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Abstract

The application of compound distributions has recently increased due to the flexibility in fitting actual data in vari-
ous fields such as economics, insurance, etc. Poisson-half-logistic distribution is one of these distributions with an
increasing-constant hazard rate that can be used in parallel systems and complementary risk models. Because of the
complexity of the form of this distribution, it is not possible to obtain classical parameter estimates (such as MLE) by
the analytical method for the location and scale parameters. We present a simple way of deriving explicit estimators by
approximating the likelihood equations appropriately. This paper presents the AMLE (Approximate Maximum Like-
lihood Estimator) method to estimate the location and scale parameters. Using simulation, we show that this method
is as efficient as the maximum likelihood estimators (MLEs). We obtain the variance of estimators from the inverse
of the observed Fisher information matrix, and we see that when sample size increases, bias and variance of these
estimators, and hence MSEs of parameters, decrease. Some pivotal quantities are proposed for finding confidence
intervals for location and scale parameters based on asymptotic normality. From the coverage probability, the MLEs
do not work well, especially for the small sample sizes; thus, simulated percentiles based on the Monte Carlo method
are used to improve the coverage probability. Finally, we present a numerical example to illustrate the methods of
inference developed here.

Key Words: Compounding distribution; Poisson-half-logistic distribution; Approximate Maximum Likelihood Esti-
mator; Monte Carlo simulation.
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1. Introduction

The random variable X has a standard Poisson-half-logistic (PHL) distribution (Abdel-Hamid (2016)) if the cumulative
distribution function (cdf) and probability density function (pdf) are,

F (z) =
eθG(z) − 1

eθ − 1
, (1)

f(z) =
θg(z)eθG(z)

eθ − 1

=
2θe−z+θG(z)

(eθ − 1) [1 + e−z]
2 , z > 0, (θ > 0), (2)
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respectively, where G(z) = 1−e−z
1+e−z and g(z) = 2e−z

(1+e−z)2
are the cdf and pdf of standard half logistic distribution

respectively. We consider a version of (2) with location (µ) and scale (σ) parameters. If X = σZ + µ, then X has the
Poisson-half-logistic distribution with the following pdf,

f(x;µ, σ) =
θg(x−µσ )eθG( x−µσ )

σ(eθ − 1)

=
2θe−

x−µ
σ +θG( x−µσ )

σ (eθ − 1)
[
1 + e−

x−µ
σ

]2 , x > µ, (σ, θ > 0). (3)

We denote this distribution with PHL(µ, σ, θ). In this research, we consider estimating the location and scale pa-
rameters of the Poisson-half-logistic distribution. The contents of this paper are organized as follows. In Section (2),
we discuss MLEs of the location and scale parameters of the Poisson-half-logistic distribution and provide explicit
estimators by appropriately approximating the likelihood equations. Also, section (3), provides expressions for the
observed Fisher information matrix. In section (4), some characteristics of the distribution are calculated. In Section
(5), we provide the results of a simulation study to evaluate the performance of the approximate estimators and the
MLEs determined by numerical methods. Finally, in Section (6), we present a numerical example to illustrate all the
methods of inference discussed in the privies sections.

2. Estimation of the location and scale parameters

2.1. Maximum Likelihood Estimation

Let X1, X2, · · · , Xn be a random sample of size n from the PHL(µ, σ, θ), and let X(1), X(2), · · · , X(n) be the
corresponding order statistics. The likelihood function based on this ordered sample is then

L(µ, σ) = n!

n∏
i=1

f(x(i);µ, σ). (4)

Using the relation f(x;µ, σ) = 1
σf(

x−µ
σ ), the likelihood function may be rewritten as

L(µ, σ) = n!σ−n
n∏
i=1

f(z(i)) = n!σ−nθn
n∏
i=1

g(z(i))e
θG(z(i))

eθ − 1
,

where z(i) = (x(i) − µ)/σ.

