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Abstract 

Climate change has been observed worldwide in the last years. Among the different effects of climate change, rain 

precipitation is one of the effects that most challenge the population of all countries in the world. The main goal of 

this study is to introduce a data analysis of monthly rainfall data related to five countries in Central Asia 

(Kazakhstan, Kyrgyzstan, Tadjikistan, Turkmenistan and Uzbekistan) for a long period of time to discover the 
behavior of rain precipitation in these countries for each month of the year in the last decades and possible link 

with climate change. Since climate data are positive real values, Weibull regression models were fitted for the rain 

precipitation data (precipitation sums by climate station and year) under a classical inference approach in presence 

of some spatial factors  as latitude and longitude of the climate stations in each country, temporal factors (linear 

year effects), altitude of the climate station and categorical factors (countries).The obtained results show that some 

factors have different effects in the monthly rainfall of the assumed countries during the follow-up assumed period, 

possibly linked to the climate change observed in the last decades worldwide. 
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1. Introduction  

 

In the last few decades, the world has seen drastic changes in the climate affecting temperature, level of the oceans 

and amount of annual rainfall among many other effects of climate change (https://www.ncdc.noaa.gov/monitoring-

references/faq/indicators.php). Other effects of climate change could be observed in food production, the rise of sea 

levels, catastrophic flooding in many parts of the world and modifications on greenhouse gases which are essential to 

all living forms in the planet (https://www.un.org/en/sections/issues-depth/climate-change/). For example, 

temperature and precipitation changes over time have not been uniform across the planet or even in different regions 

of the same country as observed by many authors. As a special case, the average rainfall in the United States of 

America has increased since 1900, but some areas of the country had increases greater than the national rainfall 
average and some areas had lower than average (IPCC 2007, 2013). Thus, it is very important to study the changes 

occurring in the global temperature and rain precipitation in different regions of the world. This becomes even more 

important due to the different behaviors of the changes in different parts of the world since some regions may be more 

affected than others. 

Many papers have been published related to climate change events, such as, change in precipitation volumes, 

temperature values, sea levels, among many others, and their implications. As special cases we can mention a study 

on the impact of climate change on water resources and flooding was published by Arnell and Lloyd-Hughes (2014); 

in other work,  Costello et al. (2009) studied the relation between climate change and health effects; Lineman et al. 

(2015) introduced a study relating global warming and climate change; a study introduced by Kabir et al. (2016) 

analyzed the impact of climate change on the coastal areas of Bangladesh; sea level changes in relation to global 

warming was studied by Levermann et al. (2013); a paper introduced by Serdeczny et al. (2016) considered the impact 
of climate change on the sub-Saharan Africa; Turner et al. (2020) analyzed the threat posed by climate change on 
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ecosystems;  Tebaldi and Sansó (2009) introduced a study considering  the joint change in temperature and 

precipitation from multiple climate models using a Bayesian point of view. 

Olumuyiwa and Masengo (2017) introduced a review of case studies of climate change effects on the agricultural 

environment with emphasis on rainfall, as an important factor. Praveen et al. (2020) considered analyzes and forecasts 

for the long-term spatio-temporal changes in rainfall using data from 1901 to 2015 across India at meteorological 
divisional level using non-parametrical and machine learning approaches detecting an increasing rainfall trend in the 

period 1901–1950, while a significant decline rainfall trend was detected after 1951. Malmgren et al.  (2020) analyzed 

precipitation trends in Sri Lanka since the 1870s and relationships to El Niño–Southern Oscillation using data from 

15 climate stations in Sri Lanka discovering some significant temporal changes in precipitation at some climate 

stations. Lima et al. (2010) investigated the trends in annual and monthly precipitation in mainland Portugal 

considering long time series using data obtained from ten measuring climate stations scattered over mainland Portugal 

identifying a sequence of alternating decreasing and increasing trends in annual and monthly precipitation. Benestad 

(2013) related temporal variability in precipitation statistics with the global mean temperature using a multiple 

regression analysis.  Donat et al.  (2013), studied some relationships between climate extremes in the Arab region and 

certain prominent modes of variability, in particular El Niño-Southern Oscillation (ENSO) and North Atlantic 

