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Abstract

A new family of distributions called Gamma Odd Burr X-G (GOBX-G) distribution is introduced in this paper. Its
structural properties such as the survival function, hazard function, density expansion, quantile function, moments
and generating functions, incomplete moments, probability weighted moments, Rényi entropy and order statistics
were derived. Maximum likelihood technique is used to estimate the parameters of this model. The flexibility and
applicability of this model is demonstrated using real life datasets.
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1. Introduction

Lifetime models are very useful for describing and predicting real world phenomena found in medicine, sciences,
economics and many other areas. The usefulness of these models is usually seen in products lifetime evaluations such
as in reliability and survival analysis. Numerous studies have been conducted to find suitable lifetime models that
best describes the real world phenomena. For the past decade, researches mainly focused in developing new family of
distributions through addition of extra parameter/s in the traditional and common families of continuous distributions.
These added parameters have shown to be producing much flexible models that fits real world datasets better than
traditional models (Barreto-Souza et al., 2013).
Some of these families of distributions includes the Exponentiated Generalized Power Series (Oluyede et al., 2020),
Exponentiated Half Logistic-Log-Logistic Weibull (Chamunorwa et al., 2021), Exponentiated Half-logistic Odd Lindley-
G (Sengweni et al., 2021), Weibull odd Burr III-G (Peter et al., 2021b) and Gamma Kumaraswamy-G (Arshad et al.,
2020). Peter et al. (2021a) studied Gamma Odd Burr III-G distribution, Al-Babtain et al. (2021a) studied transmuted
Burr X-G (TBX-G), Arshad et al. (2020) studied Gamma Kumaraswamy-G and Lahcene (2021) also developed an
extended-Gamma family of distributions. Additionally, Burr X distribution was also extended to Exponentiated Gen-
eralized Burr X distribution (Khaleel et al., 2018), Weibull Burr X distribution (Ibrahim et al., 2017), Exponentiated
Burr X distribution (Ahmed et al., 2021), Beta Burr X distribution (Merovci et al., 2016), Power Burr Type X distribu-
tion (Usman and Ilyas, 2020) and Type I Half-Logistic Burr X distribution (Shrahili et al., 2019). Khaleel et al. (2016)
also developed a Gamma Burr type X distribution via the Gamma generator and a two parameter Burr X distribution
introduced by Surles and Padgett (2001). Other recently developed models includes the discrete Poisson-Lindley and
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discrete Lindley distributions by Al-Babtain et al. (2021b), the Extended Power-Lindley distribution by Al-Babtain
et al. (2021c) and a two parameter Burr-Hatke distribution by Afify et al. (2021).

The motivation behind developing this family of distributions is to improve the general performance of classical
distributions, specifically the Gamma and the Odd Burr X distributions. We aim to provide models which can handle
skewed and heavy tailed data sets compared to other competitive models. Thus, the generalization of the Gamma
distribution and Odd Burr X distribution provided a very flexible family of distributions which has a density function
with different shapes such as the left-skewed, almost symmetric, reversed-J shape and right-skewed. The hazard rate
function of this new family of distribution can capture increasing, decreasing, bathtub and upside-down shapes. For
this reason, we developed a generalized lifetime family of distributions called the Gamma Odd Burr X-G (GOBX-G)
distribution made up of the combination of the Gamma generator proposed by Ristić and Balakrishnan (2012) and the
Odd Burr X-G family of distributions proposed by Yousof et al. (2017).

The rest of the paper is organized as follows; the new family of distributions is introduced in Section 2 together with
its survival function, hazard function, cumulative hazard function, series expansion, and quantile function. Section 3
covers special cases for selected baseline distributions. Section 4 covers derivation of some mathematical properties
such as moments, generating functions, incomplete moments, Rényi entropy, order statistics and probability weighted
moments. Section 5 covers maximum likelihood estimation. In Section 6, simulation study is conducted to evaluate
the performance of the proposed maximum likelihood estimators. Real life applications are considered in Section 7 to
evaluate the flexibility of our model followed by some concluding remarks in Section 8.

2. The New Model

Yousof et al. (2017) developed a one parameter Odd Burr X-G family of distributions by using a one parameter Burr
type X distribution introduced by Burr (1942). The cumulative distribution function (cdf) and probability density
function (pdf) of Odd Burr X-G distribution is given by

F(x; θ, ξ) = 2θ

G(x;ξ)

G(x;ξ)∫
0

t exp(−t2)
[
1− exp(−t2)

]θ−1
dt =

{
1− exp

[
−
(

G(x; ξ)

G(x; ξ)

)2
]}θ

and

f(x; θ, ξ) =
2θg(x; ξ)G(x; ξ)

G
3
(x; ξ)

exp

[
−
(

G(x; ξ)

G(x; ξ)

)2
]{

1− exp

[
−
(

G(x; ξ)

G(x; ξ)

)2
]}θ−1

,

respectively, where G(x; ξ) = 1− G(x; ξ); G(x; ξ) and g(x; ξ) are the cdf and pdf of any baseline distribution. Ristić
and Balakrishnan (2012) developed the Gamma-G family of distributions with cdf and pdf given by

F(x; δ) = 1− 1

Γ(δ)

− log(G(x))∫
0

tδ−1e−tdt, δ > 0 (1)

and

f(x; δ) =
1

Γ(δ)
[− log (G(x))]

δ−1
g(x) , x ∈ R. (2)

In equation (1) and (2), if we let G(x) = F(x; θ, ξ) and g(x) = f(x; θ, ξ), we get a new family of distributions called
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the Gamma Odd Burr X-G (GOBX-G) family of distributions with the cdf and pdf given as

F(x; δ, θ, ξ) = 1− 1

Γ(δ)

∫ − log

({
1−exp

[
−
(

G(x;ξ)

G(x;ξ)

)2
]}θ)

0

tδ−1e−tdt

= 1−
γ

(
δ,−θlog

(
1− exp

[
−
(

G(x;ξ)

G(x;ξ)

)2
]))

Γ(δ)

(3)

and

f(x; δ, θ, ξ) =
2θg(x; ξ)G(x; ξ)

Γ(δ) G
3
(x; ξ)

exp

[
−
(

G(x; ξ)

G(x; ξ)

)2
]{

1− exp

[
−
(

G(x; ξ)

G(x; ξ)

)2
]}θ−1

×

[
−θlog

(
1− exp

[
−
(

G(x; ξ)

G(x; ξ)

)2
])]δ−1

,

(4)

respectively, for x, δ, θ > 0 and ξ being a vector of parameters from the baseline distribution, where γ (δ, z) =∫ z
0
tδ−1e−tdt is the lower incomplete gamma function. The survival function of the GOBX-G family of distributions

is given as

S(x; δ, θ, ξ) = F(x; δ, θ, ξ) =

γ

(
δ,−θlog

(
1− exp

[
−
(

G(x;ξ)

G(x;ξ)

)2
]))

Γ(δ)
.