For simplicity, from now on, we will use zi and xi instead of z(i) and x(i). The log-likelihood function may then be
written as

` = ln(L(µ, σ)) ∝ n ln(θ)− n ln(σ) +
n∑
i=1

ln(g(zi)) + θ

n∑
i=1

G(zi)− n ln(eθ − 1). (5)

Taking derivatives from (5) with respect to µ and σ and simplified equations with replacing g′(.)
g(.) = −G(.) , ∂zi∂µ = − 1

σ

and ∂zi
∂σ = − 1

σ zi we obtain the likelihood equations as

∂`

∂µ
=

1

σ

n∑
i=1

G(zi)−
θ

σ

n∑
i=1

g(zi) = 0, (6)

∂`

∂σ
= −n

σ
+

1

σ

n∑
i=1

ziG(zi)−
θ

σ

n∑
i=1

zig(zi) = 0. (7)

Equations (6) and (7) do not yield explicit solutions and hence must be solved numerically to obtain the MLEs, say µ̂
and σ̂. Such methods require a starting value near the global maximum.
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2.2. Approximate Maximum Likelihood Estimation

Equations (6) and (7) do not admit the explicit solutions for the µ and σ so we will expand the function G(zi) and
g(zi) in the Taylor series around the point E(Zi) = νi. See David and Nagaraja (2004) and Arnold and Balakrishnan
(2012) for reasoning. Various authors have previously applied a similar method for different distributions, see, for
example, Balakrishnan and Asgharzadeh(2005), Asgharzadeh(2006), Balakrishnan and Hossain(2007), Asgharzadeh
et al.(2013), Gui and Guo(2018) and Rasekhi et al.(2022).
If F (zi) is the cdf in(4), then it is known that

F (Zi) = Ui,

where Ui is the ith order statistic from a sample of size n from the uniform U(0, 1) distribution. We then have

Zi = F−1(Ui),

and hence
νi = E(Zi) ≈ F−1(αi),

where αi = E(Ui) =
i

n+1 .
By expanding the function G(zi) and g(zi) around the point νi and keeping only the first two terms, we may then
approximate this functions by

G(zi) ≈ G(νi) + g(νi)(zi − νi)
= αi − βizi, (8)

g(zi) ≈ g(νi) + g′(νi)(zi − νi)
= γi + δizi, (9)

where αi = G(νi)− νig(νi), βi = −g(νi) < 0, γi = g(νi)− g′(νi)νi = g(νi)(1 + νiG(νi)) > 0 and δi = g′(νi) =
−G(νi)g(νi) < 0.

Putting the equations (8) and (9) into the equations (6) and (7)and simplify, we obtain the following approximate
likelihood equations

∂ lnL

∂µ
≈

1

σ

n∑
i=1

(αi − βizi)−
θ

σ

n∑
i=1

(γi + δizi) = 0, (10)

∂ lnL

∂σ
≈ −n

σ
+

1

σ

n∑
i=1

zi(αi − βizi)−
θ

σ

n∑
i=1

zi(γi + δizi) = 0. (11)

Upon solving equations (10) and (11) for µ and σ with replacing zi = xi−µ
σ , we drive the AMLE of µ and σ as

follows;

µ̃ = K + Lσ̃, (12)

where

K =

∑n
i=1(βi + θδi)xi∑n
i=1(βi + θδi)

,

L = −
∑n
i=1(αi − θγi)∑n
i=1(βi + θδi)

.

If in equation (11) we replace µ̃ = K + Lσ̃ and simplified we obtain the quadratic equation

nσ2 −Aσ +B = 0, (13)
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where

A =

n∑
i=1

(αi − θγi) (xi −K) , B =

n∑
i=1

(βi + θδi) (xi −K)
2
.

Equation (13) is a quadratic equation in σ, with the two roots given by

σ̃ =
A±
√
A2 − 4nB

2n
,

Since B < 0, one of them drops out. Hence the ALME of σ is

σ̃ =
A+
√
A2 − 4nB

2n
. (14)

The AMLE method has an advantage over the MLE method because of an explicit solution to estimate the parameters.
The AMLEs can be used as starting values for the iterative solution of the likelihood equations (6) and (7) to obtain
the MLEs.
It should be mentioned that the approximate MLEs in equations (12) and (14) depend on the parameter θ. When the
parameter θ is unknown; we may use the profile likelihood function to obtain its estimate. For fixed θ, the approximate
MLEs µ̃ = µ̃(θ) and σ̃ = σ̃(θ) are given by equations (12) and (14), respectively. Thus, the profile log-likelihood
function is

`p(θ) = lnLp(θ) = lnL(µ̃(θ), σ̃(θ), θ)

∝ n ln(θ)− n ln(σ(θ)) +
n∑
i=1

ln(g(zi)) + θ

n∑
i=1

G(zi)− n ln(eθ − 1),

where zi =
xi−µ̃(θ)
σ̃(θ) , µ̃(θ) = K + Lσ̃(θ) and σ̃(θ) is given in equation (14).