Oscillation (NAO); they concluded that the relationships of the climate extremes with NAO are stronger, in general, 

than those with ENSO.  
Longobardi and Villani (2010) considered analysis of rainfall time series for the period 1918–1999 and a wide 

area, detecting potential trends and assessing their significance considering data from 211 gauged stations, mainly 

located in southern Italy. Caloiero et al. (2011), considered a statistical analysis of annual and seasonal precipitation 

performed over 109 cumulated rainfall series with more than 50 years of data observed in a region of Southern Italy 

(Calabria) showing a decreasing trend for annual and winter–autumn rainfall and an increasing trend for summer 

precipitation. Clarke et al. (2011) studied short-duration rainfall data related to design of stormwater infrastructure 

considering data of 13 Canadian climate stations. Miao et al. (2012) presented a precipitation trend and periodic 

analysis at the seasonal scale on a 286–year data series (1724–2009) for Beijing, China based on different statistical 

models. Ambun et al. (2013) introduced a statistical analysis, based on linear regression models, of monthly, annual 

and seasonal trends of rainfall in Kuching, Malaysia from 1968 to 2010.   

Arnbjerg-Nielsen et al. (2013) introduced a review of current methods for assessing future changes in urban 
rainfall extremes and their effects on urban drainage systems, due to anthropogenic-induced climate change. Kwarteng 

et al. (2009) considered a statistical analysis of the characteristics of rainfall in Oman using data recorded between 

1977 and 2003 where the data was divided into six geomorphic compartments to represent the various topographic 

regions in Oman.  Gunawardhana and Al-Rawas (2014) analyzed daily precipitation and temperature records in 

Muscat, Oman, mainly focusing on extremes. Modarres and Rodrigues da Silva (2007) considered time-series of 

annual rainfall, number of rainy-days per year and monthly rainfall of 20 stations, to analyze climate variability in 

semi-arid regions of Iran. Dinpashoh et al. (2004) selected variables to be used to regionalize Iran's precipitation 

climate using factor analysis and clustering techniques considering data from 77 climate stations in Iran from 1956 to 

1998.  

Raziei et al. (2014) investigated spatial patterns of monthly, seasonal, and annual precipitation over Iran and the 

corresponding long-term trends for the period 1951–2009 using the Global Precipitation Climatology Centre gridded 

dataset. Almazroui et al. (2012) studied the Arabian Peninsula’s seasonal climate using observational and gridded data 
from surface that, irrespective of season, rainfall insignificantly increased in the first period (1979–1993), and then 

significantly decreased in the second period (1994–2009). Hasanean and Almazroui (2015) presented a review of 

Saudi Arabia (SA) climate, indicating that a great inter-annual change in the rainfall over the SA was observed for the 

period (1978–2009). Al-Mamoon and Rahman (2012), examined the trends of daily extreme rainfall events from 30 

rain gauges located in Qatar using rainfall data covering from 1962 to 2011. Jones  et al. (2015) studied the temporal 

variation of precipitation in the Upper Tennessee River basin using datasets from the Tennessee Valley Authority 

(TVA) rain gauge network consisting of 56 rain gauges (1990–2010), and the National Weather Service (NWS) 

analyzing mean areal precipitation values for 78 subbasins (1950–2009).  

Kang and Yusof (2012) considered different homogeneity tests to detect the inhomogeneity of the daily rainfall 

data with at most 10% missing values for rainfall series of three climate stations (Damansara, Johor and Kelantan) of 

Malaysia using annual mean, annual maximum, and annual median. Marengo et al. (2020) studied trends in extreme 
rainfall events in the Metropolitan Area of São Paulo (MASP), Brazil in relation to hydrometeorological hazards that 

trigger natural disasters, such as flash floods, landslides, and droughts, that affect the population and local economies. 

Cong and Brady (2012) considered five families of copula models to model the interdependence between rainfall and 

temperature considering historical climate data of a leading agricultural province (Scania) in Sweden that is affected 

by a maritime climate.  Mekis et al. (2018) introduced an overview of the present status and procedures related to 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/rain-gage
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surface precipitation observations at Environment and Climate Change Canada (ECCC). Devine and Mekis (2008) 

used daily historical rain‐gauge data from several Canadian sources and field experiments to compare to the World 

Meteorological Organization (WMO) pit gauge rainfall measurements to determine the accuracies for different 

operational rain gauges.  

