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Abstract

Smooth non-parametric quantile function estimators on basis of symmetric kernels exhibit boundary bias due to spill-
over near the edges. An improved non-parametric estimator of a quantile function under simple random sampling
without replacement is proposed, based on a multiplicative bias corrected distribution function. There is no spill-
over around the edges with our new quantile estimator. The proposed quantile estimator’s asymptotic properties are
investigated. The suggested method is compared to existing estimators using real data set findings, demonstrating the
improved performance.
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1. Introduction

Simple random sampling (SRS) is widely utilized only when variables’ values don’t really change significantly and
the population is homogeneous. SRS is among the most basic sampling procedures in many ways, and no further
information is required. Furthermore, when using SRS to create a sample, sample weights aren’t really required for
evaluating data from a survey using, for example, regression or multivariate analysis. A downside of SRS is the com-
plexity in managing accuracy and the inefficiencies of not using supplemental data, which could result in enormous
samples that are unneeded. Furthermore, because no supplementary information is used, there is always the potential
of a skewed sample.

In the sampling survey, we are time and again interested in studying the distribution of a certain interest variable, say
Y . The efficient technique to illustrate the distribution function is by assessing the quantiles of the distribution. By
definition, the distribution p th quantile, is the value Q, satisfying P (Y ≤ Q) = p. In the literature, much emphasis
has been placed on the p th quantile estimation problem. Majority of studies employ simple random sampling (SRS)
to estimate the quantile utilizing kernel density function, for further information we direct the reader see for example,
Nadaraya(1964), Lio and Padgett(1991), and Jones(1992).
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It is commonly acknowledged that the sample quantile has a significant inefficiency. To address this issue, many re-
searchers have suggested kernel-type estimators as smooth alternatives to the sample quantile. Nadaraya(1964) and
Parzen(1979) are two early works on kernel estimation techniques of the quantile function. Reiss(1980) demonstrated
that as the sample size grows, the sample quantile’s asymptotic relative deficit with regard to a linear combination
of finitely numerous order statistics diverges to infinite. Falk(1984) also looked at the sample quantile’s asymptotic
relative inadequacy in comparison to kernel-type quantile estimators. Yang(1985) investigated kernel-type quantile
estimators’ asymptotic properties. Padgett(1986) investigated on right-censored data to the earlier works. These con-
clusions are all based on symmetric kernel functions. The use of symmetric kernel functions causes boundary bias or
spill-over consequences because the quantile function’s domain is a bounded interval (0, 1). When fixed symmetric
kernels are utilized, boundary bias is caused by incorrect weights of kernel functions around the quantile function’s
boundaries.

To eliminate boundary bias, Chen(1999) and Chen(2000) advocated using beta kernel estimators for density functions
and regression curves. It is permissible to integrate a beta probability density function into smooth nonparametric
estimators of quantile function because the intervention of a beta probability density function fits the range of the
quantile function. We offer a novel quantile estimator predicated on the multiplicative bias corrected distribution
function that is devoid of spill-over effects for simple random sampling without replacement in this study.

2. Multiplicative Bias Corrected Distribution Function Estimator

The usual practice of quantile estimation is to construct an estimator of the cdf of Y first, then to deduce an estimator
of the α−quantile of Y . In this section, a brief description of the multiplicative bias corrected distribution function
estimator developed by Onsongo et al.(2018) is presented. Then used to derive the proposed quantile estimator as well
as its asymptotic properties. Let Y be the survey variable associated with auxiliary variable X which are assumed to
follow superpopulation model

yi = µ(xi) + σ(xi)ei, i = 1, 2, ..., N (1)

where σ(xi) is a function of xi that takes account of heteroscedasticity and ei ∼ iidN(0, σ2), E(yi) = µ(xi) and

Cov(yi, yj) =

{
σ2(xi) if i=1,2,...,N
0 otherwise.

