_lz L, I=r,r+l (2.1)
a j=t+1 7}
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if and only if
F(x)=e“" a#0 (2.2)

where A(x) is a monotonic and differentiable function of x such that 2(x) >0 as x —> S
and A(x)F(x) >0 as x> «a.

Proof: First we shall prove that (2.2) implies (2.1). It can be seen (Athar et al., 2008) that
E[h{X (t,n,m,k)} —h{X'(t = L,n,m,k)}| X'(r,n,m, k)= x]

Ct 2 Z (I’)(t)J- h( )(F(y)j

Cral =41 F()

Therefore, for 1<r<s<t<n

E[h{X (s,n,m,k)} —h{X'(t,n,m,k)}| X'(r,n,m, k) = x]
s—t—1
= Zt: E[h{X'(s—i,n,m,k)}—h{X'(s—i—1,n,m,k)}| X'(r,n,m,k) = x]
i=0
i E[h{X'(j,n,mk)} —h{X'(j—Lnmk)}| X'(r,n,m, k)= x]

Jj=t+1

s (r) F(y) &
= 3 IR dy

j=t+l ci’lzr+1 F(x)
== Z 1 ,in view of (1.9) and (1.12)
a j=t+l1 7/j
This proves the necessary part.
For the sufficiency part, we have at ¢ = — Z —
j =t+1 7/]

E[h{X'(t,n,m, k)} — h{X'(s,n,m,k)}| X'(r,n,m,k)=x]=c

5 ol m oy

st wopol] e e

Differentiating (2.3) w.r.t.x we have

S0 e 3 0y - L € $

F(x)c,, 55 F(x)c,, 55
EOFEDYT D) e s o
L [F(x)]" @ F(x)c,, i;1 4 ) )
f(x) Cot S ’, I(r)( )J‘ h()’)[F(Y)]y;: S) dv = (2.4)
F(x) Coyi= r+l [F(X)] ‘
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Rearranging the terms in (2.4) and noting thatz a”(s)=0, ¢, =¥,,,C,_, and

a0 = (7,0~ 70" (1) we get 7
[gt|r (X) — &l (X)] - [gs\r (X) ~ 8 (X)] =0
where
gy, (¥) = E[n{X (s,n,m,k)}| X'(r,n,m,k) = x]
or,
gy (x) - gy (x)= 8ir+1 (x) - Espr+1 (x)=:= 8us (x) - s (x)=c (2.5)

Noting that g (x) = h(x), we have
g (X)=h(x)+c

. ETRX(6on, i )} | X (s, k) = x] = h(x) + Z € (2.6)

a J=s+l1 }/_/‘

Using the result (Khan ef al., 2006)
E[M{X (t,n,m,k)} | X'(s,n,m,k) = x]=g,(x),

implies
v
Flx)=e A @.7)
where
Au) = &1 (1) — —ah'(u) 2.8)
7S+1 [gt\s+1 (u) - gt\s (I/l)]
we get,

F(x)= e_ah(x),a #0

and hence the Theorem.
t

Remark 2.1: Ats=r, E[A{X (t,n,m,k)}| X'(s,n,m, k)= x]= 1 Z L+ h(x)

aj:sﬂ 7/]

as obtained by Khan et al. (2010).

Remark 2.2: Atm=0,k=1, we will get the following result for order statistics for
I<r<s<t<nm

EIRU(XL) (X)) XL, =x]=—= 3 — L
A =] +1
BT~ K =)= 5

as obtained by Khan et al. (2011).

Remark 2.3: Atm=-1, k=1 and c= 1 it will give result for lower record statistics as
a

obtained by Faizan and Khan (2011).
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Corollary 2.1: Under the conditions as given in Theorem 2.1 and for 1<r<s<t<n

E[h{X'(s,n,m,k)} —h{ X (r,n,m,k)} ]+ h(x)
= E[M{X (s,n,m,k)}| X'(r,n,m, k)= x] (2.9)
if and only if
F(x)=e", a#0 (2.10)

Proof: The proof from Theorem 2.1 and Remark 2.1.

Further, putting m =0, k=1 in equation (2.9), we will get the result for order statistics as

follows,
E[h{(X,, )} = h{(X )]+ h(x) = E[A{(X )} | X, =x]

Theorem 2.2: Let X' be an absolutely continuous random variable with the df' F(x) and
the pdf f(x) in the interval («, ), where @ and £ may be finite or infinite, then for

I<r<s<t<nm,
E[h{X'(t,n,m,k)}| X'(I,n,m, k) = x]

=a, E[M{X'(s,n,m,k)}| X'(I,n,m,k)=x]+b,, ,I=r,r+1 (2.11)
if and only if
F(x)=[ah(x)+b] (2.12)
where
* d c}/j * b *
= and b, =——(1—a,.
at\s j];!:ll +c 7/j t]s a ( at\.s)

Proof: First we shall prove that (2.12) implies (2.11). In view of Khan et al. (2010), we

have
E[h{X'(t,n,iii,k)} | X '(r,n, i, k) = x] = a,, h(x)+b,,
:at*\r (h(x)Jréj_é (2.13)
a) a
where
* ! Cﬂ/j * *
atr = = aS}" a[S
\ _,-1-11+67/_,» Ir 1
and
* b *
bt\r = _;(1 - at|r

tls sl

= at*lsa;r { (h(x) +§j —S}rga; —%

:a;SE[h{X'(s,n,n?,k)} | X'(r,n,m, k) = x]+ b,

This proves the necessary part.

