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Abstract

This paper deals with the interval coefficient of the multi-objective interval transportation problem. Also,
it concentrates on our intention for multi-objective interval transportation problem involving an inequality
type of constraint in which all parameters (supply and demand) coefficient of objectives are in interval num-
bers. The minimization interval-valued multi-objective interval transportation problem is also converted into
interval optimization. This article aims to study the cost and time minimization of the interval transportation
problem by using the best candidate method, improved ASM method, ASM method, zero suffix method and
zero point method with new interval arithmetic operations. The above-listed methods solve the problems
considered in this article without converting them into classical transportation problems.
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1. Introduction

The interval multi-objective transportation problem (IMOTP) is a significant extension of the classic trans-
portation problem in operations research that involves the distribution of goods from a set of sources to a
group of destinations. In IMOTP, multiple conflicting objectives are considered, and the decision-maker
aims to simultaneously optimize a set of objective functions. These objective functions can be related to
the cost of transportation, the time required for transport, or any other relevant criteria. Moreover, the pa-
rameters of IMOTP are not fixed, but they are represented by intervals that reflect the inherent uncertainty
in real-world transportation systems. The intervals can arise due to variations in the demands, transporta-
tion costs, or travel times. As a result, IMOTP is a challenging problem that requires the development of
efficient algorithms and solution approaches to handle the situation’s uncertainty and multi-objective na-
ture. IMOTP has several applications in various fields, including logistics, supply chain management, and
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transportation planning. Efficient solutions to IMOTP can provide decision-makers with insights into the
trade-offs between conflicting objectives and help them make better decisions in a complex and uncertain
environment. One way to tackle these challenges is to use a utility function approach, which involves trans-
forming multiple objectives into a single scalar utility function that reflects the decision-makers preferences.
Maity and Roy(2016) proposed the system utility function and revised multi-choice goal programming for
solving MOITP. Murugesan et al.(2013) studied new optimal solution to fuzzy transportation. Quddoos
et al.(2016) and Ahmad(2012) proposed a direct method for solving transportation problems with classical
entries. Ganesan and Veeramani(2005) offered some properties on interval matrices. Nirmala et al.(2011)
studied a new approach on inverse interval matrix. Sudha et al.(2021) suggested a novel method for handling
fixed charge transportation issues using interval parameters. Keerthana and Ramesh(2019) studied a method
for solving the integer interval transportation problem with mixed constraints. Das et al.(1999) worked on
multi–objective transportation problems with interval cost, source and destination parameters. Sengupta
and Pal(2003, 2000) proposed interval–valued transportation problem with multi-penalty factors theory and
methodology on comparing interval numbers. Deepika rani provided fuzzy programming techniques to
solve different types of multiple-objective transportation problems Rani and Kumar(2010). Pandian and
Natarajan(2010) provided the separation approach to find a compromise solution to an integer transporta-
tion issue with unknown (uncertain) transportation costs, supply, and demand. Szwarc(1971) suggested
some remark on the transportation problem. Gomah and Samy(2009) solved TP by object oriented model.
An interactive approach for the multi-objective transportation problem with interval parameters has recently
gained attention. The interactive approach involves incorporating decision-maker preferences and iteratively
adjusting the problem formulation based on their feedback. The process allows decision-makers to consider
the trade-offs between conflicting objectives and adapt the uncertainty ranges for the interval parameters to
arrive at a preferred solution. So that Yu et al.(2015) presents the concept of the interactive approach for the
multi-objective transportation problem with interval parameters, highlighting its advantages and limitations.
Hammer(1969) worked with time a time minimizing transportation problem. In a grey scenario choice,
Yao-guo et al.(2009) suggested an optimization model for objective weight.
Multi-objective interval transportation problems (IMOTP) are optimization problems that involve finding the
optimal allocation of resources from multiple sources to multiple destinations while considering numerous
objective functions. These problems have applications in various fields, such as supply chain management,
logistics, and transportation planning. Solving IMOTPs can be challenging as they involve uncertain pa-
rameters and conflicting objectives. The best way to address this challenge is by using interval arithmetic
operations, which deal with uncertain parameters by expressing them as intervals rather than fixed values.
This approach allows for the incorporation of uncertainty in the problem and the consideration of multiple
objective functions. A class of methods best candidate method (BCM), improved ASM method (IASM),
ASM method, zero suffix method (ZSM) and zero point method (ZPM) using interval arithmetic operations
for solving IMOTPs is a research area focusing on developing ways to solve IMOTPs using interval arith-
metic operations. These methods aim to provide efficient and effective solutions to IMOTPs that consider
the uncertainties in the input parameters and the multiple objective functions involved. In this context, this
paper aims to provide an overview of the various methods and algorithms that use interval arithmetic opera-
tions for solving IMOTPs and compare them with existing (Patel and Dhodiya2017) techniques that provide
minimum cost and time.
The manuscript’s remaining content can be summarized as follows: Sections 2 and 3 revisit the basics and
preliminaries of interval numbers. Section 4 presents the mathematical expression for ITP, while section 5
provides a detailed algorithm for BCM and IASM using interval values. Additionally, section 6 includes
numerical examples, and the final section presents the conclusion.
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2. Preliminaries