As before, y1, . . . , yN represent Y values in U . Similarly, let x1, . . . , xN signify the values of X , respectively, in U.
Assume that the value of Y is only recorded for elements of sn, while the values of X are available for every element
in U . Under model-based approach, Onsongo et al.(2018) proposed

F̂MBC(t) =
1

N

{∑
i∈s

I (yi ≤ t) +
∑
j∈r

Ĥ (t− µ̂(xj))

}
(2)

The estimator in equation (2) can be viewed as a weighted sum of two estimators of one from observed values and one
from the auxiliary information of the non-sample elements. That is,

F̂MBC(t) = N−1
[
NFNy

(t) + (N − n)F ∗r (t)
]
,

where FNy (·) is the usual empirical distribution function and

F ∗r (t) =
∑
i∈s

(N − n)−1
∑
j∈r

Ĥ (t− µ̂(xj)) .

Based on some regularity conditions, Onsongo et al.(2018) showed that
F̂MBC(t) is unbiased estimator of FN (t) that is

E
(
F̂MBC(t)

)
= FN (t) (3)
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and the analytic expression of the variance F̂MBC(t)− FNy (t) is

Var
[
F̂MBC(t)− FN (t)

]
=

1

N2

∑
i∈s

{
N−n∑
j=1

N−n∑
k=1

w∗ijw
∗
ik [Hi (t−max (µ̂j , µ̂k))−Hi (t− µ̂j)Hi (t− µ̂k)]

}

+
1

N2

{
(N − n)P (yj ≤ t) [1− P (yj ≤ t)]

} (4)

3. Proposed Quantile Estimator

A common use of distribution function estimators is to provide a quantile estimators. Now, we can use F̂MBC(t) to
estimate αth quantile QNy

(α). To this end, suppose that a sample of size n based on SRSWOR selected from the
underlying population with an interested variable Y . Then, QNy

(α) can be estimated by

Q̂MBC(α) = inf

{
t ∈ U : F̂MBC(t) ≥ α

}
= F̂−1MBC(α) (5)

this is a common way to define a quantile estimator based on a distribution function estimator. From equation (2),
Q̂MBC(α) can be computed by numerically solving the equation

F̂MBC

(
Q̂MBC(α)

)
= α.

The following two theorems which state, respectively, the asymptotic normality and Bahadur representation for α, are
of main importance and will be used in the sequel.

Theorem 3.1. Serfling(1980) Assume that the density function f is positive in the vicinity of ξp and that it is continuous
at ξp, and that the judgment ordering is perfect.

√
n
(
ξ̂∗p − ξp

)
D−→ N

(
0,

σ2
k,p

f2(ξp)

)

where D−→ denotes convergence in law.

Theorem 3.2. Francisco and Fuller(1991) Suppose x be a point in the interval A1 that contains the interior point
q(τ01 ). Then, sample quantile can be expressed as,

q̂rn(τ) = q(τ)−
[
f(q(τ))

]−1[
Frn(q(τ))− F (q(τ))

]
+R∗rn(τ)

with R∗rn(τ) = op

(
n
−1/2
r

)
uniformly in τ for τ in W1, where W1 =

{
τ : F (x) = τ and x ∈ A1

}
Proof: Proof see (Francisco and Fuller, 1991).

With the conclusions from Theorem (3.2) above, the estimator Q̂MBC(α) may be written asymptotically as a linear
function of the estimated distribution function assessed at the quantile QNy (α) by the Bahadur representation, see
(Chambers and Dunstan, 1986). Let FMBC be multiplicative bias corrected distribution function of the density fMBC.

