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Abstract  

 

Due to the widespread applicability and use of the normal distribution, a need has arisen to approximate its 

cumulative distribution function (cdf). In this article, five new simple approximations to the standard normal cdf 

are developed. In order to assess the accuracy of the proposed approximations, both maximum absolute error and 

mean absolute error were used.  The maximum absolute errors of the proposed approximations lie between 0.00095 

and 0.00946, which is highly accurate if compared to the existing simple approximations and quite sufficient for 

many real-life applications. Even though simple approximations may not as accurate as complicated ones, they are, 

though, fairly good when judged vis-à-vis their simplicity.  
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1. Introduction 

  

One of the most familiar distributions that are ubiquitous in statistics is the normal (Gaussian) distribution since it fits 

many natural phenomena very well. This distribution describes a family of continuous probability distributions and 

plays a fundamental role in several applied problems of biology, business, communication theory, engineering, 

financial risk management, genetics, hydrology, mechanics, medicine, physics, psychology, reliability, signal 

processing, and many others. The importance and widely spread usage of this distribution come from the fact that it 

is an infinitely divisible distribution with finite variance, has a bell-shaped density curve, and is the result of the central 

limit theorem.  

 

The use of the normal distribution often involves computing its cumulative distribution function (cdf) which, 

unfortunately, does not have a closed-form theoretical expression. To overcome this handicap, many authors 
introduced approximations to this cdf. However, most of these approximations are complicated which has inspired the 

research presented in this paper where the aim is to propose several approximations of the normal cdf with simple 

form and sufficient accuracy. 

 

Now, suppose that a random variable 𝑋 follows a probability density function (pdf) of the standard normal distribution, 

then its pdf and cdf are, respectively, given as follows: 

𝜙(𝑥) =
1

√2𝜋
𝑒−

𝑥2

2 ,    𝑥 ∈ ℝ, 

and 
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Φ(𝑥) =
1

√2𝜋
∫ 𝑒−

𝑡2

2 𝑑𝑡
𝑥

−∞

                                                                               (1) 

The integral in (1) is one of the most widely used integrals in the field of applied mathematics and statistics; however, 

it does not have a closed-form formula which makes statistical analysis limited. 

 

The main goal of this paper is to propose some new approximations to the standard normal cdf which are simple and 
convenient to enable a straightforward analysis of the normal distribution. The approximations proposed in this paper 

are useful due to their simple form especially when statistical tables and/or softwares are not readily available. In 

addition, the level of accuracy of these approximations is superior if compared to the existing simple approximations 

reported in the literature.  The simplicity of the new approximations stands in sharp contrast to existing, mostly 

complex approximations, which tend to have a larger number of terms which makes them not tractable. 

 

Eventually, one should highlight that approximating the normal cdf may also be helpful in many applied analyses 

involving functions that are directly related to it such as gamma function and incomplete gamma function. 

The remainder of this article is organized as follows. Section 2 provides a summary about the criteria that we used to 

compare the approximations. Section 3 presents a literature review of some previous work related to existing 

approximations of the normal cdf. Section 4 proposes the five approximations and demonstrates their accuracy in 

comparison with the other existing approximations from the literature that have similar analytical form complexity. 
Finally, Section 5 summarizes the key features of the proposed approximations and explores some conclusions and 

implications. 

 

2. Maximum and mean absolute error measures 

Let Φ̂(𝑧) denotes an approximation of Φ(𝑧) at a specific value of 𝑧. To explore the accuracy of Φ̂(𝑧), we can use the 

absolute error (AE) measure. The AE can be defined as follows: 

AE(z) = |Φ̂(z) − Φ(z)| 
For comparison purpose, we use the maximum absolute error (Max.AE) of Φ̂(z) which is equal to  

max
𝑧

|Φ̂(z) − Φ(z)| 

The mean absolute error (MAE) can also be used as a measure of accuracy, it can be computed by  

𝑀𝐴𝐸(z0, z1, … , zn) =
∑ 𝐴𝐸(zi)𝑖

n
, z0 < z1 < ⋯ < zn 

To compute the 𝑀𝐴𝐸(𝑧) for any value of 𝑧, if we take the values of z to be 0 to 3 with step 0.0001, which indicates 

that the above sum is evaluated at 30001 points, 0, 0.0001, 0.0002, …, 2.9999, 3.  
 

3. Literature review on some approximations of the normal cdf 

 

There is notable number of approximations to the cdf of normal distribution available in the literature. Most recent 

approximations include Malki (2017), Matićet al. (2018), Alkhazali et al. (2019), Shchigolev (2020) and Hanandeh 

and Eidous (2021).  To provide a fair comparison, this section presents a brief overview of the previous work related 

some existing simple approximations to the normal cdf. We give here the five approximations that we have updated 

so that the reader may assess the new ones (developed in this article) relative to original approximations. The result 

of this review is summarized in Table 1. For further work and deep review on some existing approximations, we refer 

the reader to Eidous and Abu-Shareefa (2020) and the references therein.  