Now the maximum profile likelihood estimate θ̃p may be obtained by maximizing the log-likelihood `(µ̃(θ), σ̃(θ), θ)
with respect to θ. Iterative numerical methods are required to obtain θ̃p.

3. Observed Fisher information

In this section, the observed Fisher information matrix is computed based on the likelihood and the approximate likeli-
hood equations. then, some pivotal quantities based on the limiting normal distribution are presented and the behavior
of these quantities is examined based on a Monte Carlo simulation study.

To evaluate the accuracy of estimators, it is necessary to obtain the asymptotic variance-covariance matrix of the
estimators. This matrix is obtained from the inverse of the observed Fisher information matrix. We define the elements
of the observed Fisher information matrix for maximum likelihood estimators (MLE) as follows

J =

[(
−∂

2 lnL
∂2µ −∂

2 lnL
∂µ∂σ

−∂
2 lnL
∂µ∂σ −∂

2 lnL
∂2σ

)]−1
=

[
1

σ2

(
V1 V2
V2 V3

)]−1
= σ2

(
V 11 V 12

V 12 V 22

)
,

where

V 11 =
V3

V1V3 − V 2
2

,

V 22 =
V1

V1V3 − V 2
2

,

V 12 = − V2
V1V3 − V 2

2

.

and similarly, V 11
∗ , V 12

∗ , V 22
∗ can be obtained from the observed Fisher information for the approximate likelihood

equations (AMLE).
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Using equations (6) and (7), we obtain components of observed Fisher information matrix for the MLE estimators as
bellow

∂2 lnL

∂2µ
= − 1

σ2

n∑
i=1

g(zi) [1 + θG(zi)] ,

∂2 lnL

∂µ∂σ
= − 1

σ2

n∑
i=1

[G(zi)(1 + θzig(zi)) + g(zi)(zi − θ)] ,

∂2 lnL

∂2σ
= − 1

σ2

[
−n+ 2

n∑
i=1

(
zi(G(zi)− θg(zi)) + z2i g(zi)(1 + θG(zi))

)]
.

Similarly, from the equations(10) and (11) for the AMLE estimators we obtain

∂2 lnL

∂2µ
≈

1

σ2

n∑
i=1

(βi + θδi),

∂2 lnL

∂µ∂σ
≈

1

σ2

n∑
i=1

[2zi(βi + θδi)− (αi − θγi)] ,

∂2 lnL

∂2σ
≈

1

σ2

[
n− 2

n∑
i=1

(
(αi − θγi)zi + 3(βi + θδi)z

2
i

)]
.

The approximate asymptotic variance-covariance matrices are valid only if asymptotic normality holds. Moreover,
certain regularity conditions must be satisfied, see, for example, Ferguson(1996).
These conditions are:

• (µ, σ) 6= (µ0, σ0) if and only if L(µ, σ) 6= L(µ0, σ0);

• L(µ, σ) is continuous in (µ, σ) for almost all y = (Y1, Y2, · · · , Yn);

• there exists and integrable function D(y) such that | lnL| < D(y) for all (µ, σ);

• the MLEs of (µ, σ) must be in the interior of (−∞,∞)× (0,∞);

• L(µ, σ) > 0 and is twice continuously differentiable in (µ, σ) in some neighborhood N of (−∞,∞)× (0,∞);

•
∫
sup(µ,σ)∈N

∥∥∥∥( ∂L/∂µ
∂L/∂σ

)∥∥∥∥ dy <∞;

•
∫
sup(µ,σ)∈N

∥∥∥∥∥
(

∂2L
∂2µ

∂2L
∂µ∂σ

∂2L
∂µ∂σ

∂2L
∂2σ

)∥∥∥∥∥ dy <∞;