The hazard rate function (hrf) and the cumulative hazard function (chf) of GOBX-G family of distributions are respec-
tively given by

h(x; δ, θ, ξ) =
2θg(x; ξ)G(x; ξ)

G
3
(x; ξ)

exp

[
−
(

G(x; ξ)

G(x; ξ)

)2
]{

1− exp

[
−
(

G(x; ξ)

G(x; ξ)

)2
]}θ−1

×

[
−θlog

(
1− exp

[
−
(

G(x; ξ)

G(x; ξ)

)2
])]δ−1

×

{
γ

(
δ,−θlog

(
1− exp

[
−
(

G(x; ξ)

G(x; ξ)

)2
]))}−1

and

H(x; δ, θ, ξ) = −ln

γ
(
δ,−θlog

(
1− exp

[
−
(

G(x;ξ)

G(x;ξ)

)2
]))

Γ(δ)

 .

2.1. Series Expansion of the GOBX-G Density Function

A series expansion of the GOBX-G density follows in this section. If we let y = exp
[
−
(

G(x;ξ)

G(x;ξ)

)2
]

, then we can

write equation (4) as

f(x; δ, θ, ξ) =
2θδg(x; ξ)G(x; ξ)

Γ(δ) G
3
(x; ξ)

y (1− y)
θ−1

[−log (1− y)]
δ−1

.
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Using series representation −log(1− y) =
∞∑
i=0

yi+1

i+1 , for y ∈ (0, 1), we have

[−log(1− y)]
δ−1

= yδ−1

[ ∞∑
m=0

(
δ − 1

m

)
ym

( ∞∑
s=0

ys

s+ 2

)m]
.

Thus, we can write the GOBX-G density as

f(x; δ, θ, ξ) =
2θδg(x; ξ)G(x; ξ)

Γ(δ) G
3
(x; ξ)

yδ (1− y)
θ−1

[ ∞∑
m=0

(
δ − 1

m

)
ym

( ∞∑
s=0

ys

s+ 2

)m]
.

Next, let as = (s+ 2)−1 and considering the result of a power series raised to a positive integer we get( ∞∑
s=0

asy
s

)m
=

∞∑
s=0

bs,my
s , (5)

where bs,m = (sa0)−1
∑∞
l=1[m(l + 1) − s]albs−l,m and b0,m = am0 (see Grandshteyn and Ryzhik (1980)). The

GOBX-G density function then simplifies to

f(x; δ, θ, ξ) =
2θδg(x; ξ)G(x; ξ)

Γ(δ) G
3
(x; ξ)
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[ ∞∑
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m

)
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]
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3
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[ ∞∑
m,s=0

(
δ − 1

m

)
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]
.

Applying the generalized binomial series representation (1− z)n =
∑∞
i=0 (−1)i

(
n
i

)
zi which is valid for |z| < 1, we

can express the GOBX-G density as

f(x; δ, θ, ξ) =
2θδg(x; ξ)G(x; ξ)

Γ(δ) G
3
(x; ξ)

[ ∞∑
m,r,s=0

(−1)r
(
θ − 1

r

)(
δ − 1

m

)
ym+s+δ+rbs,m

]

=
2θδg(x; ξ)G(x; ξ)

Γ(δ) G
3
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∞∑
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θ − 1

r

)(
δ − 1

m

)

× exp

[
−(m+ s+ δ + r)

(
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)2
]
.

Applying the exponential series representation exp(−z) =
∑∞
k=0

(−1)kzk

k! , the density further expand to

f(x; δ, θ, ξ) =
2θδg(x; ξ)G(x; ξ)
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.
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Applying the generalized binomial series representation in G2k+1(x; ξ) =
[
1− G(x; ξ)

]2k+1
, we get

f(x; δ, θ, ξ) =
2θδ

Γ(δ)

∞∑
j,k,m,r,s=0

(−1)r+j+kbs,m(m+ s+ δ + r)k

k!

×
(
θ − 1

r

)(
δ − 1

m

)(
2k + 1

j

)
g(x; ξ)G

j−(2k+3)
(x; ξ)

=
2θδ

Γ(δ)

∞∑
j,k,m,p,r,s=0

(−1)r+j+k+pbs,m(m+ s+ δ + r)k

k!

(
θ − 1

r

)

×
(
δ − 1

m

)(
2k + 1

j

)(
j − (2k + 3)

p

)
g(x; ξ)Gp(x; ξ) .

The GOBX-G density function can finally be expressed as an infinite linear combination of Exponentiated G (Exp-G)
density functions as

f(x; δ, θ, ξ) =

∞∑
p=0

wp+1hp+1(x; ξ) , (6)

where

wp+1 =
2θδ

Γ(δ)

∞∑
j,k,m,r,s=0

(−1)r+j+k+pbs,m(m+ s+ δ + r)k

(p+ 1)k!
(7)

×
(
θ − 1

r

)(
δ − 1

m

)(
2k + 1

j

)(
j − (2k + 3)

p

)
(8)

and hp+1(x; ξ) = (p+ 1)g(x; ξ)Gp+1−1(x; ξ) is the Exponentiated-G pdf with power parameter p+ 1. Thus, mathe-
matical properties of GOBX-G family of distributions are evident from those of the Exp- G distributions.

2.2. Quantile Function

This section present the quantile function for the GOBX-G distribution. The quantile function can be derived from the
cdf of GOBX-G distribution in equation (3) by solving the non-linear equation

u = 1−
γ

(
δ,−θlog

(
1− exp

[
−
(

G(x;ξ)

G(x;ξ)

)2
]))

Γ(δ)

for 0 < u < 1. Thus,

γ

(
δ,−θlog

(
1− exp

[
−
(

G(x; ξ)

G(x; ξ)

)2
]))

= (1− u)Γ(δ)

which follows that

−θlog

(
1− exp

[
−
(

G(x; ξ)

G(x; ξ)

)2
])

= γ−1 (δ, (1− u)Γ(δ)) .

This simplifies to (
G(x; ξ)

G(x; ξ)

)2

= −ln
[
1− exp

(
γ−1 (δ, (1− u)Γ(δ))

−θ

)]
.
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Replacing G(x; ξ) with 1− G(x; ξ), we get

G(x; ξ)

1− G(x; ξ)
=

[
−ln

[
1− exp

(
γ−1 (δ, (1− u)Γ(δ))

−θ

)]]1/2

which finally gives the quantile function of the GOBX-G family of distributions as

Q(u) = G−1


[
−ln

[
1− exp

(
γ−1(δ,(1−u)Γ(δ))

−θ

)]]1/2
1 +

[
−ln

[
1− exp

(
γ−1(δ,(1−u)Γ(δ))

−θ

)]]1/2
 . (9)

3. Special Cases

In this section, GOBX-G family of distributions takes on some selected baseline distributions even though any baseline
distribution can be considered. For our study, we consider Weibull distribution, `og-`ogistic distribution and Uniform
distribution.