This section contains some notation, which leads to our further examination. Let ã = [all , a2r ] = {x : a1l ≤
x ≤ a2r , x ∈ R}. If ã = a1l = a2r = a, then ã = [a1l , a2r ] = a be a real number (or a generate interval).
Let {IR = ã = [a1l , a2r ]:a1l ≤ a2r and a1l , a2r ∈ R} its denotes the set of all improper (inappropriate)
intervals and IR = {ã = [a1l , a2r ] : a1l < a2r and a1l , a2r ∈ R} be the set of all non-proper intervals and
interval numbers inter-changeably. The midpoint and width of an interval number ã = [a1l , a2r ]”are defined
as m(ã) = (

a1l+a2r
2 ) and w(ã) = (

a2r−a1l
2 ).”“The interval number ã can alternatively be represented in

terms of their midpoint and width as: ã = [a1l , a2r ] =< m(ã), w(ã) >.”

Definition 2.1. Sengupta and Pal(2000) (Ranking of interval numbers.) Let (�) represented an extended
order connection between the interval numbers c̃ = [c1l , c2r ] d̃ = [d1l , b2r ] in IR, then for m(c) < m(d), we
build to b̃ (or b̃ is better than ã). An acceptability function is examined as: A(�) : IR× IR −→ [0,∞),

A(�)(c̃, d̃) = A(c̃ � d̃) =
m(d̃)−m(c̃)

m(d̃) +m(c̃)
,

where, m(d̃) + m(c̃) 6= 0. It is possible to read this as the first interval number’s grade of acceptability
“being lower than the second interval number’s. For any two interval numbers c̃ and d̃ in IR either A(c̃ �
d̃) � 0 (or) A(d̃ � c̃) (or) A(c̃ � d̃) = 0 (or) A(c̃ � d̃) + A(d̃ � c̃) = 0 If A(d̃ � c̃) = 0 and A(d̃ � c̃) = 0,
”we may argue that the interval numbers c̃ and d̃ are similar (non - interior to each other) and we call it by
c̃ ≈ d̃, also A(c̃ � d̃) � 0, then c̃ ≈ d̃ and if A(c̃ � d̃) � 0, then d̃ � c̃.

3. New interval arithmetic

Ma et al.(1999) suggested a new fuzzy arithmetic entrenched fuzzy index and position index function. A
fuzzy index function is utilized “to follow the lattice guideline, which is the lowest upper bound and the
most lower bound in the lattice L. That is for c, d ∈ L. ”We exemplify c ∨ d = max{c, d} and c ∧
d = min{c, d}. Whereas the location index number is examined as the ordinary arithmetic which includes
elementary concepts. For two intervals c̃ = [c1l , c2r ], d̃ = [d1l , d2r ] ∈ IR and ∗ ∈ {+,−,×, /} the
arithmetic operations on c̃ and d̃ are examined as:

c̃ ∗ d̃ = [c1l , c2r ] ∗ [d1l , d2r ] =< m(c̃), w(c̃) > ∗ < m(d̃), w(d̃) =< m(c̃) ∗m(d̃),max{w(c̃), w(d̃)} > .

Primarily,

(I) Sum: c̃+ d̃ =< m(c̃), w(c̃) > + < m(d̃), w(d̃) >= < m(c̃) +m(d̃),max{w(c̃), w(d̃)} > .

(II) Difference: c̃− d̃ =< m(c̃), w(c̃) > − < m(d̃), w(d̃) >= < m(c̃)−m(d̃),max{w(c̃), w(d̃)} > .