Then, utilizing Taylor series expansion of a function FMBC

(
Q̂MBC(α)

)
about QNy

(α), the following is obtained:

FMBC

(
Q̂MBC(α)

)
= FMBC(QNy

(α)) + fMBC(QNy
(α))

[
Q̂MBC(α)−QNy

(α)
]

+O(n−
1
2 ) (6)

Where F ′MBC(QNy
(α)) = fMBC(QNy

(α)), according to (1) since FMBC contains two derivatives in a QNy
(α)
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neighborhood, this neighborhood is bound by the second derivative and F ′MBC(QNy (α)) is positive. From equation
(6) the Bahadur’s representation, Bahadur(1966) of Q̂MBC(α) is

Q̂MBC(α) = QNy
(α) +

(
α− F̂MBC(QNy (α))

)
fMBC(QNy (α))

+O(n−
1
2 ). (7)

where fMBC(.) denotes the derivative of the limiting value of FMBC(.) as N −→ ∞, F̂MBC(Q̂MBC(α)) = α and
O(n−1/2), according to Kiefer(1967) becomes negligible as n −→ ∞. The linear approximation previously used by
Kuk and Mak(1989) and Chen and Wu(2002) helps to study the asymptotic properties of the estimator. According to
equations (3), (4) and (7) it is easy to see that

E
[
Q̂MBC(α)

]
= QNy

(α) +O(n−
1
2 ), (8)

and

Var
(
Q̂MBC(α)

)
=

1

f2MBC(QNy
(α))

[
1− f
N

α (1− α)

]
. (9)

According to Kiefer(1967), O(n−1/2) becomes negligible as N −→∞, the right-hand side of equation (8) tends to 0
and so Q̂MBC(α) is asymptotically unbiased. Furthermore, from equation (11) and (12) it can be seen that Q̂MBC(α)
is asymptotically consistent estimator of QNy (α). Moreover, Q̂MBC(α) has an asymptotic normal distribution as in
(Serfling, 1980)

N

(
QNy (α),

1− f
N − 1

α (1− α)

[
fMBC(QNy (α))

]−2)

4. Estimators Included for Comparison in the Study

Although one of our aims is to develop estimators with respectable qualities in terms of bias, variance, and asymptotic
mean squared error, we compare the new estimator given by equation (5) to some of the prominent quantile estimators
proposed in the literature.

Firstly, in study estimator by Chambers and Dunstan(1986) is included, which is driven by the linear superpopulation
model yk = β0+ β′xk + εk, k ∈ U , where εk forms a sequence identically and independently distributed random
variables with mean zero and variance which is finite. Their estimator is described as follows:

Q̂y,CD,α = inf
{
t | F̂y,CD(t) ≥ α

}
(10)

where F̂y,CD(t) = N−1
{

ΣsH (t− yk) +
∑
U/s Ĝ (t− ŷk)

}
represents a model-based distribution function estima-

tor,
Ĝ(u) = n−1

∑
s

H (u− ε̂k)

Since this estimator (10) essentially assigns the unknown yk for k ∈ U/s, it is important to highlight that it requires a
comprehensive understanding of xk for k ∈ U .

Also, empirical study includes the model-based estimator by Rao et al.(1990)

F̂ •rkm(t) =
1

N

{∑
i∈s

π−1i δ (yi ≤ t) +

(∑
i∈U

Ĝi(t)−
∑
i∈s

π−1i Ĝic(t)

)}
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with

Ĝi(t) =
1

N̂

∑
j∈s

1

πj
δ

(
ûj ≤

t− R̂xi
x
1/2
i

)

Ĝic(t) =

∑
j∈s

πi
πij

−1 ∑
j∈s

πi
πij

δ

(
ûj ≤

t− R̂xi
x
1/2
i

) ,
ûj =

yj − R̂xj
x
1/2
j

, R̂ =

[∑
i∈s

xi
πi

]−1∑
i∈s

yi
πi

where πij denotes the joint inclusion probability for the units i and j. Since the estimator F̂ •rkm(t) is not always a
monotone nondecreasing function, Rao et al.(1990) proposed to use the following estimator

F̂rkm(t) = max
{
F̃rkm

(
y(i)
)

: y(i) ≤ t
}

where the y(i) ’s are the order statistics of the sample {yi, i ∈ s} and F̃rkm
(
y(i)
)

is defined by the following recursive
formula

F̃rkm
(
y(i)
)

= max
{
F̃rkm

(
y(i−1)

)
, F̂ •rkm

(
y(i)
)}

with F̃rkm
(
y(1)
)

