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Abstract 

Support Vector Regression (SVR) formulates is an optimization problem to learn a regression function that maps 

from input predictor variables to output observed response values. The SVR is useful because it balances model 

complexity and prediction error, and it has good performance for handling high-dimensional data. In this paper, we 

use the SVR model to improve the principal component analysis and the factor analysis methods. Simulation 

experiments are performed to assessment the new method. Some useful applications to real data sets are presented 

for comparing the competitive SVR models. It is noted that with increasing sample size, the 𝜀-SVR type under the 

principal component analysis is the best model. However, under the small sample sizes the 𝑣 −SVR type under the 

factor analysis provided adequate results.  
 

Key Words: Support Vector Regression; ε-Support Vector Regression; Factor Analysis; Kernel Functions; 

Principal Component Analysis; 𝑣 -Support Vector Regression. 
 

 

1.Introduction 

The recent trends in collecting huge and diverse data sets, such as documents, videos and digital images, financial 

time series, and gene expressions and DNA copy numbers, have posed a great challenge that is brought by the high 

dimensionality and aggravated by the presence of irrelevant dimensions in tasks such as predictive modeling (Glaser 

et al. (2019)).  

 

The principal component analysis (PCA) helps in building a predictive model that is simple as it contains the smallest 

number of variables and efficient that accounts for as much of the information “explained variation” as possible, see 

Mechelli and Vieira (2019), Rosipal et al. (2001), Shi et al. (2008), Astuti (2018) and Drucker et al. (1997) for more 

details. 

 

The PCA can be widely applied in all forms of analysis from neuroscience to computer graphics and in a variety of 

real-world applications including image segmentation (Shokri et al. (2015)), climate research (Jolliffe (1986)), 

genome-wide expression studies (Jiang et al. (2011)), and deep learning (Yu et al. (2014)) due to its superior 

properties, such as linear un-correlation, low-dimensionality and visualization in multivariate data, over other linear 

dimension reduction (LDR) methods (Chao et al. (2009) and Drucker et al. (1997)). 

 

Support Vector Machine (SVM) is one of the most robust prediction methods, based on the statistical learning 

framework or VC theory proposed by Vapnik and Chervonenkis (1974) and Vapnik (1982, 1995). SVM seeks to 

maximize the predictive accuracy from computation of a confidence interval for the importance of a variable in order 

to describe the relationship between inputs and outputs (see Chao et al. (2009)). SVM is a supervised learning model, 

with associated learning algorithm that analyze data used for classification, known as SV classifier, and regression 

(function approximation), known as SVR (Chowdhury et al. (2017)). 
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During past few decades, an extension to the SVM classification algorithm has been received a considerable attention, 

see Chowdhury et al. (2018) and Rosipal et al. (2001)). The SVR has additional advantages compared to other 

regression methods (see Chowdhury et al. (2017)).  

 

PCA is a widely applied feature extraction method in the framework of SVR. In the literature, Lee and Verleysen 

(2009) proposed an integration of PCA and SVR models, which can be also noted as PCA-SVR, to enhance the 

performance of prediction (forecasting) model for financial time series. PCA-SVR produced less mean average 

precision MAP (%), mean absolute error (MAE), root mean square error (RMSE) and mean square error (MSE) than 

single SVR, Chowdhury et al. (2017) proposed PCA-SVM stock selection model which achieves the entire accuracy 

of 75.44% in training set and of 61.79% in testing set. 

 

Two types of procedures have been adopted within the practical aspect. The first procedure is applying the PCA within 

ε-SVR type. The other is also applying the PCA but within v-SVR type.  

 

The rest of the paper is organized as follows: Section 2 presents the methodology that used in this paper PCA, factor 

analysis, SVR. Section 3 discussed the results and evaluation. Finally, conclusion Section 4. 

 

2. Methodology 

2.1 The Principal Component Analysis 

The PCA is fundamentally a dimensionality reduction algorithm, but it can also be useful as a tool for visualization, 

for noise filtering, for feature extraction and engineering, and much more. 

 

2.2 The Factor Analysis 

The factor analysis (FA) is a powerful data reduction technique that enables researchers to investigate concepts that 

cannot easily be measured directly. When applied to a large amount of data, it compresses the set into a smaller set 

that is far more manageable, and easier to understand. 