3.1. Gamma Odd Burr X-Weibull (GOBX-W) Distribution

Considering the baseline distribution of the GOBX-G family as Weibull distribution with pdf g(x;α) = αxα−1e−x
α

and cdf G(x;α) = 1− e−xα , we respectively obtain the pdf, cdf and hrf of the GOBX-W distribution as

f(x; δ, θ, α) =
2θαxα−1e2xα(1− e−xα)

Γ(δ)
exp

[
−
(
ex
α

− 1
)2
]{

1− exp
[
−
(
ex
α

− 1
)2
]}θ−1

×
[
−θlog

(
1− exp

[
−
(
ex
α

− 1
)2
])]δ−1

,

(10)

F(x; δ, θ, α) = 1−
γ
(
δ,−θlog

(
1− exp

[
−
(
ex
α − 1

)2]))
Γ(δ)

,

and

h(x; δ, θ, α) =
2θαxα−1e2xα(1− e−xα)

Γ(δ)
exp

[
−
(
ex
α

− 1
)2
]{

1− exp
[
−
(
ex
α

− 1
)2
]}θ−1

×
[
−θlog

(
1− exp

[
−
(
ex
α

− 1
)2
])]δ−1

×

1−
γ
(
δ,−θlog

(
1− exp

[
−
(
ex
α − 1

)2]))
Γ(δ)

−1

for δ, θ, α > 0. Plots of the pdf and hrf of GOBX-W distribution are given in Figure 1.
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Figure 1: Plots of the pdf and hrf for the GOBX-W distribution

Figure 1 demonstrate different shapes of GOBX-W distribution for the pdf and hrf at different parameter values. The
pdf takes various shapes which includes the reverse-J, left-skew, right-skew and unimodal shapes. The hrf also takes
different shapes such as the increasing, decreasing, bathtub and upside down bathtub shapes.

3.2. Gamma Odd Burr X-Log-Logistic (GOBX-L) Distribution

Next, considering baseline distribution of the GOBX-G family as `og-`ogistic distribution with pdf g(x;β) = βxβ−1(1 + xβ)−2

and cdf G(x;β) = 1− (1 + xβ)−1, we respectively obtain the pdf, cdf and hrf of the GOBX-L distribution as

f(x; δ, θ, β) =
2θβxβ−1(1 + xβ)

[
1− (1 + xβ)−1

]
Γ(δ)

e−x
2β
[
1− e−x

2β
]θ−1 [

−θlog
(

1− e−x
2β
)]δ−1

, (11)

F(x; δ, θ, β) = 1−
γ
(
δ,−θlog

(
1− e−x2β

))
Γ(δ)

,

and

h(x; δ, θ, β) =
2θβxβ−1(1 + xβ)

[
1− (1 + xβ)−1

]
Γ(δ)

e−x
2β
[
1− e−x

2β
]θ−1

×
[
−θlog

(
1− e−x

2β
)]δ−1

1−
γ
(
δ,−θlog

(
1− e−x2β

))
Γ(δ)

−1

for δ, θ, β > 0. Plots of the pdf and hrf of GOBX-L distribution are given in Figure 2.
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Figure 2: Plots of the pdf and hrf for the GOBX-L distribution

Figure 2 also shows flexible nature of the GOBX-L pdf and hrf for different underlying parameter values. The pdfs of
GOBX-L distribution follow different shapes including unimodal, almost symmetric, reverse-J, left-skewed and right
skewed. The hrf also exhibit decreasing, increasing, bathtub and upside down bathtub.

3.3. Gamma Odd Burr X-Uniform (GOBX-U) Distribution

For a uniform baseline distribution with pdf g(x;µ) = 1/µ and cdf G(x;µ) = x/µ, 0 < x < µ, we respectively
obtain the pdf, cdf and hrf of the GOBX-U distribution as

f(x; δ, θ, µ) =
2θµx

Γ(δ) (µ− x)3
exp

[
−
(

x

µ− x

)2
]{

1− exp

[
−
(

x

µ− x

)2
]}θ−1

×

[
−θlog

(
1− exp

[
−
(

x

µ− x

)2
])]δ−1

,

(12)

F(x; δ, θ, µ) = 1−
γ

(
δ,−θlog

(
1− exp

[
−
(

x
µ−x

)2
]))

Γ(δ)

and

h(x; δ, θ, µ) =
2θµx

Γ(δ) (µ− x)3
exp

[
−
(

x

µ− x

)2
]{

1− exp

[
−
(

x

µ− x

)2
]}θ−1

×

[
−θlog

(
1− exp

[
−
(

x

µ− x

)2
])]δ−1

×

1−
γ

(
δ,−θlog

(
1− exp

[
−
(

x
µ−x

)2
]))

Γ(δ)


−1
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for δ, θ, µ > 0. Plots of the pdf and hrf of GOBX-U distribution are given in Figure 3.

Figure 3: Plots of the pdf and hrf for the GOBX-U distribution

Figure 3 shows the GOBX-U distribution pdf and hrf. The pdf takes on different shapes which includes left-skew, right-
skew, almost symmetric and reverse-J. Additionally, the hrf also show increasing, decreasing and bathtub shapes.
Table 1 presents some values generated from the GOBX-W distribution for different values of the parameters δ, θ and
α.

Table 1: Table of quantiles for selected parameter values of the GOBX-W distribution
(δ, θ, α)

u (1.5,0.9,1.01) (2.0,2.5,0.9) (1.5,.5,1.5) (0.9,5.0,1.8) (1.2,4.5,1.2)
0.1 0.1664 0.3579 0.1227 0.8253 0.6916
0.2 0.251 0.4318 0.2066 0.8683 0.751
0.3 0.3214 0.4871 0.2815 0.8986 0.7935
0.4 0.3857 0.5352 0.3521 0.9241 0.8295
0.5 0.4478 0.5805 0.4209 0.9475 0.863
0.6 0.5109 0.626 0.4901 0.9706 0.8961
0.7 0.5782 0.6747 0.5626 0.995 0.9314
0.8 0.6558 0.7314 0.6432 1.0232 0.9722
0.9 0.7594 0.8092 0.7453 1.0614 1.0282

4. Other Statistical and Mathematical Properties

In this section, some structural properties of GOBX-G family of distributions are presented. These includes moments
and generating functions, conditional moments, entropy, distribution of order statistics and probability weighted mo-
ments.

4.1. Moments and Generating functions

The rth ordinary moment of GOBX-G family of distributions can be derived from equation (6) as

µ′r = E(Xr) =

∞∑
p=0

wp+1E (Yp+1) =

∞∑
p=0

wp+1(p+ 1)

1∫
0

up+1−1QrG(u; ξ)du , (13)

where Yp+1 is the Exp-G random variable with power parameter p+ 1 and QG(u; ξ) is the quantile function of the
baseline distribution with the cdf G(x; ξ). To obtain the skewness and the kurtosis of GOBX-G family of distributions,
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we use the nth central moment, say Mn, given as

Mn = E(X − µ′1)n =

∞∑
r=0

(
n

r

)
(−µ′1)n−rE(Xr)

=

∞∑
p=0

∞∑
r=0

(
n

r

)
(−µ′1)n−rwp+1E (Yp+1) .

The moment generating function of the GOBX-G family of distributions can be obtained as

MX(t) = E(etX) =

∞∑
p=0

wp+1Mp+1(t) ,

where Mp+1(t) is the moment generating function of the Exp-G random variable Yp+1. Figure 4 and 5 shows 3D
plots of skewness and kurtosis for the GOBX-W distribution for some selected parameter values. Figure 4 shows that,
when θ is fixed, skewness increases as α increases whereas kurtosis decrease with a decrease in δ. An increase in θ
leads to increase in skewness and kurtosis when α is held constant as shown in figure 5. This shows that all the three
parameters play a role in the variation of skewness an kurtosis.