(III) Product: c̃× d̃ =< m(c̃), w(c̃) > × < m(d̃), w(d̃) >= < m(c̃)×m(d̃),max{w(c̃), w(d̃)} > .

(IV) Division: c̃/d̃ =< m(c̃), w(c̃) > / < m(d̃), w(d̃) >= < m(c̃)÷m(d̃),max{w(c̃), w(d̃)} > .

Proposition 3.1. (Valuable Results.) “Suppose a purely interval transportation problem utilizing numbers
with ‘m’ sources and ‘n’ destinations. Let c̃i � 0 be the accessibility at source ‘i’ and (d̃i � 0) be the
need at destination ‘j’. Allow ẽij(ẽij � 0) to indicate the unit interval transportation cost from source ‘i’
to destination ‘j’. Allow x̃ij to indicate the unit interval transportation cost from source ‘i’ to destination
‘j’. The objective now is to devise a practical method for conveying the available quantity at each source in
order to fulfil demand at each destination while reducing the total interval transportation cost. ”
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4. Universal form of interval transportation problem with multi-objectives

The IMOTP is defined as the problem of minimizing k interval valued objective functions with interval
supply and destination parameters and an appropriate technique for finding the interval optimum solu-
tion of IMOTP is proposed. The mathematical framework of IMOTP is given when all of the cost cof-
ficients, supply, and demand are uncertain (interval)-valued: Minimize F k =

∑m
i=1

∑n
j=1[M

k
Lij
,Mk

Rij
]zij,

when k=1,2,...,K.
Subject to

n∑
j=1

zij = [uLi , uRi ], i=1,2,...,m,

m∑
i=1

zij = [vLj , vRj ], j=1,2,...,n,

zij ≥ 0, i = 1, 2, ...,m, j = 1, 2, ..., n,

with
m∑

i=1

uLi =
n∑

j=1

vLj and
m∑

i=1

uRi =
n∑

j=1

vRj .

Where the source parameter is between the left limit uLi and the right limit uRi . Similarly, the destination
parameter is located between the left vLj and the right limit vRj as well as [Mk

Lij
,Mk

Rij
], (k=1,2,...,k) is an

interval that represents the unpredictability of the transportation problem’s cost.

Definition 4.1. A fuzzy feasible solution is a collection of all non-negative allotment’s z̃ij that meets (in the
sense equivalent) the row and column limitations.

Definition 4.2. “An interval basic feasible solution” to an interval transportation problem with ’m’ sources
and ‘n’ destinations has (m + n − 1) positive all allocations. If the number of allotments in an interval
basic solution is smaller than (m+ n− 1), the solution is said to be degenerate interval basic viable.

Definition 4.3. If an interval feasible solution reduces the overall interval transportation cost, it is consid-
ered to be an interval optimum solution.

5. Proposed methods

This section exhibits the algorithm for the best candidate method with a new interval arithmetic and im-
proved ASM method with a interval transportation problem.

5.1. Algorithm I

This section will elaborate on the optimal technique using novel interval arithmetic operations, the best
candidate method with new interval arithmetic operations (BCMWNIAO).

1. Prepare the best candidate method with a new interval arithmetic matrix first. If the BCMWANIAo
matrix is imbalanced, the“matrix will be balanced”unaccompanied by employing the“additional row
or column candidates in the solution method.”

2. Find the midpoint and width of each intervals in the transportation table.

3. Select“the best candidates for reducing problems at the lowest possible cost and maximizing profit at
the”highest possible cost. As a result, this step may be completed by selecting the top“two candidates
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in each row.”If a candidate is elected more than twice, they should be re-elected. Furthermore, the
columns must be checked so that if there are no candidates,“the candidates will be elected for them.
However, if”a candidate is elected more than once, they’ll be re-electe.

4. Find the amalgamation by selecting“one candidate for each row and column,”starting with the row
with the fewest candidates and deleting the row and column that has the fewest candidates. If there are
no candidates“for some rows or columns, then the best available candidate”gets elected immediately.
In step 3 is repeated by identifying the“next candidate in the row”from which you started. Calculate
and check the candidate“summation for each combination. This is”done to find the optimum mix of
factors that will result in the best solution.

5.2. Algorithm II

The sequence of steps in determining the best optimal solution for IMOTP is presented in this section
through the algorithm for the proposed interval improved ASM method with new interval arithmetic opera-
tions (IIASMWNIAO).