 

2.3 The Support Vector Regression model 

The SVR extends the basic principles of SVM for classification of Jolliffe and Cadima (2016) by measuring the error 

of approximation instead of the margin used in classification. SVR estimates a continuous-valued function that 

encodes the fundamental interrelation between a given input and its corresponding output in the training data. This 

function then can be used to predict outputs for given inputs that were not included in the training set. This is similar 

to a neural network. However, a neural network’s solution is based on empirical risk minimization. In contrast, SVR 

introduces structural risk minimization into the regression and thereby achieves a global optimization, while a neural 

network achieves only a local minimum. Brief descriptions of two types of SVR which have been considered in the 

paper are given. 

 

2.3.1 The 𝜺-SVR Model 

The 𝜀-SVR maps the input vectors 𝓍𝑖 ∈ 𝑅𝑚into a high dimensional feature space. Given a training set 

(𝓍𝑖, 𝓎
𝑖
), 𝑖 = 1,2, … , 𝑛, 

where 𝓍𝑖 ∈ 𝑅𝑚  is the 𝑚-dimensional input vector and 𝓎
𝑖

∈ 𝑅is the response variable. SVR generates the linear 

regression function in the form of generic cost estimation model that can be written as 

𝓎 = 𝑓(𝓍) = 𝒲, 𝓍 + 𝑏 = 𝒲𝑇𝓍 + 𝑏                                        (1) 

where 𝒲 is the weight vector corresponding to 𝓍 and 𝑏 is the bias. The Vapnik’s linear 𝜀 -Insensitivity loss (error) 

function is also given as 

𝐿(𝓎, 𝑓(𝓍)) = {
0 if     |𝓎 − 𝑓(𝓍)| ≤ 𝜀

|𝓎 − 𝑓(𝓍)| − 𝜀 otherwise
                          (2) 

Based on the above, the linear regression 𝑓(𝓍) is estimated by simultaneously minimizing ||𝒲||2 and the sum of the 

linear 𝜀 -Insensitivity losses as shown in Equation (7). The constant 𝑐controls a trade-off between an approximation 

error and the weight vector norm 𝒲 is a design parameter chosen by the user. 
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𝑅 =
1

2
||𝒲||2 + 𝑐(∑ |𝓎 − 𝑓(𝓍)|𝜀)𝑛

𝑖=1                                         (3) 

Minimizing the risk R is equivalent to minimizing the following risk under the following constraints mentioned in 

Equations 

Minimize 𝑅 =
1

2
||𝒲||2 + 𝑐 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1 ,                                       (4) 

subject to 

{

(𝒲𝑇𝓍𝑖 + 𝑏) − 𝓎
𝑖

≤ 𝜀 + 𝜉
𝑖

𝓎
𝑖

− (𝒲𝑇𝓍𝑖 + 𝑏) ≤ 𝜀 + 𝜉
𝑖
∗

𝜉
𝑖
, 𝜉

𝑖
∗ ≥ 0 , 𝑖 = 1,2, … , 𝑚

  ,                                      (5)                                                                                                                    

Here, 𝜉
𝑖
 and 𝜉

𝑖
∗are slack variables, one for exceeding the target value by more than 𝜀 and other for being more than 

𝜀 below the target. As used in SVM, the above constrained optimization problem is solved using Lagrangian theory 

and the Karush-Kuhn-Tucker (KKT) conditions for the optimum of a constrained function to obtain the desired weight 

vector of the regression function [17]. 

 

In Equation (4), the generalization performance of such linear function, 𝑓(𝓍), is fairly limited and unable to reflect 

thetrue regression procedure. In order to overcome suchweakness, a standard mathematical solution is the 

introductionof kernel function, φ(X) , which is a nonlinearmapping function from the input space to a higher 

dimensionalfeature space. We can reachinfinite dimensions for a more expressive𝑓 by using φ(X). The most popular 

kernel functions used in this study are shown in Table 1 below. 