• E

[(
∂L/∂µ
∂L/∂σ

)(
∂L/∂µ
∂L/∂σ

)′]
at (µ, σ) = (µ̂, σ̂)exists and is non-singular;

• E

[
sup(µ,σ)∈N

∥∥∥∥∥
(

∂2L
∂2µ

∂2L
∂µ∂σ

∂2L
∂µ∂σ

∂2L
∂2σ

)∥∥∥∥∥
]
<∞;
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4. Coverage probability and percentage point

To compute confidence intervals (CIs) for the location and scale parameters, one has to obtain pivotal quantities. since(
µ̂
σ̂

)
, are asymptotic normally distributed, we have

P1 =
µ̂− µ
σ̂
√
V 11

∼ N(0, 1), (15)

P2 =
µ̂− µ
σ
√
V 11

∼ N(0, 1), (16)

P3 =
σ̂ − σ
σ̂
√
V 22

∼ N(0, 1). (17)

as n → ∞. Equations (15) and (17) holds because µ̂ → N(µ, σ2V 11) and σ̂ → N(σ, σ2V 22) in distribution and
σ̂ → σ in probability respectively, and also equation(16) establishes because µ̂→ N(µ, σ2V 11) as n→∞. Therefore
Pi(i = 1, 2, 3) can be taken as pivotal quantities because their distributions do not depend on the unknown location
and scale parameters. Through Monte Carlo simulations, we computed the coverage probabilities 95% as bellow

P (−1.96 < Pi < 1.96) =, i = 1, 2, 3 (18)

via a simulation study. Similary, for the pivotal quantities Qi, i = 1, 2, 3 based on the AMLES,

Q1 =
µ̃− µ
σ̃
√
V 11
∗
, Q2 =

µ̃− µ
σ
√
V 11
∗
, Q3 =

σ̃ − σ
σ̃
√
V 22
∗

(19)

We can also easily determine the asymptotic γ percentage points of the distributions of Pi and Qi. These percentage
points cannot be determined explicitly note that, for finite sample sizes. Hence, we used Monte Carlo simulations in
order to determine the γ percentage point, mγ , where, for example, for the distribution of P1, we have

P

[
µ̂− µ
σ̂
√
V 11

≤ mγ

]
= γ.

Using values of mγ , we obtain CIs for the parameters σ. For example, using the values of m0.025 and m0.975, we have

P

{
m0.025 ≤

σ̂ − σ
σ̂
√
V 22

≤ m0.975

}
= 0.95, (20)

A 95% confidence interval for a σ is (
σ̂ −m0.975σ̂

√
V 22, σ̂ +m0.025σ̂

√
V 22

)
. (21)

The above confidence intervals obtains for simulated data in section (5). Note, this confidence intervals depends on
the value of θ, we apply profile likelihood function and methods based on moments to estimate θ.

5. Simulation results

In this section, we discuss the results of a simulation study comparing the performance of the AMLEs with the
corresponding MLEs. We consider the simulation of the values of a random variable X with pdf (3). One way to
simulate values of X is to use the following representations due to the inverse transformation method:

1. Generate Ui ∼ Uniform(0, 1), i = 1, · · · , n

2. set

Xi = σ ln

(
1 + 1

θ ln(Uie
θ + 1− Ui)

1− 1
θ ln(Uie

θ + 1− Ui)

)
+ µ.
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We generated N=1000 sample form standard Poisson-half-logistic distribution of sample sizes n=(30, 40, 50, 100,
200) for θ = 3, 5, 10. We computed the AMLEs from (12) and (14). The MLEs of the parameters were then obtained
by solving the nonlinear Equations (6) and (7) using the Maple 14 package. Table (1) provides the average values
of the estimates, their variances, and their MSEs. The values of the variances and covariances were determined by
inverting the observed Fisher information matrix. Table(1) also provides the average values of the maximum profile
likelihood estimates, θ̃p and θ̂p. From Table(1), we observe that the AMLEs and the MLEs are almost identical in
terms of both bias and variance. The AMLEs are almost as efficient as the MLEs for all sample sizes. As the sample
size n increases, the bias and variance of the estimators reduce appreciably. This is expected because of asymptotic
normality. For more clarify, the MSEs of the MLEs and AMLEs computed over one thousand replications are plotted
in Figure (1). From Figure (1) we observe that the MSEs for the AMLEs are only slightly less than those for MLEs.
As expected, the MSEs for both estimators decrease with respect to n. Confidence intervals based on Pi’s and Qi’
(i=1,2,3 ) for location and scale parameters are listed in Table (2). We have also obtained coverage probability of 95%
confidence intervals for pivotal quantities based on the MLE and AMLE of location and scale parameters for some
representative values of θ in Table(3).