 
To measure the accuracy and performance of our proposed approximations, MAE and Max.AE are computed and 

used for further comparison with some existing approximations. Note that we consider the case of 𝑧 ≥  0, we can 

easily get it for the case 𝑧 <  0 using the symmetry property of the normal distribution: Φ(𝑧)  =  1 −  Φ(−𝑧). 
The results for MAE and Max.AE appears in this paper has been done for the values of 𝑧 between 0 to 7 with step 

0.00001.  
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Table 1: Summary of some existing approximations to the normal cdf. 

Author(s) name Approximation formula Max.AE MAE  

Lin (1990)  Φ̂1(𝑧) =
1

1 + 𝑒−4.2𝜋𝑧/(9−𝑧)
 0.00668 0.00078 

Tocher (1963) 

 
Φ̂2(𝑧) =

𝑒2√2/𝜋𝑧

1+𝑒2√2/𝜋𝑧
 0.01767 0.00506 

Ordaz (1991) 

 Φ̂3(𝑧) = 1 − 0.6931 𝑒−(
−9z−8

14
)

2

 0.00440 0.00055 

Zogheib and Hlynka (2009) 

 
Φ̂4(𝑧) = 1 − 0.5 𝑒−1.2 𝑧1.3

 0.01120 0.00203 

Hart (1957) 

 
Φ̂5(𝑧) = 1 −

∅(𝑧)

𝑧 + √2/𝜋𝑒−0.4𝑧
 0.00363 0.00040 

 

 

4. The New proposed approximations 

 

In this section, we present five new (updated) approximation to the cdf of standard normal distribution with the 

following forms: 
 

Table 2: Summary of new approximations to the normal cdf. 

New updated approximation name Approximation formula Max.AE MAE  

Updated Lin (1990) Φ̂1
∗(𝑧) =

1

1 + 𝑒−13.48266𝑧/(9−𝑧)
 0.00375 0.00087 

Updated Tocher (1963) 

 
Φ̂2

∗ (𝑧) =
𝑒1.7017𝑧

1+𝑒1.7017𝑧 0.00946 0.00326 

 Updated Ordaz (1991) 

 Φ̂3
∗ (𝑧) = 1 − 0.688182𝑒−(

−9z−8
14

)
2

 0.00353 0.00041 

Updated Zogheib and Hlynka (2009) 

 Φ̂4
∗ (𝑧) = 1 − 0.5 𝑒−1.2 𝑧  1.275247

 0.00917 0.00208 

Updated Hart (1957) 

 
Φ̂5

∗ (𝑧) = 1 −
∅(𝑧)

𝑧 + √2/𝜋𝑒−0.43432𝑧
 0.00095 0.00021 

 

Figure 1: The difference between Φ̂∗(z) and Φ(z) for the proposed approximations. 

 

Our code has been done on R-software and is available upon request. 
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It is easy to show that  Φ̂1
∗(𝑧), Φ̂2

∗ (𝑧), Φ̂3
∗ (𝑧) and Φ̂4

∗ (𝑧) are invertible as shown in the following table: 

 

Table 3: Invertible formula for some of the new approximations to the normal cdf. 

New updated approximation  Invertible formula 

Updated Lin (1990) 𝑧 =

9𝑙𝑛(
1

Φ̂1
∗(𝑧)

− 1)

−13.4826 + 𝑙𝑛(
1

Φ̂1
∗(𝑧)

− 1)
 

Updated Tocher (1963) 
 𝑧 =

𝑙𝑛(
Φ̂2

∗ (𝑧)

1 − Φ̂2
∗ (𝑧)

)

1.7017
 

 Updated Ordaz (1991) 

 
𝑧 =

14√𝑙𝑛(
0.688182

1 − Φ̂3
∗ (𝑧)

) − 8

9
 

Updated Zogheib and Hlynka (2009) 

 𝑧 = (−
𝑙𝑛(−2Φ̂4

∗ (𝑧) + 2)

1.2
)

1
1.275247

 

 

5. Concluding Remarks  

 

In this article, some simple approximations to the standard normal cdf are presented. The accuracy of these 

approximations is evaluated based on the error computed from the respective cdf approximation available in the R 

software.  

It is remarkable to mention that, although other more accurate approximations are existing in the literature, those 

approximations are very complicated. The features of our approximations are the simplicity of their analytical form 
which makes them easily programmable as well as their relatively high accuracy. They also don’t require different 

forms over different intervals, as a result, these three features make them widely applicable and comparable to or even 

better than previously reported approximations in the literature of similar analytical form complexity. 

The Max.AEs of the proposed approximations lie between 0.00095 and 0.00946, while the MAEs lie between 0.00021 

and 0.00326 which makes these approximations fairly good compared to the existing simple approximations and quite 

sufficient for many real-life applications. Although we have introduced five simple approximations, the final formula 

Φ̂5
∗  is the most accurate with Max.AE equal to 0.00095 and MAE equal to 0.00021 and thus we recommend using it. 
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