 

Table 1: Admissible kernel functions 

Name Definition Parameter 

Linear 𝑘(𝓍1, 𝓍2) = 𝓍1. 𝓍2 - 

Polynomial 𝑘(𝓍𝑖 , 𝓍𝒿) = (𝓍𝑖 . 𝓍𝒿 + 1)𝑑 𝑑 

Radial basis function 𝑘(𝓍𝑖 , 𝓍𝒿) = 𝑒𝓍𝑝 (−𝛾||𝓍𝑖 − 𝓍𝒿||2) 𝛾 

Sigmoid 𝑘(𝓍, 𝓎) = 𝑡𝑎𝑛ℎ (𝛼𝓍𝑇𝓎 + 𝑐) c 

 

2.3.2 𝒗-SVR Model 

The 𝑣-SVR is one of the most popular modifications proposed by Scho¨lkopf, Bartlett, Smola, and Williamson (1999). 

The benefit of𝑣-SVR is that it provides a way to automatically minimize 𝜀.  

 

In the 𝜀-SVR, selection of a proper ε value is essential for an accurate regression approximation. However, it is 

difficult to specify 𝜀 beforehand, other than an empirical choice. In the 𝑣-SVR a new parameter of a prior 𝑣 ∈ (0, 1) 

is introduced to automatically adjust a flexible tube by controlling the number of support vector and tolerated training 

errors. Then, the parameter 𝜀 becomes a variable in the optimization process and is controlled by the new parameter𝑣. 

In𝑣-SVR, the optimization problem can be written, given a function 𝜑(𝓍)to the kernel space for a nonlinear case, as 

follows  

𝑚𝑖𝑛𝒲

1

2
||𝒲||2 + 𝐶 (𝑣𝜀 +

1

𝑙
∑(𝜉 + 𝜉∗)

𝑙

𝑖=1

), 

subject to 

{

𝓎
𝑖

− 𝒲𝑇𝜑(𝓍𝑖) − 𝑏 ≤ 𝜀 + 𝜉

𝒲𝑇𝜑(𝓍𝑖) + 𝑏 − 𝓎
𝑖

≤ 𝜀 + 𝜉∗

𝜉, 𝜉∗, 𝜀 ≥ 0

                                         (6) 

Here, the newly introduced constant variable 𝑣 ∈ (0, 1)is used as atrade-off against model complexity and slack 

variables. Forming aLagrangian formulation from ( 𝜑(. ) = 𝑅𝑑 → 𝐹 ) by introducing positive multipliers 

𝛼, 𝛼∗, 𝜂, 𝜂∗and 𝑏 gives 

𝐿(𝒲, 𝜉, 𝜉∗, 𝛼, 𝛼∗, 𝜂, 𝜂∗, 𝛽) =
1

2
||𝒲||2 + 𝐶𝑣𝜀 +

𝐶

𝑙
∑(𝜉𝑖 + 𝜉𝑖

∗) + ∑ 𝛼𝑖
∗(𝓎𝑖 − 𝒲𝑇𝓍𝑖 − 𝑏 − 𝜀 − 𝜉𝑖)

𝑙

𝑖=1

𝑙

𝑖=1

 
 

 

 

(7) 
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+ ∑ 𝛼𝑖(𝒲𝑇𝓍𝑖 + 𝑏 − 𝓎𝑖 − 𝜀 − 𝜉𝑖
∗)

𝑙

𝑖=1

− ∑(𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗𝜉𝑖

∗)𝛽𝜀

𝑙

𝑖=1

 

 

Following the KKT conditions that partial derivatives with respect to the variables 𝒲, 𝑏, 𝓍, 𝓍∗, 𝑎𝑛𝑑𝜀 are equal to be 

zero and the products of theLagrange multipliers and the constraint are equal to zero, we have thefollowing dual 

optimization problem of 𝑣-SVR 

𝑚𝑎𝓍𝛼,𝛼∗ ∑ 𝓎𝑖(𝛼𝑖 − 𝛼𝑖
∗) −

1

2
∑ ∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝒿 − 𝛼𝒿
∗)𝑘(𝓍𝑖 , 𝓍𝒿)