(a) (b)
Figure 4: 3D plots of skewness and kurtosis for the GOBX-W distribution for some selected parameter values

4.2. Incomplete Moments

The sth (s > 0) incomplete moments for the GOBX-G family of distributions follow from equation (6) as

ϕs(t) =

t∫
−∞

xsf(x)dx =

∞∑
p=0

wp+1

t∫
−∞

xshp+1(x; ξ)dx ,

where
t∫
−∞

xshp+1(x; ξ)dx is the sth incomplete moment of the Exp-G random variable Yp+1. The incomplete mo-

ments are critical as they can be used to derive the mean deviations, Bonferroni, Lorenz and Zenga curves which
are usually used in many fields such as demography, engineering and medicine. The mean deviation about the mean
µ = E(X) and median M = Median(X) can respectively be derived as E|X − µ′1| = 2µ′1F(µ′1) − 2ϕ1(µ′1) and
E|X −M | = µ′1− 2ϕ1(M), where µ′1 can be evaluated from equation (13), M= Q(0.5) from equation (9) and F(µ′1)
from equation (3).
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(a) (b)
Figure 5: 3D plots of skewness and kurtosis for the GOBX-W distribution for some selected parameter values

4.3. Rényi Entropy

This subsection presents the Rényi entropy as a measures of the variation of uncertainty. Rényi entropy is an extension
of Shannon entropy and it is defined as

IR(v) =
1

1− v
log

 ∞∫
0

fv(x; δ, θ, ξ)dx

 ,

for v > 0, v 6= 1. If we let y = exp
[
−
(

G(x;ξ)

G(x;ξ)

)2
]

in the GOBX-G density given in equation (4), then we have

fv(x; δ, θ, ξ) =
(2θδ)vgv(x; ξ)Gv(x; ξ)

[Γ(δ)]v G
3v

(x; ξ)
yv (1− y)

v(θ−1)
[−log (1− y)]

v(δ−1)
.

Using series representation −log(1− y) =
∞∑
i=0

yi+1

i+1 , for y ∈ (0, 1), we have

[−log(1− y)]
v(δ−1)

= yv(δ−1)

[ ∞∑
m=0

(
v(δ − 1)

m

)
ym

( ∞∑
s=0

ys

s+ 2

)m]
,

so that fv(x; δ, θ, ξ) can be written as

fv(x; δ, θ, ξ) =
(2θδ)vgv(x; ξ)Gv(x; ξ)

[Γ(δ)]v G
3v

(x; ξ)
yv(δ−1)+1 (1− y)

v(θ−1)

[ ∞∑
m=0

(
v(δ − 1)

m

)
ym

( ∞∑
s=0

ys

s+ 2

)m]
.

If we let cs = (s + 2)−1 and considering the result of a power series raised to a positive integer (Grandshteyn and
Ryzhik, 1980), we get ( ∞∑

s=0

csy
s

)m
=

∞∑
s=0

ds,my
s ,
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where ds,m = (sc0)−1
∑∞
l=1[m(l + 1)− s]clds−l,m and d0,m = cm0 , so that

fv(x; δ, θ, ξ) =
(2θδ)vgv(x; ξ)Gv(x; ξ)

[Γ(δ)]v G
3v

(x; ξ)
(1− y)

v(θ−1)

[ ∞∑
m,s=0

(
v(δ − 1)

m

)
yw∗ds,m

]
,

where w∗ = m+ s+ v(δ − 1) + 1. Applying the generalized binomial series representation, we get

fv(x; δ, θ, ξ) =
(2θδ)vgv(x; ξ)Gv(x; ξ)

[Γ(δ)]v G
3v

(x; ξ)

∞∑
m,r,s=0

(−1)r ds,m

(
v(θ − 1)

r

)(
v(δ − 1)

m

)

× exp

[
−(w∗ + r)

(
G(x; ξ)

G(x; ξ)

)2
]
.

Applying the exponential series representation, we have

fv(x; δ, θ, ξ) =
(2θδ)v

(Γ(δ))v

∞∑
k,m,r,s=0

(−1)r+kds,m(w∗ + r)k

k!

(
v(θ − 1)

r

)(
v(δ − 1)

m

)

× gv(x; ξ)G2k+v(x; ξ)

G
2k+3v

(x; ξ)
.

Applying the generalized binomial series representation in G2k+v(x; ξ) =
[
1− G(x; ξ)

]2k+v
, we obtain

fv(x; δ, θ, ξ) =
(2θδ)v

(Γ(δ))v

∞∑
j,k,m,r,s=0

(−1)r+j+kds,m(w∗ + r)k

k!

×
(
v(θ − 1)

r

)(
v(δ − 1)

m

)(
2k + v

j

)
gv(x; ξ)G

j−(2k+3v)
(x; ξ)

=
(2θδ)v

(Γ(δ))v

∞∑
j,k,m,p,r,s=0

(−1)r+j+k+pds,m(w∗ + r)k

k!

(
v(θ − 1)

r

)

×
(
v(δ − 1)

m

)(
2k + v

j

)(
j − (2k + 3v)

p

)
gv(x; ξ)Gp(x; ξ) .

Finally, the Rényi entropy for the GOBX-G family of distributions is given as

IR(v) =
1

1− v
log

 (2θδ)v

(Γ(δ))v

∞∑
j,k,m,p,r,s=0

(−1)r+j+k+pds,m(w∗ + r)k[
2k+j
v + 2

]v
k!

(
v(θ − 1)

r

)(
v(δ − 1)

m

)

×
(

2k + v

j

)(
j − (2k + 3v)

p

) ∞∫
0

([p
v

+ 1
]

g(x; ξ) [G(x; ξ)]
p
v

)v
dx


=

1

1− v
log

[ ∞∑
p=0

W p
v+1exp [(1− v)IREG]

]
,
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where IREG = (1 − v)−1log
[∞∫

0

([
p
v + 1

]
g(x; ξ) [G(x; ξ)]

p
v

)v
dx

]
is the Rényi entropy for the Exp-G family with

power parameter pv + 1 and

W p
v+1 =

(2θδ)v

(Γ(δ))v

∞∑
j,k,m,r,s=0

(−1)r+j+k+pds,m(w∗ + r)k[
p
v + 1

]v
k!

×
(
v(θ − 1)

r

)(
v(δ − 1)

m

)(
2k + v

j

)(
j − (2k + 3v)

p

)
.

4.4. Order Statistics

In this subsection, the distribution of the ith order statistics for the GOBX-G family of distributions is provided. Let
X1, X2, X3, ..., Xn be independent and identically distributed GOBX-G random variables. The pdf of the ith order
statistic, say Xi:n is given as

fi:n(x; δ, θ, ξ) =
n!f(x; δ, θ, ξ)

(i− 1)!(n− i)!

n−i∑
t=0

(−1)t
(
n− i
t

)
Ft+i−1(x; δ, θ, ξ)

=
n!f(x; δ, θ, ξ)

(i− 1)!(n− i)!

n−i∑
t=0

(−1)t
(
n− i
t

)1−
γ

(
δ,−θlog

(
1− exp

[
−
(

G(x;ξ)

G(x;ξ)

)2
]))

Γ(δ)


t+i−1

.

Using the binomial theorem, we obtain

fi:n(x; δ, θ, ξ) =
n!f(x; δ, θ, ξ)

(i− 1)!(n− i)!

∞∑
j=0

n−i∑
t=0

(−1)t

[Γ(δ)]j

(
n− i
t

)(
t+ i− 1

j

)

×

[
γ

(
δ,−θlog

(
1− exp

[
−
(

G(x; ξ)

G(x; ξ)

)2
]))]j

.