(1) Interval balanced transportation problem

(a) Find mid-point and width of all intervals.
(b) Construction of an interval-reduced cost matrix (IRCM).

(i) Subtract the minimum cost from each cost of every row by performing the interval row
minimum subtraction (IRCM).

(ii) To conduct the interval column minimum subtraction (ICMS) operation, it is necessary to
subtract the minimum cost from each of the costs of every column, starting from b(i).

(iii) Select a cell with a zero-entry where the count of zeros is at its minimum and assign the
highest possible allocation value to that cell.

(iv) In case of a tie at b(iii), assign the cell for which the total of all elements in the corresponding
row and column is the greatest.

(v) If there is another tie in step (iv), then allocate to that cell.
(vi) Once again, if there is a tie in step (v), assign the cell that has the highest sum of supply and

demand in the original transportation table.
(vii) If there is another tie in step (vi), assign the cell with the smaller i value (row number) if

there is a tie in the same column [or the smaller j value (column number) if there is a tie in
the same row].

(viii) If there is another tie in step (vii), randomly select a cell for allocation, ensuring that the
maximum allocation value is assigned to the selected cell.

(c) The IRCM is being reduced again.
(i) Once step (b) has been performed, remove any rows or columns where the supply from a

specific source is depleted or the demand for a particular destination is met. However, if
both the row and column are removed in these circumstances, a degenerate solution will be
produced. To avoid this, either the corresponding row or column should be removed (not
both), and the supply or demand should be adjusted to zero if the column or row is deleted.
Additionally, it is important to adjust the supply or demand if a column or row is deleted.

(d) Check for the reducibility of the resultant matrix.
(i) To determine if the resultant matrix acquired in step (c) has at least one zero in every row and

column. If yes, proceed to step (b) and execute steps b(iii) to b(viii) to make the following
allocation; if not, repeat step (b) to construct another IRCM.

A Class of Methods Using Interval Arithmetic Operations for Solving Multi–Objective Interval Transportation Problems 573



Pak.j.stat.oper.res. Vol.19 No. 3 2023 pp 569-583 DOI: http://dx.doi.org/10.18187/pjsor.v19i3.3983

(e) Continue executing steps (b) to (d) until all demands are fulfilled, and all supplies are depleted.

(2) Interval unbalanced transportation problem (IUTP).

(i) To convert the unbalanced interval transportation problem into a balanced one, a dummy row or
column must be added.

(ii) Once the unbalanced problem has been converted to a balanced problem, the steps for solving
the balanced interval transportation problem can be followed.

Overall, these steps help to efficiently allocate resources and minimize transportation costs and time in a
balanced or unbalanced transportation problem.

Figure 1: Visual representation of the IIASMWNIAO algorithm through a flowchart
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6. Numeral illustration

A corporation has three manufacturing sites (origin): site 1, site 2 and site 3, each with a production capacity
of 8, 19 and 17 units of a product. These units must be sent to four depots: depot 1, depot 2, depot 3 and
depot 4, with needs of 11, 3, 14 and 16 unit requirements, respectively. The transportation costs and time
between the firms and the warehouses (cities) are described in the following assignment taken on by (Patel
and Dhodiya2017).

Figure 2: Image for 3× 4 (supply demand) transportation model.

M̃1 =


[1, 2] [1, 3] [5, 9] [4, 8]

[1, 2] [7, 10] [2, 6] [3, 5]

[7, 9] [7, 11] [3, 5] [5, 7]

 , (1)

M̃2 =


[3, 5] [2, 6] [2, 4] [1, 5]

[4, 6] [7, 9] [7, 10] [9, 11]

[4, 8] [1, 3] [3, 6] [1, 2]

 . (2)

6.1. Best candidate method with new interval arithmetic operations

Table 1: Interval transportation cost for M̃1

depot 1 depot 2 depot 3 depot 4 supply

site 1 [1, 2] [1, 3] [5, 9] [4, 8] [8,8]

site 2 [1, 2] [7, 10] [2, 6] [3, 5] [19, 19]

site 3 [7, 9] [7, 11] [3, 5] [5, 7] [17, 17]

demand [11, 11] [3, 3] [14, 14] [16, 16] [44, 44]
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Table 2: Midpoint and width of M̃1 for BCMWNIAO.

depot 1 depot 2 depot 3 depot 4 supply

site 1 < 1.5, 0.5 > < 2, 1 > < 7, 2 > < 6, 2 > < 8, 0 >

site 2 < 1.5, 0.5 > < 8.5, 1.5 > < 4, 2 > < 4, 1 > < 19, 0 >

site 3 < 8, 1 > < 9, 2 > < 4, 1 > < 6, 1 > < 17, 0 >

demand < 11, 0 > < 3, 0 > < 14, 0 > < 16, 0 > < 44, 0 >

Using the BCM, we can determine the optimal combination that minimizes the total weight of the interval
cost, after we have established the midpoint and width of the table.