𝑙𝑠𝑣
𝒿

𝑙𝑠𝑣
𝑖

𝑙𝑠𝑣
𝑙 , 

where 𝑘(𝓍𝑖 , 𝓍𝒿) = 𝜑(𝓍𝑖)𝜑(𝓍𝒿)subject to 

∑ (𝛼𝑖 − 𝛼𝑖
∗) = 0,  𝛼𝑖, 𝛼𝑖

∗ ∈ [0,
𝐶

𝑙
]

𝑙𝑠𝑣

𝑖 , ∑ (𝛼𝑖 − 𝛼𝑖
∗) ≤ 𝐶𝑣

𝑙𝑠𝑣

𝑖                            (8) 

Then, the regression estimate takes the form 

𝑓(𝓍) =  ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑙𝑠𝑣

𝑖 𝑘(𝓍𝑖 , 𝓍) + 𝑏                                       (9) 

Compared to the optimization problem in ε-SVR (Chao et al. (2009)), we can see that the parameter 𝜀 vanishes but 

instead there is the new parameter 𝑣 in 𝑣-SVR (Chao et al. (2019)). Scho¨lkopf et al. had proved that𝑣 ∈ (0, 1) is an 

upper bound on the fraction of errors (i.e., data points outside of the tube divided by the total number of data points 

𝑙) and a lower bound on the fraction of support vectors (i.e., the numbers of support vectors divided by the total number 

of data points 𝑙).  

 

3. Experimental procedures 

In this part, real data and simulations were used conducted for the purpose of comparison between ε-SVR and 𝑣-SVR 

models after and before applying PCA and FA using four different kernel functions to detect the PCA and FA effects 

on data reduction, In this study, all trained models designed are evaluated using measured data based on root mean 

square error (RMSE), coefficient of determination (R2), Relative Efficiency (RE) and Reduction No. of SVR. 

 

RMSE is a commonly used measure of the difference between predicted values of model and the actual values from 

the system that is being modeled, RE is (RMSE / the biggest RMSE) *100%. The sample sizes are n=50, 100, and 

150. The simulation results were based on 10000 replications. All computation is using the R program. The table 

below represents the results of this article. 

 

Table 2 gives the simulation results for the RMSE to all kinds of kernels to both types of SVR and after applying 

data reduction with sample size 30. Table 3 gives the simulation results for the RMSE to all kinds of kernels to both 

types of SVR and after applying data reduction with sample size 100. Table 4 gives the simulation results for the 

RMSE to all kinds of kernels to both types of SVR and after applying data reduction with sample size 150. 

 

Table 5 gives the real data results for the RMSE to all kinds of kernels to both types of SVR and after applying data 

reduction with sample size 30. Table 6 gives the real data results for the RMSE to all kinds of kernels to both types 

of SVR and after applying data reduction with sample size 100. Table 7 gives the real data results for the RMSE to 

all kinds of kernels to both types of SVR and after applying data reduction with sample size 150.  

 

Table 2: The simulation results for the RMSE to all kinds of kernels to both types of  

SVR and after applying data reduction with sample size 30. 

D
at

a 

re
d

u
ct

io
n
 

Kernel 

ε –SVR 𝑣-SVR 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

PCA 

Linear 18 1.9594 0.6247 0.9998 9 2.7173 0.809 0.593924 

Polynomial 16 3.1365 1 0.8682 16 3.3587 1 0.999823 

Radial 18 1.5879 0.5063 0.9781 13 2.5251 0.7518 0.569619 
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Sigmoid 24 2.297 0.7324 0.488 24 2.8239 0.8408 0.868214 

FA 

Linear 16 0.1659 0.192 0.1458 12 0.1444 0.2441 0.1613 

Polynomial 16 0.6737 0.7797 0.0088 18 0.5632 0.9523 0.004 

Radial 14 0.0277 0.032 0.2471 13 0.0053 0.0089 0.3309 

Sigmoid 24 0.864 1 0.0696 22 0.5914 1 0.0154 

 

Table 3: The simulation results for the RMSE to all kinds of kernels to both types of  