Altın et al. (2012) presented a study using different statistical methodologies, showing the change in precipitation 
and temperature of the Central Anatolia region where a semi-arid climate prevails. Twumasi et al. (2020) examined 

the long-term climate variations in Central African Countries (Gabon, Cameroon, Republic of Congo, Central Africa 

Republic, Chad, and Democratic Republic of Congo) for the period 1901 to 2015, investigating the possible influence 

of increases in greenhouse gas concentrations using data collected from the World Bank Group Climate Change 

Knowledge Portal. Moreover, assuming non-transformed climate data, that is, the data in the original scale, some 

authors explore the use of standard existing lifetime probability distributions as the exponential, the Weibull, gamma, 

generalized gamma or log-normal distributions in the analysis of the data given the usual presence of asymmetry 

especially considering rain precipitation data (Singh 1987; Christopher et al. 2010; Alonge and Afullo 2012). 

In this work, we study the behavior of annual rainfall precipitation (precipitation sums by climate station and 

year) in each month of the year (January to December) in a region of the world where climate change has had a great 

impact: Central Asia. In this way, we consider monthly rain precipitation data and possible dependence of rain 

precipitation with some temporal factors, or some spatial factors related to location of each observational climate 
station where the rainfall index was reported, as longitude (denoted as long) and latitude (denoted as lat) and other 

factors as altitude (denoted as alt) in different countries in Central Asia considering a data set introduced by Williams 

and Konovalov (2008). 

The climate data considered in this study refers do rain precipitation data in five countries located in Central Asia: 

Kazakhstan, Kyrgyzstan, Tadjikistan, Turkmenistan and Uzbekistan (map of region in Figure A.1).  The data set 

reported by Williams and Konovalov (2008) provides temperature and precipitation data from 298 surface 

meteorological stations in the Northern Tien Shan and Pamir Mountain Ranges of Central Asia, specifically from 

stations in Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan. The period of record covered by each 

station is variable, however, most stations have almost 100 years of observations with the earliest record from 1879 

and the latest from 2003. The data set was compiled from meteorological measurements conducted by the National 

Hydrometeorological Services (NHMS) of the Central Asian countries. Rain precipitation data reported in each 
climate station are given by monthly sums. Besides rain precipitation data, also there are other information of each 

climate station, as population of the region where it is located the climate station, vegetation of the region and 

topography. The original data set consists of monthly rainfall (monthly sums) reported in different observational sites 

for a long period. Since the data set have many missing observations (many months with no data, especially in the 

first years of the follow-up periods), in this study we considered only complete data, that is, rainfall of years when 

there are the data for the twelve months of each year. 

Figure A.2-A.6 (Appendix A) shows the histograms of the monthly rain precipitations (total rain precipitation for 

each month) for the five countries (Kazakhstan, Kyrgyzstan, Tadjikistan, Turkmenistan and Uzbekistan) for a long 

period stating in the year 1879 and ending in the year 1999.  From Figure A.2-A.6, we observe asymmetrical behavior 

for the rain precipitation data (monthly sums) for the twelve months considering the five countries, which requires the 

use of an asymmetric probability distribution in the data analysis assuming the data in the original scale. In practice, 

sometimes it is possible to transform the rain precipitation data, for example using a Box-Cox (1964) transformation, 
and the use of standard statistical techniques that assume a normal distribution such as linear regression models with 

normal errors or ANOVA (analysis of variance) models. Despite this possibility, the use of variable transformations 

can present difficulties for interpretations by the climate researchers usually interested in the results obtained using 

statistical models fitted for the data in the original scale. Different asymmetrical distributions for positive values could 

be used in the data analysis of the rain precipitation data set. In this study, we use a special parametric probability 

distribution commonly assumed in the statistical analysis of lifetime data given the great flexibility of fit: the Weibull 

distribution. 