(14)

Applying the power series γ(δ, x) =
∑∞
k=0

(−1)kxk+δ

(k+δ)k! (see Abramowitz and Stegun (1972)), we obtain

fi:n(x; δ, θ, ξ) =
n!f(x; δ, θ, ξ)

(i− 1)!(n− i)!

∞∑
j=0

n−i∑
t=0

(−1)t

[Γ(δ)]j

(
n− i
t

)(
t+ i− 1

j

)

×


∞∑
k=0

(−1)k
(
−θlog

(
1− exp

[
−
(

G(x;ξ)

G(x;ξ)

)2
]))k+δ

(k + δ)k!


j

.

Next, let ck = (−1)k

(k+δ)k! and use the result on a power series raised to a positive integer (Grandshteyn and Ryzhik, 1980),
then we have  ∞∑

k=0

ck

(
−θlog

(
1− exp

[
−
(

G(x; ξ)

G(x; ξ)

)2
]))k+δ

j

=

∞∑
k=0

dk,j

(
−θlog

(
1− exp

[
−
(

G(x; ξ)

G(x; ξ)

)2
]))k+δ

,

(15)
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where d0,j = cj0 and dk,j = (kc0)−1
∑∞
l=1[j(l + 1) − k]cldk−l,j . Replacing f(x; δ, θ, ξ) in the above expression for

fi:n(x; δ, θ, ξ), we get

fi:n(x; δ, θ, ξ) =
2n!g(x; ξ)G(x; ξ)

(i− 1)!(n− i)!G3
(x; ξ)

∞∑
k=0

∞∑
j=0

n−i∑
t=0

θk+2δ(−1)t

[Γ(δ)]j+1
dk,j

(
n− i
t

)(
t+ i− 1

j

)

× exp

[
−
(

G(x; ξ)

G(x; ξ)

)2
]{

1− exp

[
−
(

G(x; ξ)

G(x; ξ)

)2
]}θ−1

×

(
−log

(
1− exp

[
−
(

G(x; ξ)

G(x; ξ)

)2
]))k+2δ−1

.

Using the previously stated series expansion of−log(1−y) =
∞∑
i=0

yi+1

i+1 and letting y = exp
[
−
(

G(x;ξ)

G(x;ξ)

)2
]

, we obtain

[−log(1− y)]
k+2δ−1

= yk+2δ−1

[ ∞∑
m=0

(
k + 2δ − 1

m

)
ym

( ∞∑
s=0

ys

s+ 2

)m]
(16)

which when we consider the previous definition of bs,m in equation (5), we get

fi:n(x; δ, θ, ξ) =
2n!g(x; ξ)G(x; ξ)

(i− 1)!(n− i)!G3
(x; ξ)

∞∑
j,k=0

n−i∑
t=0

θk+2δ(−1)t

[Γ(δ)]j+1
dk,j

(
n− i
t

)(
t+ i− 1

j

)

× yk+2δ (1− y)
θ−1

∞∑
m,s=0

(
k + 2δ − 1

m

)
ymbs,my

s

=
2n!g(x; ξ)G(x; ξ)

(i− 1)!(n− i)!G3
(x; ξ)

∞∑
j,k,m,s=0

n−i∑
t=0

θk+2δ(−1)t

[Γ(δ)]j+1
dk,jbs,m

×
(
n− i
t

)(
t+ i− 1

j

)(
k + 2δ − 1

m

)
yk+2δ+m+s (1− y)

θ−1
.

Further expansion of the last part conducted using binomial theorem gives

fi:n(x; δ, θ, ξ) =
2n!g(x; ξ)G(x; ξ)

(i− 1)!(n− i)!G3
(x; ξ)

∞∑
j,k,m,r,s=0

n−i∑
t=0

θk+2δ(−1)t+r

[Γ(δ)]j+1
dk,jbs,m

×
(
n− i
t

)(
t+ i− 1

j

)(
k + 2δ − 1

m

)(
θ − 1

r

)
yv∗ ,

where v∗ = k + 2δ +m+ s+ r. Expanding yv∗ = exp
[
−v∗

(
G(x;ξ)

G(x;ξ)

)2
]

based on exponential series representation

gives

fi:n(x; δ, θ, ξ) =
2n!

(i− 1)!(n− i)!

∞∑
j,k,m,r,s,u=0

n−i∑
t=0

θk+2δ(−1)t+r+uvu∗dk,jbs,m
[Γ(δ)]j+1u!

×
(
n− i
t

)(
t+ i− 1

j

)(
k + 2δ − 1

m

)(
θ − 1

r

)
g(x; ξ)G2u+1(x; ξ)

G
2u+3

(x; ξ)
.
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Expansion of the series G2u+1(x; ξ) =
[
1− G(x; ξ)

]2u+1
gives

fi:n(x; δ, θ, ξ) =
2n!

(i− 1)!(n− i)!

∞∑
j,k,m,p,r,s,u=0

n−i∑
t=0

θk+2δ(−1)t+r+u+pvu∗dk,jbs,m
[Γ(δ)]j+1u!

(
n− i

t

)

×

(
t+ i− 1

j

)(
k + 2δ − 1

m

)(
θ − 1

r

)(
2u+ 1

p

)
g(x; ξ)G

p−(2u+3)
(x; ξ)

=
2n!

(i− 1)!(n− i)!

∞∑
j,k,m,p,q,r,s,u=0

n−i∑
t=0

θk+2δ(−1)t+r+u+p+qvu∗dk,jbs,m
[Γ(δ)]j+1u!

(
n− i

t

)

×

(
t+ i− 1

j

)(
k + 2δ − 1

m

)(
θ − 1

r

)(
2u+ 1

p

)(
p− (2u+ 3)

q

)
g(x; ξ)Gq(x; ξ) .

Alternatively, the GOBX-G order statistic can be expressed as

fi:n(x; δ, θ, ξ) =

∞∑
q=0

mq+1h∗q+1(x; ξ) , (17)

where h∗q+1(x; ξ) = (q + 1)g(x; ξ)Gq+1−1(x; ξ) is the Exp-G distribution of power parameter q + 1 and

mq+1 =
2n!

(i− 1)!(n− i)!

∞∑
j,k,m,p,r,s,u=0

n−i∑
t=0

θk+2δ(−1)t+r+u+p+qvu∗dk,jbs,m
(q + 1)[Γ(δ)]j+1u!

(
n− i
t

)

×
(
t+ i− 1

j

)(
k + 2δ − 1

m

)(
θ − 1

r

)(
2u+ 1

p

)(
p− (2u+ 3)

q

)
.

4.5. Probability Weighted Moments

This section present the probability weighted moments with most of the derivations given under the order statistics
section. The (r, s)th probability weighted moments for the GOBX-G family of distributions is given as

ω(r,s) = E[XrFs(X)] =

∞∫
−∞

xrf(x)Fs(x)dx .