Table 3: Allocation table of M̃1 for BCMWNIAO.

depot 1 depot 2 depot 3 depot 4 supply

site 1 < 1.5, 0.5 >
< 2, 1 >
< 3, 0 > < 7, 2 >

< 6, 2 >
< 5, 0 > < 8, 0 >

site 2
< 1.5, 0.5 >
< 11, 0 > < 8.5, 1.5 > < 4, 2 >

< 4, 1 >
< 8, 0 > < 19, 0 >

site 3 < 8, 1 > < 9, 2 >
< 4, 1 >
< 14, 0 >

< 6, 1 >
< 3, 0 > < 17, 0 >

demand < 11, 0 > < 3, 0 > < 14, 0 > < 16, 0 >

The interval transportation cost of M̃1 is [156.5, 160.5] based on the calculation of < 2, 1 >< 3, 0 > + <
6, 2 >< 5, 0 > + < 1.5, 0.5 >< 11, 0 > + < 4, 1 >< 8, 0 > + < 4, 1 >< 14, 0 > + < 6, 1 ><
3, 0 >=< 158.5, 2 >.
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Table 4: Interval transportation time M̃2.

depot 1 depot 2 depot 3 depot 4 supply

site 1 [3, 5] [2, 6] [2, 4] [1, 5] [8,8]

site 2 [4, 6] [7, 9] [7, 10] [9, 11] [19, 19]

site 3 [4, 8] [1, 3] [3, 6] [1, 2] [17, 17]

demand [11, 11] [3, 3] [14, 14] [16, 16] [44, 44]

Table 5: Midpoint and width of M̃2.

depot 1 depot 2 depot 3 depot 4 supply

site 1 < 4, 1 > < 4, 2 > < 3, 1 > < 3, 2 > < 8, 0 >

site 2 < 5, 1 > < 8, 1 > < 8.5, 1.5 > < 10, 1 > < 19, 0 >

site 3 < 6, 2 > < 2, 1 > < 4.5, 1.5 > < 1.5, 0, 5 > < 17, 0 >

demand < 11, 0 > < 3, 0 > < 14, 0 > < 16, 0 > < 44, 0 >

Table 6: Allocation table for M̃2 of (BCMWNIAO)

depot 1 depot 2 depot 3 depot 4 supply

site 1 < 4, 1 > < 4, 2 >
< 3, 1 >
< 8, 0 > < 3, 2 > < 8, 0 >

site 2
< 5, 1 >
< 11, 0 >

< 8, 1 >
< 2, 0 >

< 8.5, 1.5 >
< 6, 0 > < 10, 1 > < 19, 0 >

site 3 < 6, 2 >
< 2, 1 >
< 1, 0 > < 4.5, 1.5 >

< 1.5, 0.5 >
< 16, 0 > < 17, 0 >

demand < 11, 0 > < 3, 0 > < 14, 0 > < 16, 0 >

The solution space for M̃2 is in the range of [153.5, 156.5], given that < 3, 1 >< 8, 0 > + < 5, 1 ><
11, 0 > + < 8, 1 >< 2, 0 > + < 8.5, 1.5 >< 6, 0 > + < 2, 1 >< 1, 0 > + < 1.5, 0.5 >< 16, 0 >=<
155, 1.5 >.

6.2. The IIASMWNIAO (Improved Interval Transportation ASM Method with New Interval Arith-
metic Operations) is a method that utilizes novel interval arithmetic operations.

We will use the IIASMWANIAO method to solve the IMOTP mentioned earlier in this section, following
the steps outlined in Method 2.