In this way, we assume a Weibull distribution in presence of some spatial-temporal covariates as latitude (lat), 

longitude (long), years and altitude (alt) of the observational rain stations considering the rain precipitation data 

separately for each month of the year (12 data sets). As rain precipitation varies seasonally in different months of the 

year associated with the year seasons, the twelve Weibull regression models could be important to verify which months 

of the year in different locations, regions, and countries the effect of climate change could be more meaningful. The 

results of the statistical analysis can be of great interest to these countries, especially in rain forecasts and agricultural 

planning. After a careful preliminary analysis of the database for missed observations, a total of N =13,888 reported 
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month rain precipitation measures were considered in this study after deleting missing observations in the rainfall 

report introduced by Williams and Konovalov (2008). 

Following SMART (Specific, Measurable, Achievable, Relevant, and Time bounded) structure, the main 

objectives of this study are: 

• Specific: As a first goal of the study, we want to fit Weibull regression models for the rain precipitations 

(monthly sums) considering data in the original scale separately for each month of the year (twelve data sets 

from January to December in the period from 1879 to 1999) in each one of the five considered countries 

(Kazakhstan, Kyrgyzstan, Tadjikistan, Turkmenistan and Uzbekistan) of Central Asia in presence of spatial 

factors (longitude, latitude), temporal factor (years), altitude of the observational location and also the 
categorical variables related to countries (Kazakhstan, Kyrgyzstan, Tadjikistan, Turkmenistan and 

Uzbekistan). As a second goal of the study, we want to fit a Weibull distribution not considering the presence 

of covariates for the rain precipitation averages (averages of the precipitation sums over all stations for a 

specified month and region) to estimate the rain precipitation means in each month of the year and in each 

region. As a third goal of the study, we want to fit a Weibull distribution not considering the presence of 

covariates for the rain precipitation averages (averages of the rain precipitation sums over all stations for a 

specified geographical area) to estimate the rain precipitation means in each geographical area (agro, desert, 

forest, semi-desert, and urban area). 

• Measurable: Use of a data set compiled from meteorological measurements conducted by the National 

Hydrometeorological Services (NHMS) of the Central Asian countries. Besides the rain precipitation data, 

also have other information of each climate station, as population of the region where it is located the climate 
station, vegetation of the region and topography. The data set provides temperature and precipitation data 

from 298 meteorological stations in the Northern Tien Shan and Pamir Mountain Ranges of Central Asia, 

specifically from stations in Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan. The period 

of record covered by each station is variable, however, most stations have almost 100 years of observations 

with the earliest record from 1879 and the latest from 2003 (N =13,888 is the sample size used in the study).  

• Achievable: From the fitted Weibull distributions, we want discover the significant effects of the assumed  

covariates in each month rain precipitation measure (monthly sums); we also want to get accurate estimates 

for the means, of the rain precipitations for the twelve months of the year in each one of the five countries 

(Kazakhstan, Kyrgyzstan, Tadjikistan, Turkmenistan and Uzbekistan) and accurate estimates for the means 

of the rain precipitations in each geographical area (agro, desert, forest, semi-desert and urban area) assuming 

a Weibull distribution.  

• Relevant: To discover from the data analysis the most relevant factors affecting the variability of the rain 

precipitation measures (monthly sums) considering the follow-up period 1879-1999. A great interest here is 

to verify if the effect of different factors is similar or different in each month of the year in the follow-up 

period of 120 years. Other important point: to verify the behavior of the rain precipitation means in each 

month of the year in the five different regions and different geographical areas.  

• Time bounded: From the statistical data analysis assuming a Weibull distribution in presence or not of 

covariates, we want to discover the significant factors affecting the rain precipitation (monthly sums) in each 

month of the year in different countries, to get accurate means for rain precipitation in each month in each 

country and to get accurate rain precipitation means for different geographical areas (agro, desert, forest, 

semi-desert, and urban area). These results could be of interest to authorities to manage the use of water by 

the population and plan agricultural plantations in the region considered in the study (Central Asia).   