6. Illustrative example

This section presents a numerical example to show the inference methods discussed in previous sections. As Law-
less( 2011 , p. 98) indicated, the following data arise in tests on the endurance of deep groove ball bearings.
The observations are the number of million revolutions before failure for each of 23 ball bearings. The 23 fail-
ure times are 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12,
55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92,
128.04, 173.40.

To obtain an initial guess value of θ, since the skewness is independent of the location and scale parameters, we obtain
the MME of θ by equating the sample skewness with the population skewness. Sample skewness is 0.92057 and
γ1 = E

[
(X−µXσX

)3
]

is population skewness. From a numerical solution of the following equation

0.92057 = E[(
X − µX
σX

)3] =
E(X3)− 3E(X2)E(X) + 2E3(X)

[E(X2)− E2(X)]
3
2

,

θ = 4.9783 is obtained, where µX = E(X), σX =
√
V ar(X) and E(Xr), for r = 1, 2, 3, are the rth moment of

X, Let θ = 4.9783 be the initial guess of θ, the MLE and AMLE of µ and σ can be calculated. for n = 23 and
θ = 4.9783, we have

K = 52.31358 , L = −2.02135 , A = 242.66860, B = −8879.58774.

Then the equations (12) and (14),

σ̃ =
A+
√
A2 − 4nB

2n
= 25.61991, and µ̃ = K + Lσ̃ = 0.52668.

The MLEs of µ and σ are then computed by solving the nonlinear equations (6) and (7). Using the Newton–Raphson
iterative procedure: µ̂ = 0.713527 and σ̂ = 25.3670. Here, the AMLEs were used as the starting values. We observe
that the AMLEs are very close to the MLEs.
When the parameter θ is unknown, the maximum profile likelihood estimate θ̃p obtains by maximizing the loglike-
lihood `(µ̃(θ), σ̃(θ), θ) with respect to θ. Figure (2) provides the plot of the profile likelihood function with respect
to θ for the above data. From Figure (2), we observe that the maximum profile likelihood estimate of θ should be
θ̃p = 4.92139.

7. Conclusion

In this paper, the Poisson-half-logistic distribution is considered as a combination of distributions. Characteristics
of this distribution have been concerned and analyzed by several researchers. Estimates of the maximum likelihood
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Table 1: Simulation results for the parameters estimation
θ Method n µ σ θp var(µ) var(σ) MSE(µ) MSE(σ)

MLE 30 0.33731 0.89011 2.46025 0.11211 0.01894 0.22589 0.03101
AMLE 30 0.33730 0.89010 2.46024 0.11210 0.01894 0.22587 0.03102

MLE 40 0.31399 0.89347 2.39368 0.09277 0.01547 0.19135 0.02682
AMLE 40 0.31105 0.89784 2.45274 0.08571 0.01450 0.18246 0.02493

θ = 3 MLE 50 0.31188 0.89181 2.38981 0.07392 0.01228 0.17118 0.02395
AMLE 50 0.29280 0.90390 2.45520 0.06969 0.01181 0.15542 0.02104

MLE 100 0.29258 0.90328 2.40005 0.03745 0.00626 0.12305 0.01561
AMLE 100 0.28332 0.90866 2.44255 0.03534 0.00599 0.11561 0.01433

MLE 200 0.28765 0.90565 2.39999 0.01878 0.00314 0.10152 0.01204
AMLE 200 0.28011 0.90950 2.43664 0.01777 0.00301 0.09623 0.01120