With the help of derivations from equation (14) under order statistics section, we get

f(x)Fs(x) = f(x)

∞∑
j=0

[Γ(δ)]−j
(
s

j

)
[γ (δ,−θlog (1− y))]

−j

= f(x)

∞∑
j,k=0

[Γ(δ)]j
(
s

j

)
dj,k[−θlog (1− y)]

k+δ
,

where y = exp
[
−
(

G(x;ξ)

G(x;ξ)

)2
]

and dj,k is defined in equation (15). Plugging f(x), we get

f(x)Fs(x) =
2θg(x; ξ)G(x; ξ)

G
3
(x; ξ)

y(1− y)θ−1
∞∑

j,k=0

[Γ(δ)]−(j+1)

(
s

j

)
dj,k[−θlog (1− y)]

k+2δ−1
.
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Further expansion based on equation (16) yields

f(x)Fs(x) =
2g(x; ξ)G(x; ξ)

G
3
(x; ξ)

∞∑
j,k,m,s=0

[Γ(δ)]−(j+1)θk+2δdj,kbs,m

×
(
s

j

)(
k + 2δ − 1

m

)
yk+2δ+m+s(1− y)θ−1

=
2g(x; ξ)G(x; ξ)

G
3
(x; ξ)

∞∑
j,k,m,r,s=0

[Γ(δ)]−(j+1)(−1)rθk+2δdj,kbs,m

×
(
s

j

)(
k + 2δ − 1

m

)(
θ − 1

r

)
yv∗ ,

where bs,m is defined in equation (5) and v∗ = k + 2δ +m+ s+ r. Series expansion of yv∗ = exp
[
−v∗

(
G(x;ξ)

G(x;ξ)

)2
]

gives

f(x)Fs(x) = 2

∞∑
j,k,m,r,s,u=0

θk+2δ

[Γ(δ)](j+1)

(−1)r+uvu∗dj,kbs,m
u!

(
s

j

)(
k + 2δ − 1

m

)

×
(
θ − 1

r

)
g(x; ξ)G2u+1(x; ξ)

G
2u+3

(x; ξ)

= 2

∞∑
j,k,m,p,r,s,u=0

θk+2δ

[Γ(δ)](j+1)

(−1)r+u+pvu∗dj,kbs,m
u!

(
s

j

)(
k + 2δ − 1

m

)

×
(
θ − 1

r

)(
2u+ 1

p

)
g(x; ξ)G

p−(2u+3)
(x; ξ)

= 2

∞∑
j,k,m,p,q,r,s,u=0

θk+2δ

[Γ(δ)](j+1)

(−1)r+u+p+qvu∗dj,kbs,m
u!

(
s

j

)(
k + 2δ − 1

m

)

×
(
θ − 1

r

)(
2u+ 1

p

)(
p− (2u+ 3)

q

)
g(x; ξ)Gq(x; ξ)

=

∞∑
q=0

ηq+1h∗q+1(x; ξ) ,

where h∗q+1(x; ξ) is defined under equation (17) and

ηq+1 = 2

∞∑
j,k,m,p,r,s,u=0

θk+2δ

[Γ(δ)](j+1)

(−1)r+u+p+qvu∗dj,kbs,m
u!

×
(
s

j

)(
k + 2δ − 1

m

)(
θ − 1

r

)(
2u+ 1

p

)(
p− (2u+ 3)

q

)
.

Consequently, we obtain the probability weighted moments for the GOBX-G family of distributions reduces to

ω(r,s) =

∞∑
q=0

ηq+1

∞∫
−∞

xrh∗q+1(x; ξ)dx .

5. Maximum Likelihood Estimation

This section present the maximum likelihood technique for estimating the parameters of the GOBX-G family of
distributions. Maximum likelihood is one of the most reliable estimation technique as it mostly produce accurate and
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consistent estimators (Zanakis and Kyparisis, 1986). Let X1, X2, X3,...,Xn be a random sample of size n from the
GOBX-G family of distributions and Θ = (δ, θ, ξ)T be a vector of model parameters, then the log-likelihood function
can be expressed as

`n(Θ) = n ln(2) + n ln(θ)− n ln(Γ(δ)) +

n∑
i=1

ln[g(xi; ξ)] +

n∑
i=1

ln[G(xi; ξ)]− 3

n∑
i=1

ln[G(xi; ξ)]−
n∑
i=1

y2
i

+ (θ − 1)

n∑
i=1

ln
(

1− e−y
2
i

)
+ (δ − 1)

n∑
i=1

ln
[
− log

(
1− e−y

2
i

)]
,

where yi = G(xi; ξ)/G(xi; ξ). The components of the score function Un(Θ) =
(
∂`n(Θ)
∂δ , ∂`n(Θ)

∂θ , ∂`n(Θ)
∂ξk

)T
are given

in the appendix and R software is used to derive the solution to Un(Θ) = 0 under a specified baseline distribution.
The multivariate normal distribution Nq(0, J(Θ̂)−1), where 0 = (0, 0, 0)T and J(Θ̂)−1 are the mean vector and the
observed information matrix evaluated at Θ̂, can be used to construct the confidence intervals and regions for model

parameters. The 100(1− ϕ)% two sided confidence intervals for δ, θ and εk are δ̂ ± Zϕ
2

√
I−1
δδ (Θ̂), θ̂± Zϕ

2

√
I−1
θθ (Θ̂)

and ε̂k ± Zϕ
2

√
I−1
εkεk(Θ̂), respectively, where I−1

δδ (Θ̂), I−1
θθ (Θ̂) and I−1

εkεk
(Θ̂) are the diagonal elements of I−1

n (Θ̂) =

(nI(Θ̂))−1 and Zϕ
2

is the standard normal
(
ϕ
2

)th
percentile.

6. Simulation Study

In this section, simulation results are presented for different sample sizes of n = 100, 200, 400, 600 and 800 to
examine the accuracy and consistency of the maximum likelihood estimators (MLEs) for each of the parameter of the
GOBX-W distribution. The simulation was repeated N = 1000 times and the mean estimates, average bias (Abias)
and the root mean square errors (RMSEs) were evaluated. For consistent MLEs, it is expected that as the sample size
n increases, the mean estimates gets closer to the true parameters and, the RSMEs and Abias also decay to zero. Table
2 and 3 show the mean estimates together with their respective RSMEs and Abias. The Abias and RMSEs for the
estimated parameter, say, θ̂, are respectively given as:

Abias(θ̂) =

∑N
i=1 θ̂i
N

− θ, and RMSE(θ̂) =

√∑N
i=1(θ̂i − θ)2

N
.

Table 2: Monte Carlo simulation results for GOBX-W distribution
(2.1, 1.8, 0.5) (1.2, 1.2, 0.5)

Parameter Sample Size Mean RMSE Abias Mean RMSE Abias
δ 100 2.3447 0.5550 0.2447 1.2704 0.2154 0.0704

200 2.2161 0.3079 0.1161 1.2372 0.1361 0.0372
400 2.1435 0.1569 0.0435 1.2143 0.0862 0.0143
600 2.1268 0.1225 0.0268 1.2112 0.0700 0.0112
800 2.1151 0.1039 0.0151 1.2050 0.0599 0.0050

θ 100 2.2127 2.7293 0.4127 1.3616 0.8506 0.1616
200 1.9436 0.9222 0.1436 1.2683 0.4627 0.0683
400 1.8576 0.5194 0.0576 1.2263 0.2836 0.0263
600 1.8244 0.3971 0.0244 1.2076 0.2159 0.0076
800 1.8146 0.3264 0.0146 1.2007 0.1812 0.0007