ETh{X"(t,n,7i,k)} | X (r,n,7ii,k) = x] = a,a (h(x) +2] _b
a a

|s
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For the sufficiency part, we have

oy WUI()V@q:QQ@

rot i F(x) | F(y)
_ Csl \ a Fy) | f»)
=a; L ,_M [ h(y ){F( )} o )d fy+by, (2.14)

Differentiating (2.14) w.rt. x and rearranging, we get

{qli A () h(x) - ,lzyJ%)Imwwwn*ﬂwd4

C,,71 i=r+l r 1 i=r+l [F(x)]yi
* Cs— N r s U
A ACLERE S S
r—1 i=r+l r 1 i=r+l

X 7i-1
ijwwwnyﬂw@i
“ [F(x)]"
After noting that ) a”(s)=0,¢, =7,.,¢,qand @ ()= (y,,, —7.)a” (), we get
i=r+l

Ve Gt Z (z)()J‘ ) FDT f )

d
o & For
Y€ N e hDFEWT ),
R o [
_ VN o [ ROFOTT ()
o { Cr i;1 “) L [F(x)]" dy
T N xmmnm“ﬂwd}
oL LT
That is,
V& (¥) = gypa (X)] = a;s 7al8y, (x)— Espr+1 (%]
where
W(x) E[M{X (s,n,m,k)}| X' (r,n,m, k)= x]
or,
gt\r (x) - at*\s gs\r (X) = gt\r+1 (X) _at*\s gs|r+1 (X)
=g,,(¥)—a, g, (x)=b, (2.15)
Noting that g, (x) = 4(x), we have
g, (%) = ay, h(x) + b,
1.e.
E[W{X'(t,n,m,k)} | X'(s,n,m, k) =x]= a, h(x) + b (2.16)
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Using the result (Khan et al., 2006)
E[h{X'(t,n,m,k)}| X'(s,n,m,k) = x]= g, (x),

implies
7.[5 A(u)du
F(x)=e™ (2.17)
We get

F(x)=[ah(x)+b]
and hence the Theorem.

Remark 2.4: It may be seen that when y; # y; but m; =m; =m, then

J
) _;_ t—i !
O ey T ey
1 r—i 1
ai(?FW(_D =D (r=0)!

and consequently (1.5) will reduce to (1.2), (1.6) to (1.3).

Remark 2.5: Atm =0, k =1, we will get result for order statistics as follows,

E[A{(X ()} (X7, = x]
= a,, E[h{(X],)}[(X],) =x]+b

*

t)s
or
E[M{(X )} (X ,,,) = ¥ = ay, ETH{(X )} (X,,) = ¥]+b;,

where
s—1

a :|| and b, =——(—-a,.
rls j:r1+Cj rls a( a;|3)
as obtained by Khan et a/.(2011).

Remark 2.6: Ats =r, it reduces to as obtained by Khan ez al. (2010).

Remark 2.7: At a:—ﬁ, b=1 and ¢ > o then F(x)=[ah(x)+b]° >e "™ as
C

obtained in Theorem 2.1.

3. Conclusion

In this paper, conditional expectation of the difference of two dgos conditioned on non-

adjacent dgos are considered to characterize the df F(x)=e ™

cases are given in the Table 2.1 with proper choice ofa, b, candh(x). Also

whose particular

F(x)=[ah(x)+b]° 1is characterized through the conditional expectation of dgos
conditioned on non-adjacent dgos as given in Table 2.2. Further, its various deductions
are discussed.
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Table 2.1: Examples based on the distribution function F(x)=e "™
Distribution F(x) a h(x)
Inverse Weibull e 0" 0 x P

O<x<o
Power function \2 -P log(x/a)
)
O<x<a
Logistic (1+ e—x)—l 1 log(1+¢ ™)
—0< X <00
BuI‘I‘ Type II (1 +e—X)—k k log(1+e—)€)
—0< X <00
Burr Type 11T (1 + x—C)—k k log (1 + x—C)
O<x<w
Burr Type IV ek k /e
[l+[c_xj } log 1+( j
x X
O<x<c
BurrTypeV (l_l_ce—taHX)—k k 10g(1+c€_tanx)
——<x<=
Burr Type VI (1 + ce_k sinh x )—k k log(l + Ce_k sinh .X')
—00< X <00
Burr Type VII 1+ tanh x \¥ —k 10g(1+tanhxj
) 2
—00< X <00
Burr Type VIII k -k
P (gﬁan_lexj log(zﬁan_lex]
s Vs
—00< X <00
Burr Type X 2 - 2
urr Lype (1—e )k k log(1—e™>")
O<x<o
Burr Type XI -
urr i ype (x—————sh12ﬂx)k k log(x———l—sh12ﬂx)
2
O<x<l
Gumbel eXp[_e—X] 1 e—x
—00< X <00
Extreme value 11 _( 0 jp 9P P
e X
O<x<ow
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Table 2.2: Examples based on the distribution function F(x) =[a h(x)+ b]¢

Distribution F(x) a b c h(x)
Power function a PP a1 0 rlq x4, q#0
O<x<a
Pareto 1—agPx~P aP 1—qa? 1 l—x P
1
a<x<oo _gP 1 P
Inverse Weibull —Ox7P -0/c 1 o0 -p
¢ 1 0 6/q *
0<x<w e_qxip,q;to
Burr type III (1 +x—C)—k 1 _k x—C
0<x<ow 1 —k/q 1+ x7)7,
q#0
Cauch _ -1
auchy l+l‘[an 1x l l : tan = x
/4 V4 2
—00 < X <00
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