MLE 30 0.15399 0.94779 4.85989 0.13062 0.02017 0.15758 0.02289
AMLE 30 0.14242 0.95597 4.90413 0.12675 0.01945 0.15012 0.02139

MLE 40 0.11497 0.96047 4.86373 0.09972 0.01545 0.11294 0.01701
AMLE 40 0.10576 0.96715 4.89801 0.09748 0.01500 0.10867 0.01608

θ = 5 MLE 50 0.10199 0.96429 4.86372 0.08027 0.01243 0.09067 0.01370
AMLE 50 0.09420 0.96978 4.89214 0.07859 0.01211 0.08746 0.01302

MLE 100 0.08657 0.97144 4.86349 0.04055 0.00627 0.04804 0.00708
AMLE 100 0.08225 0.97434 4.87896 0.03994 0.00616 0.04671 0.00682

MLE 200 0.07867 0.97456 4.86115 0.02038 0.00315 0.02657 0.00379
AMLE 200 0.07629 0.97608 4.86998 0.02015 0.00310 0.02597 0.00367

MLE 30 0.12445 0.96532 10.00923 0.17657 0.01986 0.19206 0.02106
AMLE 30 0.13459 0.96537 10.06402 0.17675 0.01949 0.19486 0.02069

MLE 40 0.06408 0.98069 10.01104 0.13597 0.01532 0.14008 0.01569
AMLE 40 0.06194 0.98455 10.04823 0.13616 0.01509 0.13999 0.01533

θ = 10 MLE 50 0.04689 0.98506 10.00871 0.10951 0.01232 0.11171 0.01254
AMLE 50 0.04472 0.98826 10.04146 0.10945 0.01216 0.11145 0.01229

MLE 100 0.02442 0.99281 10.00474 0.05536 0.00622 0.05596 0.00627
AMLE 100 0.02257 0.99463 10.02489 0.05518 0.00617 0.05569 0.00619

MLE 200 0.01184 0.99667 9.99996 0.02782 0.00312 0.02796 0.00313
AMLE 200 0.01051 0.99769 10.01237 0.02772 0.00310 0.02783 0.00310
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Table 2: (2.5,97.5) percentage points of the pivotal quantities based on the MLEs and AMLEs
θ n P1 P2 P3

Q1 Q2 Q3

30 (-0.1816, 3.3348) (-0.1999, 2.2677) (-3.8679, 0.7152)
(-0.2184, 2.9705) (-0.2770, 2.1912) (-3.2801, 0.8532)

40 (-0.3041, 2.8761) (-0.3022, 2.2952) (-3.2885, 0.9046)
(-0.3107, 2.9106) (-0.3147, 2.3867) (-3.3107, 0.9938)

θ = 3 50 (-0.1326, 2.7729) (-0.1431, 2.2713) (-3.1388, 0.6077)
(-0.1376, 2.8396) (-0.2023, 2.3413) (-3.1165, 0.6654)

100 (0.0771, 3.0656) (0.0778, 2.4848) (-3.1345, 0.5682)
(0.0715, 3.0913) (0.0637, 2.5484) (-3.0984, 0.6346)

200 (0.4798, 3.8803) (0.4491, 3.1976) (-4.0742, 0.0701)
(0.4867, 3.9426) (0.4552, 3.2664) (-4.0813, 0.1640)

30 (-1.0361, 2.7501) (-1.1910, 1.9765) (-2.6462, 1.1687)
(-1.0647, 2.7953) (-1.2018, 2.0435) (-2.6432, 1.2289)

40 (-1.1985, 2.7306) (-1.3766, 2.09146) (-2.6562, 1.2734)
(-1.1925, 2.7439) (-1.3808, 2.0989) (-2.5757, 1.3644)

θ = 5 50 (-1.0533, 2.4424) (-1.1297, 1.9828) (-2.6737, 1.1311)
(-1.0473, 2.4267) (-1.1713, 1.9830) (-2.6886, 1.1621)

100 (-1.2655, 2.2032) (-1.4267, 1.9011) (-2.2756, 1.4007)
(-1.2457, 2.2005) (-1.4451, 1.8921) (-2.2589, 1.4441)