= F̂ •rkm
(
y(1)
)
. The Rao et al.(1990) estimator of quantile QRKM,α is given by

Q̂RKM ;α = F̂−1rkm(α). (11)

A common kernel quantile estimator is also employed, which is based on a Nadaraya(1964) type kernel distribution
function estimator

F̂n(x) =
1

n

n∑
i=1

K

(
x−Xi

h

)
whereby,K is determined from a kernel k asK(x) =

∫ x
−∞ k(t)dt, h is a smoothing parameter. The quantile function’s

associated estimator is then defined by

Q̃NW (p) = inf{x : F̂n(x) ≥ p}, 0 < p < 1 (12)

Finally, in our empirical study we include Dorfman and Hall estimator studied in Dorfman et al.(1993)

F̂DH(t) =
1

N

∑
i∈s

I (yi ≤ t) +
∑
j∈r

Ĝ (t− µ̂ (xj))


where µ̂ is the linear estimator of the mean function. The corresponding estimator of the quantile function is then
defined by

Q̂DH(p) = inf{t : F̂DH(t) ≥ p}, 0 < p < 1 (13)

Equations (8), (13), (14), (15) and (16) are respectively denoted by MBCQE, CDQE, RKMQE, NWQE and FAQE.

5. Application to real data set

This section illustrates the applications of our estimation approach on a dataset that involves a population, U of size
N = 189 from the United Nations Development Programme 2017. The United Nations looked into development
in 189 countries around the world. The United Nations classified countries’ development as either very high human
development, high human development, medium human development, or low human development. According to UN
figures from 2017, Kenya is among the countries with a medium level of development, ranking 143rd out of 189 coun-
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tries evaluated. To rank human development index in 189 countries, the UN study employed the Human Development
Index (HDI), Life expectancy at birth, Expected years of schooling, Mean years of schooling, Gross National Income
(GNI) per capita, and GNI per capita rank minus HDI.

Knowing a country’s GNI per capita is a solid starting point for determining the country’s economic strengths and
requirements, as well as the average citizen’s level of living. The HDI and GNI figures were derived from the UN
Development Programme 2017 data set to demonstrate the recommended methodologies. HDI serves as an auxiliary
variable, while GNI serves as the research variable yi(i = 1, 2, 3, . . . . . . ., 189). A scatter plot of HDI vs GNI is shown
in Figure 1, as well as a line of best fit between GNI and HDI.

Our aim is to estimate the quantiles at 25%, 50% and 75% of GNI values for the population, assuming UN development
Programme 2017 data set are representative of the entire population. From the scatter plot in Figure 1 we observe a
quadratic relationship between HDI and GNI.

Figure 1: Scatter diagram for the population

Fitting a regression model to the data, the obtained model equation is of the form

GNI = 96512 ?HDI−50408

The correlation coefficient between GNI and HDI is approximately 0.7515. This indicates a strong positive nonlinear
relation between GNI and HDI.

We draw from the population samples of size n = 50, and 100 and compute quantile estimators listed below for prob-
ability levels α ∈ {0.25, 0.5, 0.75}. Table 1 presents a comparison of empirical quantile estimator with proposed
estimator and other estimators in the literature.
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Table 1: Comparison of Empirical Quantile Estimator with other Estimators

Quantile estimates

Sample size Estimators 0.25 0.50 0.75

Q(p) 3843 11100 25393
n = 50 RKMQE 6720.611 9303.594 8463.536

CDQE 7497.621 12089.5 10377.66
FAQE 8351.48 7935.459 13461.61
NWQE 1085.417 3055.923 3573.846
MBCQE 4851.519 10274.23 15273.08

n = 100 RKMQE 1461.375 7676.824 9634.885
CDQE 2683.90 7530.389 8827.565
FAQE 1354.588 7753.122 7961.417
NWQE 1367.84 7174.192 9692.346
MBCQE 3792.2 7856.255 9999.85

The results exhibited in Table 1 shows that the MBCQE is closer to the empirical quantile. Therefore, MBCQE
provides an almost flawless estimate of the empirical quantile function.