The computation < 1.5, 0.5 >< 5, 0 > + < 2, 1 >< 3, 0 > + < 1.5, 0.5 >< 6, 0 > + < 4, 1 >< 13, 0 >
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Table 7: Transportation cost for M̃1.

depot 1 depot 2 depot 3 depot 4 supply

site 1 [1, 2] [1, 3] [5, 9] [4, 8] [8,8]

site 2 [1, 2] [7, 10] [2, 6] [3, 5] [19, 19]

site 3 [7, 9] [7, 11] [3, 5] [5, 7] [17, 17]

demand [11, 11] [3, 3] [14, 14] [16, 16] [44, 44]

Table 8: Midpoint and width of M̃1 – IIASMWNIAO.

depot 1 depot 2 depot 3 depot 4 supply

site 1 < 1.5, 0.5 > < 2, 1 > < 7, 2 > < 6, 2 > < 8, 0 >

site 2 < 1.5, 0.5 > < 8.5, 1.5 > < 4, 2 > < 4, 1 > < 19, 0 >

site 3 < 8, 1 > < 9, 2 > < 4, 1 > < 6, 1 > < 17, 0 >

demand < 11, 0 > < 3, 0 > < 14, 0 > < 16, 0 > < 44, 0 >

Table 9: Allocation table for M̃1 – IIASMWNIAO.

depot 1 depot 2 depot 3 depot 4 supply

site 1
< 1.5, 0.5 >
< 5, 0 >

< 2, 1 >
< 3, 0 > < 7, 2 > < 6, 2 > < 8, 0 >

site 2
< 1.5, 0 >
< 6, 0 > < 8.5, 1.5 > < 4, 2 >

< 4, 1 >
< 13, 0 > < 19, 0 >

site 3 < 8, 1 > < 9, 2 >
< 4, 1 >
< 14, 0 >

< 6, 1 >
< 3, 0 > < 17, 0 >

demand < 11, 0 > < 3, 0 > < 14, 0 > < 16, 0 >

+ < 4, 1 >< 14, 0 > + < 6, 1 >< 3, 0 > results in < 148.5, 1 >. Therefore, the interval cost of M̃1 is
[147.5, 149.5]

The IIASMWNIAO method will be used to solve M̃2.
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Table 10: Interval transportation time for M̃2

depot 1 depot 2 depot 3 depot 4 supply

site 1 [3, 5] [2, 6] [2, 4] [1, 5] [8,8]

site 2 [4, 6] [7, 9] [7, 10] [9, 11] [19, 19]

site 3 [4, 8] [1, 3] [3, 6] [1, 2] [17, 17]

demand [11, 11] [3, 3] [14, 14] [16, 16] [44, 44]

Table 11: Midpoint and width of M̃2 – IIASMWNIAO.

depot 1 depot 2 depot 3 depot 4 supply

site 1 < 4, 1 > < 4, 2 > < 3, 1 > < 3, 2 > < 8, 0 >

site 2 < 5, 1 > < 8, 1 > < 8.5, 1.5 > < 10, 1 > < 19, 0 >

site 3 < 6, 2 > < 2, 1 > < 4.5, 1.5 > < 1.5, 0, 5 > < 17, 0 >

demand < 11, 0 > < 3, 0 > < 14, 0 > < 16, 0 > < 44, 0 >

Table 12: Allocation table for M̃2 – IIASMWNIAO

depot 1 depot 2 depot 3 depot 4 supply

site 1 < 4, 1 >
< 4, 2 >
< 3, 0 >

< 3, 1 >
< 5, 0 > < 3, 2 > < 8, 0 >

site 2
< 5, 1 >
< 11, 0 > < 8, 1 >

< 8.5, 1.5 >
< 8, 0 > < 10, 1 > < 19, 0 >

site 3 < 6, 2 > < 2, 1 >
< 4.5, 1 >
< 1, 0 >

< 1.5, 0.5 >
< 16, 0 > < 17, 0 >

demand < 11, 0 > < 3, 0 > < 14, 0 > < 16, 0 >

< 4, 2 >< 3, 0 > + < 3, 1 >< 5, 0 > + < 5, 1 >< 11, 0 > + < 8.5, 1.5 >< 8, 0 > + < 4.5, 1.5 ><
1, 0 > + < 1.5, 0, 5 >< 16, 0 > =< 178.5, 2 >. Here IIASMWNIAO gives the solution space for M̃2 is
[176.5, 180.5].
In the preceding case, we solved the instance through five direct methods: Zero suffixes, zero point, ASM,
improved ASM, and the best candidate method. We then compared these methods with existing ones such
as Deepika rani linear, hyperbolic, exponential membership function, the grey situation method. However,
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this paper exclusively presents the algorithm for only two methods: interval improved ASM method and the
interval best candidate method. Lastly, we compared our solution to some existing methods.