200 (-1.2616, 2.6434) (-1.3622, 2.3623) (-2.8169, 1.3187)
(-1.2731, 2.6354) (-1.3519, 2.3801) (-2.8132, 1.3454)

30 (-1.3329, 2.7519) (-1.5948, 2.0755) (-2.50230, 1.4466)
(-1.3245, 2.7563) (-1.5885, 2.05997) (-2.4942, 1.4847)

40 (-1.3854, 2.7667) (-1.7322, 2.1365) (-2.5664, 1.5163)
(-1.3976, 2.7724) (-1.7496, 2.1578) (-2.5589, 1.5252)

θ = 10 50 (-1.3892, 2.3558) (-1.5843, 1.9419) (-2.4604, 1.3578)
(-1.3962, 2.3492) (-1.5981, 1.9395) (-2.4578, 1.4335)

100 (-1.7443, 2.0619) (-2.0354, 1.7978) (-2.1167, 1.6824)
(-1.7659, 2.0860) (-2.0623, 1.8136) (-2.0738, 1.7495)

200 (-1.9235, 2.4619) (-2.1496, 2.1106) (-2.4104, 1.7494)
(-1.9257, 2.4702) (-2.1344, 2.1141) (-2.4056, 1.7495)
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Figure 1: MSEs of µ and σ for different value of θ.
of this distribution, whether the shape parameter is known or unknown, do not have an explicit form and need to
use numerical methods to estimate the parameters. These numerical methods are sensitive to the initial value of the
parameters, and the results might be changed with a slight change in initial values.
In this study, assuming the parameter θ is known, the approximate maximum likelihood method for estimating the
parameters is proposed. This method’s obtained AMLE of location and scale parameters have an explicit form, and
their values can be obtained quickly.
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Table 3: Coverage probabilities of 95% confidence intervals for the pivotal quantities based on the MLEs and
AMLEs of parameters.

θ n P1 Q1 P2 Q2 P3 Q3

30 0.8510 0.8460 0.9450 0.9260 0.8400 0.8300
40 0.8520 0.8440 0.9410 0.9299 0.8220 0.8310

θ = 3 50 0.8500 0.8310 0.9260 0.9220 0.8360 0.8330
100 0.7010 0.6980 0.8230 0.8100 0.7500 0.7580
200 0.4490 0.4480 0.5430 0.5370 0.5870 0.6040
30 0.8950 0.8950 0.9600 0.9550 0.9050 0.9050
40 0.9200 0.9200 0.9560 0.9560 0.9160 0.9220

θ = 5 50 0.9260 0.9280 0.9540 0.9510 0.9210 0.9250
100 0.9250 0.9250 0.9510 0.9480 0.9300 0.9330
200 0.9060 0.9070 0.9330 0.9330 0.9190 0.9220
30 0.8880 0.8880 0.9400 0.9400 0.9140 0.9140
40 0.9300 0.9310 0.9430 0.9430 0.9310 0.9320

θ = 10 50 0.9300 0.9290 0.9540 0.9540 0.9360 0.9370
100 0.9360 0.9360 0.9420 0.9440 0.9450 0.9460
200 0.9340 0.9330 0.9470 0.9460 0.9450 0.9460

Figure 2: Plot of profile likelihood function, `p(θ)

Approximate MLEs for the location and scale parameters of the Poisson-half-logistic distribution 25



Pak.j.stat.oper.res. Vol.19 No.1 2023 pp 15-26 DOI: http://dx.doi.org/10.18187/pjsor.v19i1.4018

Data from the Poisson-half-logistic distribution were simulated to compare the AMLE and the MLE methods to
estimate the parameters. The results presented in Table (1) showed that the estimates by the MLE and the AMLE
methods are very close, and the values of variance and MSE parameters decrease with increasing sample size.
A practical example was also provided to illustrate the efficiency of the proposed method. In this example, to obtain
the parameter θ, we used the equalizing of data skewness and distribution skewness. By placing it as the known value
of θ, we estimate the location and scale parameters. It is observed that the results are very close to each other, and
distribution also fits convenient.
The other methods of estimations, including percentile, least squares and weighted least squares can be suggested.
The idea of this study can also be extended to many distributions.
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