SVR and after applying data reduction with sample size 100 

D
at

a 

re
d

u
ct

io
n
 

Kernel 

ε –SVR 𝑣-SVR 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

PCA 

Linear 73 1.9594 0.6247 0.9998 69 2.8525 0.8573 1 

Polynomial 73 3.1365 1 0.8682 45 3.3273 1 0.6897 

Radial 73 1.5879 0.5063 0.9781 56 2.648 0.7958 0.9063 

Sigmoid 76 2.297 0.7324 0.488 76 2.9052 0.8731 0.5265 

FA 

Linear 73 1.151632 0.50289 0.276829 43 1.137073 0.34177 0.279444 

Polynomial 73 1.587911 0.69341 0.978067 49 2.852466 0.857293 1 

Radial 76 2.138123 0.93367 0.019628 47 1.226413 0.36862 0.184143 

Sigmoid 76 2.297006 1 0.487993 45 3.327294 1 0.6897229 

 

Table 4: The simulation results for the RMSE to all kinds of kernels to both types of  

SVR and after applying data reduction with sample size 150 

D
at

a 

re
d

u
ct

io
n

 

Kernel 

ε –SVR 𝑣-SVR 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

 

Linear 98 0.0923984 0.09209 0.1485413 66 5.1164 0.2269 0.12259 

Polynomial 111 0.99995 1 54.41528 75 1.7035 0.0755 0.54595 

Radial 100 0.69855 0.69924 12.45879 69 10.964 0.4864 0.71345 

Sigmoid 120 0.85871 0.85956 2.80651 100 22.541 1 0.03979 

FA 

Linear 99 3.0601 0.6644 0.655535 56 5.7075 0.2329 0.08775 

Polynomial 112 4.6058 1 0.42215 89 1.841 0.07515 0.605545 

Radial 102 2.3699 0.51454 0.9101 68 4.763 0.1944 0.9101 

Sigmoid 119 3.4027 0.73878 0.50777 99 24.496 1 0.47863 

 

Table 5: Real data results for the RMSE to all kinds of kernels to both types of  

SVR and after applying data reduction with sample size 30 

D
at

a 

re
d

u
ct

io
n
 

Kernel 

ε –SVR 𝑣-SVR 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

PCA 

Linear 11 3.101 0.0251 0.7955 12 1.7169 0.063 0.7990 

Polynomial 12 81.33 0.6596 0.586 13 30.7709 1.1293 0.5851 

Radial 20 3.108 0.0252 0.774 13 5.677 0.2083 0.7789 
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Sigmoid 24 123.3 1 0.2903 11 27.2462 1 0.3354 

FA 

Linear 10 0.6422 0.537 0.3725 13 0.6567 0.46363 0.3818 

Polynomial 24 1.1955 1 0.1586 15 1.4165 1 0.1603 

Radial 11 0.4221 0.353 0.4325 16 0.6824 0.4817 0.4208 

Sigmoid 23 1.1633 0.973 0.0430 21 1.2746 0.8998 0.0608 

 

Table 6: Real data results for the RMSE to all kinds of kernels to both types of  

SVR and after applying data reduction with sample size 100 

D
at

a 

re
d

u
ct

io
n
 

Kernel 

ε –SVR 𝑣-SVR 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

PCA 

Linear 70 8.192 0.16322 0.70107 43 3.04894 0.02965 0.72162 

Polynomial 68 29.82 0.594142 0.80555 43 9.2942 0.09039 0.70836 

Radial 70 19.07 0.379956 0.74132 48 2.67359 0.02600 0.7727 

Sigmoid 75 50.19 1 2.43× 10−5 41 102.82 1 0.0003 

FA 

Linear 60 0.4690 0.06693 0.54805 43 0.78843 0.31488 0.550267 

Polynomial 69 1.4202 0.20266 0.10935 45 1.32879 0.53068 0.281505 

Radial 59 0.3608 0.05149 0.62744 52 0.82480 0.32940 0.639909 

Sigmoid 76 7.0078 1 0.00838 42 2.50392 1 0.0381035 

 

Table 7: the results for the RMSE to all kinds of kernels to both types of  

SVR and after applying data reduction with sample size 150 

D
at

a 

re
d

u
ct

io
n

 