α 100 0.6907 0.6368 0.1907 0.5531 0.2351 0.0531
200 0.5917 0.4098 0.0917 0.5268 0.1507 0.0268
400 0.5261 0.1627 0.0261 0.5111 0.0761 0.0111
600 0.5151 0.0885 0.0151 0.5082 0.0594 0.0082
800 0.5109 0.0732 0.0109 0.5062 0.0499 0.0062
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Table 3: Monte Carlo simulation results for GOBX-W distribution
(1.8, 1.4, 1.1) (1.8, 1.2, 1.1)

Parameter Sample Size Mean RMSE Abias Mean RMSE Abias
δ 100 1.9797 0.4030 0.1797 1.9782 0.3947 0.1782

200 1.8869 0.2474 0.0869 1.9002 0.2764 0.1002
400 1.8329 0.1282 0.0329 1.8356 0.1331 0.0356
600 1.8206 0.1029 0.0206 1.8232 0.1073 0.0232
800 1.8110 0.0883 0.0110 1.8130 0.0913 0.0130

θ 100 1.6186 1.2441 0.2186 1.3523 0.9380 0.1523
200 1.4809 0.6234 0.0809 1.2483 0.5204 0.0483
400 1.4305 0.3696 0.0305 1.2216 0.3128 0.0216
600 1.4088 0.2824 0.0088 1.2024 0.2394 0.0024
800 1.4051 0.2369 0.0051 1.1997 0.2013 -0.0003

α 100 1.4724 1.2224 0.3724 1.4926 1.1828 0.3926
200 1.2634 0.6989 0.1634 1.3357 0.8756 0.2357
400 1.1553 0.2988 0.0553 1.1660 0.3271 0.0660
600 1.1348 0.1869 0.0348 1.1435 0.2090 0.0435
800 1.1247 0.1521 0.0247 1.1315 0.1686 0.0315

From the results in Table 2 and 3, it is clear that as the sample size increases, the mean estimates gets closer to true
parameters whereas the respective RSMEs and Abias decay to zero indicating consistent MLEs.

7. Applications

This section presents two real data applications to show the flexibility of GOBX-W distribution compared with other
existing distributions. The first data consists of n = 59 monthly the actual taxes revenue (in 1000 million Egyptian
pounds) in Egypt between January 2006 and November 2010 extracted from Nassar and Nada (2011) and given as:
5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 18.5, 5.1,6.7, 17.0, 8.6, 9.7, 39.2, 35.7, 15.7, 9.7,
10.0, 4.1, 36.0, 8.5, 8.0, 9.2, 26.2, 21.9, 16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7.1, 7.7, 18.1, 16.5, 11.9, 7.0,
8.6, 12.5, 10.3, 11.2, 6.1, 8.4, 11.0, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, 10.8. This data have mean, median, minimum and
maximum values of 13.49, 10.60, 4.10 and 39.20, respectively. The second data consists of n = 46 active repair times
(hours) for an airborne communication transceiver referenced by Sultan and Al-Moisheer (2015) and are given as:
0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2,
2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 22.0, 24.5. This data have mean,
median, minimum and maximum values of 3.61, 1.75, 0.2 and 24.5, respectively. The GOBX-W distribution was
compared with other existing models with the use of R-software to run model parameter estimates and goodness-of-fit
measures. The goodness-of-fit measures used for model performance comparison are; −2 log-likelihood (−2ln(L)),
Akaike Information Criterion (AIC = 2p − 2ln(L)), Bayesian Information Criterion (BIC = pln(n) − 2ln(L)),
Consistent Akaike Information Criterion (AICC = AIC + 2 p(p+1)

n−p−1

)
, where L = L(Θ̂) is the value of the likelihood

function at the parameter estimates, n is the number of observations and p is the number of estimated parameters for a
given function. Model fit was also investigated using graphical plots such as the fitted densities, empirical cdfs, plots of

hrfs, Kaplan-Meier, TTT plots and probability plots with F (x(j); δ̂, θ̂, ξ̂) plotted against
j − 0.375

n+ 0.25
, j = 1, 2, · · · , n,

where x(j) are the ordered values of the observed data. The measure of closeness termed as Sum of Squares (SS),
(Chambers et al., 1983), was computed as

SS =

n∑
j=1

[
F (x(j); δ̂, θ̂, ξ̂)−

(
j − 0.375

n+ 0.25

)]2

.

In addition, the Cramér-von Mises (W ∗) and Andersen-Darling (A∗) as described by Chen and Balakrishnan (1995)
were obtained together with the Kolmogorov-Smirnov (K-S) statistics and their p-values. For all these goodness-of-fit
statistics, smaller values suggests a very good fit of the model to the data. Additionally, large p-values also represent
a good fit for the model. The new GOBX-W distribution was compared to Weibull (W) distribution, Weibull Lomax
(WL) distribution (Jamal et al., 2019), Gamma Weibull (GW) distribution (Pogány and Saxena, 2010), Gamma Burr
X (GBX) distribution (Khaleel et al., 2016), Exponentiated Half Logistic (EHL) distribution (Cordeiro et al., 2017)
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and Burr X (BX) distribution (Khaleel et al., 2016) with pdfs

f
WL

(x) = αab(1 + bx)aα−1(1− (1 + bx)−a)α−1 exp

(
−
(

1− (1 + bx)−a

(1 + bx)−a

))
,

for a, b, α > 0,

fGW (x) =
kλ−k−βxβ+k−1e−λ

−kxk

Γ(1 + β
k )

,

for k, β, λ > 0,

fGBX(x) =
2θλ2

Γ(δ)
xe−(λx)2

(
1− e−(λx)2

)θ−1 [
−θ log

(
1− e−(λx)2

)]δ−1

,

for θ, λ, δ > 0,

fEHL(x) =
2aλe−λx

1− e−2λx

[
1− e−λx

1 + e−λx

]a
,

for a, λ > 0, and

fBX(x) = 2θα2xe−(αx)2
(

1− e−(αx)2
)θ−1

,

for θ, α > 0 and x > 0, respectively.

7.1. Taxes Revenue Data

This subsection contain parameter estimates (standard error in parenthesis), goodness-of-fit statistics, plots of the fitted
densities, empirical cdf, Kaplan-Meier and TTT, hrf plots and probability plots for the taxes revenue data.

(a) (b)
Figure 6: Fitted densities and empirical cdf plots for monthly actual taxes revenue data
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(a) (b)
Figure 7: Probability plot and hrf plot for monthly actual taxes revenue data

(a) (b)
Figure 8: Kaplan-Meier and TTT plots for monthly actual taxes revenue data

Figures 6(a), 6(b), 7(a), 7(b), 8(a) and 8(b) illustrates how best the GOBX-W distribution fits the monthly actual
taxes revenue data. The fitted density shows that GOBX-W distribution can accommodate skewed data. The fitted hrf
exhibits decreasing shape. The estimated variance-covariance matrix for GOBX-W model in revenue data is given by 1.49× 10−2 4.52× 10−6 −1.18× 10−3

4.52× 10−6 1.38× 10−9 −3.58× 10−7

−1.18× 10−3 −3.58× 10−7 1.07× 10−4


and the 95% confidence intervals for the model parameters are given by δ ∈ [3.59 × 10−1 ± 2.39 × 10−1], θ ∈
[1.02× 103 ± 7.27× 10−5] and α ∈ [1.38× 10−1 ± 2.03× 10−2].
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(a) (b) (c)
Figure 9: Profile plots of δ, θ and α for monthly actual taxes revenue data

Figure 9(a), 9(b) and 9(c) shows profile plots of the MLEs of δ, θ and α. It can be seen that the parameters attained
the absolute maximum for monthly actual taxes revenue data.