To study the performance of the proposed estimator in practice, 150 samples of various sizes were taken from popula-
tion (United Nations development Programme 2017) according to simple random sampling without replacement. For
each sample s we computed several estimators of the population quantiles (α = 0.25, 0.5, 0.75). We computed the
bias and the mean squared error over the 150 samples.

Table 2 shows the estimated relative mean error, RME, and the relative root mean squared error, RRMSE, for each
estimator considered, for the population quantiles (sample size n = 50 and 100).

Table 2: RME and RRMSE of the Quantile Estimators

α = 0.25 α = 0.5 α = 0.75

Estimator RME RRMSE RME RRMSE RME RRMSE

n = 50

RKMQE 5966.513 1.552566 6957.031 0.6267596 17852.89 0.7030635
CDQE 4735.123 1.232142 6271.702 0.5650182 16795.58 0.6614255
FAQE 5530.96 1.43923 8556.715 0.7708752 13198.98 0.5197879
NWQE 8077.199 2.101795 8069.366 0.7269699 21820.89 0.859327
MBCQE 2779.99 0.7233906 5765.705 0.5194329 12887.84 0.5075353

n = 100

RKMQE 2453.382 0.6384027 4240.424 0.3820202 15828.63 0.6233464
CDQE 1370.384 0.3565923 4575.144 0.4121751 16763.01 0.6601428
FAQE 2589.154 0.6737325 4614.388 0.4157107 17480.43 0.6883955
NWQE 2507.451 0.6524723 4818.027 0.4340565 15764.34 0.6208144
MBCQE 812.6091 0.2114518 3929.739 0.3540305 15459.01 0.60879

From the values in Tables 2 it is clear that the overall performance of the Multiplicative bias corrected quantile esti-
mate, MBCQE, is far superior to the usual one since it has minimum Relative Mean Error and Relative Root Mean
squared Error at all levels of the α−quantile.
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The estimator’s conditional performance was assessed and compared to that of other previous finite population quantile
estimators. To accomplish this, 500 random samples of size 100 were chosen, and the mean of the auxiliary values
xi was calculated for each sample to get 200 X̄ values. These sample means were then sorted in increasing order and
then divided into 20-group clusters, yielding a total of 25 groups. To determine ¯̄X , the group means of the means of
the auxiliary variables were calculated. The RKMQE, CDQE, FAQE, NWQE and MBCQE estimators’ means and
biases were then computed. To get a better understanding of the pattern formed, the conditional biases were plotted
against ¯̄X . Figures 2 − 4 exhibits plots of Conditional Bias (CB), Conditional RAB (CRAB) and Conditional MSE
(CMSE) versus group means of means of the HDI for various values of α quantile. These figures shows that MBCQE
have better performance than the other estimators.

Figure 2: Plots of the behaviour of the CB, CRAB and CMSE for different estimators: α = 0.25.
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Figure 3: Plots of the behaviour of the CB, CRAB and CMSE for different estimators: α = 0.05.

Figure 4: Plots of the behaviour of the CB, CRAB and CMSE for different estimators: α = 0.75.
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6. Conclusion

The quantile estimator based on simple random sampling without replacement has been developed. Investigation of
the developed estimator’s properties was done and discovered that it possesses asymptotic normal distributions. Under
SRSWOR, its asymptotically unbiased estimator and asymptotically consistent estimator of population quantiles. It
is clear from results that the quantile estimator based on SRSWOR results in a larger decrease of Bias than the one
achieved by other estimators in literature used for comparison. In terms of performance, MBCQE has consistently
produced results that are more precise than existing quantile estimators. We can therefore conclude that MBCQE
can be used in estimating finite population quantiles for simple random sampling without replacement populations in
various sectors since it yields very good results.
Other bias correction processes in quantile estimation, such as Adaptive Boosting and Bootstrap bias reduction
methodologies, can be explored, as well as further research on the construction of confidence intervals for the rec-
ommended estimator.
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