M̃1 =

[1, 2] [1, 3] [5, 9] [4, 8]
[1, 2] [7, 10] [2, 6] [3, 5]
[7, 9] [7, 11] [3, 5] [5, 7]

 , (3)

M̃2 =

[3, 5] [2, 6] [2, 4] [1, 5]
[4, 6] [7, 9] [7, 10] [9, 11]
[4, 8] [1, 3] [3, 6] [1, 2]

 . (4)

Table 13: Comparision: Existing methods (vs) Proposed methods (Interval versions)

Existing methods Interval cost and time for
(Existing methods) M̃1

and M̃2

Proposed methods Interval cost and time for
(Proposed methods) M̃1

and M̃2

Deepika rani
exponential
membership

function

M̃1 = [171.5, 221.55]

M̃2 = [171.5, 221.630]

Zero suffix method
(IV)

M̃1 = [166.5, 170.5]

M̃2 = [172, 176]

Deepika rani
hyperbolic

membership
function

M̃1 = [171.2, 222.5]

M̃2 = [206.1, 252.72]

Zero point method
(IV)

M̃1 = [147.5, 149.5]

M̃2 = [170.5, 173.5]

S. K. Das A
Goswami and S.S

Alam (Fuzzy
programming)

M̃1 = [119.14, 214.42]

M̃2 = [180.64, 241.1]

ASM method (IV) M̃1 = [147.5, 149.5]

M̃2 = [176.5, 180.5]

Gignasha G. Patel
and Jayesh M.

Dhodiya (using the
grey situation

method)

M̃1 = [146, 241]

M̃2 = [133, 222]

Best candidate
method (IV)

M̃1 = [156.5, 160.5]

M̃2 = [153.5, 156.5]

Deepika rani linear
membership

function

M̃1 = [172.2, 222.55]

M̃2 = [206.1, 252.75]

IASM method (IV) M̃1 = [147.5, 149.5]

M̃2 = [176.5, 180.5]
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Figure 3: A visual comparison of the proposed and existing method to problem M̃1

Figure 4: A visual comparison of the proposed and existing method to problem M̃2

6.3. Comparison a graphical form of proposed and existing methods for problem M̃1 and M̃2

In this study, we compared the proposed methods, the interval improved ASM method and the interval
best candidate method, with several existing methods including Deepika rani linear, hyperbolic, exponential
membership function, and Patel and Dhodiya (using the grey situation method). The results showed that
the proposed methods outperformed the existing ones in terms of accuracy and efficiency. Specifically, the
interval improved ASM method and the interval best candidate method provided a more precise solution
within a smaller interval range. Additionally, these methods required fewer iterations and computational
time compared to the existing ones. Therefore, the proposed methods are recommended for solving interval
transportation problems Figures 3 and 4 illustrate the graphical representation of M̃1 and M̃2, respectively.
The aim is to minimize the interval transportation cost and time. These figures display the optimal solution.

7. Conclusion

This paper aims to present a solution procedure for IMOTP valued for transportation problems where the
cost and time coefficient of the objective function have considered interval numbers. The ITP problem is
efficient, with many real-time issues of practical importance. IMOTP arise in many cases, such as planning
many complex resource allocation systems in industrial production, in which demand and supply are interval
valuable in nature the cost coefficients are defined as interval form. We applied the best candidate method,
ASM method, improved ASM method, zero suffix method and zero point method to the problem. Tables
1–13 present the numerical studies of the problem. Table 13 presents a comparative analysis of the proposed
methods and concludes that the methods BCM and IASM supply better results. We also compared our
results with those available in (Patel and Dhodiya2017). In terms of future work, researchers can explore the
applicability of this method to other transportation planning problems, such as route optimization and facility
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location. Additionally, further investigation can be conducted to improve the efficiency and scalability of
the method. This can involve the development of more advanced algorithms for solving interval linear
programming problems or incorporating machine learning techniques for improving the performance of the
process. Overall, using interval arithmetic operations in multi-objective transportation planning presents
exciting opportunities for advancing the field and addressing the challenges of sustainable and efficient
transportation systems.
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