Kernel 

ε –SVR 𝑣-SVR 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

PCA 

Linear 88 0.3436 0.06392 0.88681 63 3.15563 0.029858 0.898509 

Polynomial 112 0.4064 0.07561 0.88069 64 55.5271 0.525387 0.892637 

Radial 89 0.363 0.06757 0.85871 68 2.80651 0.026555 0.749613 

Sigmoid 119 5.374 1 0.02122 62 105.688 1 0.02733 

FA 

Linear 95 2.203 0.006363 0.4779 62 0.69385 0.13384 0.472918 

Polynomial 98 21 0.060659 0.4184 66 1.87524 0.36172 0.377412 

Radial 96 2.978 0.008602 0.4349 71 0.56026 0.10807 0.444192 

Sigmoid 113 346.2 1 0.0260 61 5.18416 1 0.205365 

 

It can be concluded that for sample size n=30 the results improved after applying the FA more than the PCA, it is 

clear that the RMSE with linear and radial kernel functions gave good results, also an approximate value for both 

SVR.  With real data, sample size (50,100), it’s obvious clear that after applying FA and the 𝑣 –SVR gave better 

results and for sample size 150 after applying PCA and the ε –SVR we get better the RMSE. For more information 

about before applying data reduction checks the Appendix. 

 

4. Conclusions 

It’s important not to lose more information than is necessary, when reducing the data dimensions. Principal 

Component Analysis is a well-established mathematical technique for reducing the dimensionality of data, while 

keeping as much variation as possible as we note in practical section. It is also known that using of SVR with various 
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kernel functions improves the estimation of models. The behavior of two different models 𝜀-SVR and 𝑣-SVR are 

compared through an extensive real data and simulation study under four different kernel functions: linear, radial, 

polynomial, and sigmoid kernel functions, with different sample sizes ranges. Generally, it can be concluded that 

according to the reduction of SVR, after applying PCA and with increase sample sizes, under 𝜀-SVR. But under 𝑣-

SVR, the results of sigmoid and polynomial kernel functions were the best between other counterparts .  But with regard 

to the value of RMSE, under 𝜀-SVR, for sample size greater than or equal 150, results improved. And, it is clear that 

the RMSE with linear kernel function gave the best values rather than other kernel functions. 
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Appendix (A) 
Table (A.1) Simulation results for the RMSE to all kinds of kernels to both types of 

SVR and before applying data reduction with sample size 30. 

D
at
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d

u
ct

io
n
 

Kernel 

ε –SVR 𝑣-SVR 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

PCA 

Linear 18 1.526 0.8947 1 12 0.90834 0.91741 0.999999 

Polynomial 23 1.4893 0.8731 0.6897 20 0.990107 1 0.585139 

Radial 18 1.6413 0.9623 0.9063 18 0.90788 0.91695 0.799017 

Sigmoid 24 1.7057 1 0.5265 24 0.980555 0.99035 0.575994 

FA 

Linear 15 0.45217 0.58374 0.9101 13 0.00566 0.00678 0.98615 

Polynomial 22 0.60955 0.78692 0.47863 20 0.83469 1 0.79553 

Radial 18 0.54872 0.70839 0.1665 18 0.74132 0.88813 0.61521 

Sigmoid 24 0.7746 1 0.59872 24 0.80555 0.96508 0.58601 

Table (A.2) Simulation results for the RMSE to all kinds of kernels to both types of 

SVR and before applying data reduction with sample size 100. 

D
at
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re
d

u
ct
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n
 

Kernel 

ε –SVR 𝑣-SVR 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

PCA 

Linear 73 0.9158624 0.27289 0.02634888 46 0.568143 0.67388 0.02796826 

Polynomial 73 2.261642 0.67388 1 45 0.453264 0.53762 0.99982250 

Radial 77 1.0545485 0.31421 0.01638800 48 0.843081 1 0.03507764 

Sigmoid 77 3.3561050 1 0.68972290 56 0.465766 0.55245 0.86821400 

FA 

Linear 72 0.0848327 0.04599 0.25716614 45 0.8442265 0.43649 0.25716614 

Polynomial 72 1.8442265 1 0.99992310 46 1.848327 0.95564 1.00000000 

Radial 76 0.9341080 0.506503 0.01196654 46 1.1613841 0.60047 0.01196654 

Sigmoid 76 1.1613841 0.62974 0.8164677 64 1.934108 1 0.69609480 

Table (A.3) Simulation results for the RMSE to all kinds of kernels to both types of 

SVR and before applying data reduction with sample size 150. 