Table 4: Parameter estimation and goodness-of-fit statistics of the GOBX-W model and various models for the
revenue data set

Distribution Estimates -2LogL AIC AICC BIC W ∗ A∗ K-S P-value SS

GOBX-W
δ

3.588×10−1

(1.220×10−1)

θ
1.018×103

(3.710×10−5)

α
1.377×10−1

(1.034×10−2)
375.9 381.9 382.4 388.2 0.03356 0.2240 0.0587 0.9871 0.0320

WL
a

0.2558
(0.1315)

b
0.9385

(1.3999)

α
3.9034

(1.6510)
389.1 395.1 395.5 401.3 0.2259 1.4233 0.1332 0.2463 0.2121

GW
k

3.548 ×10−1

(2.874 ×10−2)

β
9.9433

(2.871 ×10−6)

λ
9.201 ×10−4

(9.126 ×10−4)
381.5 387.5 387.9 393.7 0.1326 0.7959 0.1060 0.5211 0.1224

GBX
θ

1.0741
(0.4418)

λ
0.1412

(0.0562)

δ
0.2269

(0.1836)
394.2 400.2 400.6 406.4 0.2737 1.7546 0.1943 0.0232 0.5174

EHL
a

3.4904
(0.8301)

λ
0.1917

(0.0227)
- 384.8 388.8 389.0 392.9 0.1720 1.0405 0.1215 0.3486 0.18418

BX
θ

1.0309
(0.1844)

α
0.0644

(0.0056)
- 395.3 399.3 399.6 403.5 0.3112 1.9904 0.1763 0.0510 0.3925

W
λ

0.3163
(0.0261)

- - 594.7 596.7 596.8 598.8 0.1329 0.7973 0.7956 < 0.0001 12.3219

7.2. Repair Time Data

This subsection contain parameter estimates (standard error in parenthesis), goodness-of-fit statistics, plots of the fitted
densities, empirical cdf, Kaplan-Meier and TTT, hrf plots and probability plots for the repair time data.
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(a) (b)
Figure 10: Fitted densities and empirical cdf plots for repair time data

(a) (b)
Figure 11: Probability plot and hrf plot for repair time data
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(a) (b)
Figure 12: Kaplan-Meier and TTT plots for repair time data

Figures 10(a), 10(b), 11(a), 11(b), 12(a) and 12(b) also shows GOBX-W distribution providing a better fit to the repair
time data. The fitted density further illustrates the flexibility of GOBX-W distribution with fitting skewed data. The
estimated variance-covariance matrix for GOBX-W model in repair time data is given by 2.09× 10−1 −1.01× 10−2 −7.36× 10−4

−1.01× 10−2 4.91× 10−4 3.56× 10−5

−7.36× 10−4 3.56× 10−5 1.18× 10−5


and the 95% confidence intervals for the model parameters are given by δ ∈ [8.06±0.89], θ ∈ [1.77×102±4.34×10−2]
and α ∈ [3.16× 10−2 ± 6.75× 10−3].

(a) (b) (c)
Figure 13: Profile plots of δ, θ and α for the repair time data

Figure 13(a), 13(b) and 13(c) shows profile plots of the MLEs of δ, θ and α. It can be seen that the parameters attained
the absolute maximum for the repair time data.
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Table 5: Parameter estimation and goodness-of-fit statistics of the GOBX-W model and various models for the
repair time data set

Distribution Estimates -2LogL AIC AICC BIC W ∗ A∗ K-S P-value SS

GOBX-W
δ

8.057
(4.577×10−1)

θ
1.773×102

(2.216×10−2)

α
3.165×10−2

(3.444×10−3)
200.1 206.1 206.6 211.5 0.0523 0.3315 0.0949 0.8017 0.0547

WL
a

0.2222
(0.1094)

b
7.0310

(11.2110)

α
2.12279

(0.91009)
202.3 208.3 208.8 213.8 0.0697 0.4745 0.1059 0.6802 0.0637

GW
k

0.2648
(0.0226)

β
2.7865
0.0001)

λ
0.0002

(0.0002)
201.7 207.7 208.2 213.1 0.0661 0.4379 0.0987 0.7619 0.0573

GBX
θ

3.5237
(2.086 ×10−9)

λ
7.250 ×10−5

( 1.180 ×10−5)

δ
62.530

(1.195 ×10−10 )
201.3 207.3 207.9 212.8 0.0631 0.4181 0.1048 0.6923 0.0647

EHL
a

0.744
(0.1378)

λ
0.311

(0.0572)
- 215.3 219.3 219.6 223.0 0.2072 1.3926 0.1660 0.1584 0.2755

BX
θ

0.2906
(0.0482)

α
0.0991

( 0.0145)
- 223.4 227.4 227.7 231.1 0.2782 1.9018 0.1813 0.0973 0.5397

W
λ

0.565
(0.0500)

- - 241.9 243.9 243.9 245.7 0.0977 0.6718 0.4478 < 0.0001 3.1535

From the results in Table 4 and 5, GOBX-W distribution outperformed all the competing non-nested models. It had
the lowest values of -2LogL, AIC, AICC, BIC, W ∗, A∗, K-S and SS together with largest p-value when compared to
competing models in all data sets.

8. Concluding Remarks

We developed a new family of distributions termed as the Gamma Odd Burr X-G (GOBX-G) distribution. Mathe-
matical and statistical properties of this new family were studied. In addition, different baseline distributions were
considered to show the flexibility of this family of distributions on real life applications. Simulation study was also
carried out using Weibull distribution as the baseline and it showed that its maximum likelihood estimators are accu-
rate and consistent. Based on two real data sets, Gamma Odd Burr X-Weibull (GOBX-W) distribution outperformed
models it was competing with based on -2LogL, AIC, AICC, BIC, W ∗, A∗, K-S and SS statistics which were very
low compared to those of the non-nested models. Graphical plots were also added to show how best GOBX-W distri-
bution fits real life datasets. Moreover, the hrf can be decreasing, increasing, upside down bathtub and bathtub shaped
depending on the selected parameter values. Future work may focus on the application of the developed models in
regression analysis, use of Bayesian inference, as well as estimation of the model parameters under various censoring
schemes. One may also consider different parameter estimation techniques for the proposed family of distributions.
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A. Components of the Score Vector

The components of the score vector for the GOBX-G family of distributions are:

∂`n(Θ)

∂δ
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[
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2
i

)]
,
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2
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)
and
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∂yi
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i=1

2yie
−y2i
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∂yi
∂ξk

+ (δ − 1)

n∑
i=1

2yie
−y2i(

1− e−y2i
)

log
(
1− e−y2i

) ∂yi
∂ξk

,

where ψ(δ) = ∂Γ(δ)/∂δ, g′(x; ξ) = ∂g(x; ξ)/∂ξk, G′(x; ξ) = ∂G(x; ξ)/∂ξk, G
′
(x; ξ) = ∂G(x; ξ)/∂ξk, ξk is the

kth element of the vector of parameters ξ and yi = G(xi; ξ)/G(xi; ξ).

B. R code for Applications

All codes for applications, simulations and plots can be found at https://drive.google.com/drive/folders/
17XqzV07QZUDC0LYjysYT9qu1QWpaqYMK?usp=sharing.
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