D
at
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re
d

u
ct

io
n
 

Kernel 

ε –SVR 𝑣-SVR 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

PCA 

Linear 93 1.3707 0.55497805 0.4596 68 1.92882 1 0.4499 

Polynomial 96 1.26785 0.51333537 0.1544 94 1.80689 0.93678917 0.1556 

Radial 95 1.36821 0.55396907 0.7244 89 1.61874 0.83924223 0.724 

Sigmoid 100 2.46982 1 0.3244 63 1.84037 0.95414283 0.1615 

FA 

Linear 95 1.34361 0.24997763 0.4779 61 5.18417 1 0.2054 

Polynomial 98 1.40643 0.26166489 0.4185 62 0.69385 0.13384 0.4729 

Radial 96 1.36318 0.25361917 0.4349 66 1.87524 0.361725 0.3774 

Sigmoid 113 5.37491 1 0.0261 71 0.56027 0.108073 0.4442 
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Table (A.4) Real data results for the RMSE to all kinds of kernels to both types of 

SVR and before applying data reduction with sample size 30. 
D

at
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re
d

u
ct

io
n
 

Kernel 

ε –SVR 𝑣-SVR 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

PCA 

Linear 22 0.6599 0.0537 0.4423 18 0.6847 0.9357 0.453 

Polynomial 24 12.292 1 0.0193 24 0.4604 0.6291 0.0191 

Radial 21 0.6991 0.0569 0.5357 22 0.7317 1 0.5332 

Sigmoid 24 0.4948 0.0403 0.4748 14 0.4963 0.6783 0.4453 

FA 

Linear 20 0.6422 0.5372 0.3726 13 0.6568 0.4636 0.3819 

Polynomial 24 1.1955 1 0.1587 15 1.4165 1 0.1604 

Radial 21 0.4221 0.3531 0.4325 16 0.6824 0.4818 0.4208 

Sigmoid 23 1.1634 0.9731 0.0431 11 1.2746 0.8998 0.0608 

Table (A.5) Real data results for the RMSE to all kinds of kernels to both types of  

SVR and before applying data reduction with sample size 100. 

D
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Kernel 

ε –SVR 𝑣-SVR 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

PCA 

Linear 73 1.1343 0.5305 0.2853 73 1.9594 0.6247 0.9998 

Polynomial 73 1.1957 0.5592 0.1727 73 3.1365 1 0.8682 

Radial 73 1.1516 0.5386 0.2768 73 1.5879 0.5063 0.9781 

Sigmoid 76 2.1381 1 0.0196 76 2.297 0.7324 0.488 

FA 

Linear 43 1.1371 0.5566 0.2794 49 2.8525 0.8573 1 

Polynomial 47 1.2264 0.6003 0.1841 45 3.3273 1 0.6897 

Radial 49 1.1025 0.5396 0.2813 56 2.648 0.7958 0.9063 

Sigmoid 76 2.0431 1 0.0104 76 2.9052 0.8731 0.5265 

Table (A.6) Real data results for the RMSE to all kinds of kernels to both types of 

SVR and before applying data reduction with sample size 150. 

D
at
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d

u
ct
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n
 

Kernel 

ε –SVR 𝑣-SVR 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

No. 

SVR 
RMSE 

RE of  

RMSE 
R2 

PCA 

Linear 105 1.0559 0.2098 0.1124 93 1.0530 0.2545 0.117 

Polynomial 104 1.1954 0.2375 0.0122 98 1.1514 0.2783 0.0275 

Radial 101 1.0702 0.2126 0.1023 97 1.0464 0.2529 0.1288 

Sigmoid 112 5.0328 1 0.1062 109 4.1376 1 0.0819 

FA 

Linear 104 1.9594 0.6247 0.9998 105 2.8525 0.8573 1 

Polynomial 105 3.1365 1 0.8682 109 3.3273 1 0.8053 

Radial 100 1.5879 0.5063 0.9781 108 2.648 0.7958 0.9865 

Sigmoid 112 2.2970 0.7324 0.4880 109 2.9052 0.8731 0.0026 

 