2. Methodology  

One of the most popular distributions used to analyze positive observations, in particular considering lifetime 

data, is given by the Weibull distribution (Weibull, 1951). Among the great advantages of the Weibull distribution, 

we can highlight its versatility and facility of use. The distribution provides a good fit for a wide range / variety of 

data sets (Lawless, 1982; Nelson, 2004). In this study, we have the presence of some covariates that affect the 

responses (rain average). In this sense, we assume a Weibull parametric regression model, affecting one parameter of 

the Weibull distribution. In this way, considering T as a random variable denoting the response of interest (rain 

precipitation), we assume a first-order Weibull regression model in the data analysis. That is, we assume a Weibull 

distribution for T with a probability density function (pdf) given by, 

𝑓(𝑡) =
𝛼

𝜆𝛼
𝑡𝛼−1 exp {− (

𝑡

𝜆
)

𝛼

}  

(1) 
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where t > 0 denotes the rain precipitation sum reported in each month in every observational station. The parameters 

λ and α denote, respectively, the scale and shape parameters of the distribution. Different values of α lead to different 

forms for the distribution, which makes it very flexible in the data analysis. Note that if α = 1, we have the exponential 

distribution, that is, the exponential distribution is a special case of the Weibull distribution.  

The Weibull distribution possibly is the most used parametric distribution in medical studies (survival data), reliability 
studies in industrial and engineering applications among many others. Thus, assuming a first-order Weibull regression 

model for the rain precipitations, let us assume the regression model defined by,  

log 𝜆𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖 + 𝛽4𝑥4𝑖 + 𝛽5𝑥5𝑖 + 𝛽6𝑥6𝑖 + 𝛽7𝑥7𝑖 + 𝛽8𝑥8𝑖   

(2) 

where i = 1,2,…,n (sample size);  x1i denotes longitude (long); x2i denotes latitude (lat); x3i denotes altitude (alt); x4i 

denotes years; x5i is a dummy variable (x5i = 1 for Kyrgyzstan and x5i = 0 for other countries); x6i is a dummy variable 

(x6i = 1 for Tadjikistan and x6i = 0 for other countries); x7i is a dummy variable (x7i = 1 for Turkmenistan and x7i = 0 

for other countries) and x8i is a dummy variable (x8i = 1 for Uzbekistan and x8i = 0 for other countries) where 

Kazakhstan is considered as a reference. Note that the regression model given by (2) defines a regression model in the 

scale parameter (Lawless, 1982) assuming the same shape parameter. In this case, the expected value for the rain 

precipitation is given by, 

𝐸 (𝑇𝑖) = 𝛤 [1 +
1

𝛼
] exp{𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖 + 𝛽4𝑥4𝑖 + 𝛽5𝑥5𝑖 + 𝛽6𝑥6𝑖 + 𝛽7𝑥7𝑖 + 𝛽8𝑥8𝑖} 

(3) 

In the estimation of the parameters of the Weibull regression model defined by (1) and (2), we consider the standard 

maximum likelihood methodology (Lawless, 1982) using existing iterative numerical techniques and usual normal 

asymptotical approximations to get hypothesis tests and confidence intervals for the parameters of the model. 

3. Results 

In this section, we present the results of the data analysis of the rain precipitation data related to the five countries 

in Central Asia (211- Kazakhstan, 213 - Kyrgyzstan, 227 -Tadjikistan, 229 - Turkmenistan and 231 - Uzbekistan). 

3.1. Month Rain Precipitation 

Table B.1 in Appendix shows the maximum likelihood estimators (MLE), the standard-errors (SE) and p-values 

associated to hypotheses tests for the regression parameters β0 , β1 , β2 , β3 , β4 , β5 , β6 , β7 and β8 (H0: βj = 0 versus 

H1: βj ≠ 0, j = 0,1, 2,…, 8)  and for the shape parameter α of the regression Weibull model defined by (1) and (2) 

assuming the rain precipitation sums for each one of the 12 months during the follow-up period of many years  (use 

of the Minitab software). The needed assumptions for the Weibull regression model defined by (2) were verified from 

standard residual Cox-Snell plots usually available in the Minitab software to check the fit of the Weibull regression 

model for the data. 

From the obtained results of Table B.1, we can conclude that, for all months, we observe a significant effect of 

years (p-value < 0.05) where in these months, the maximum likelihood estimators have positive signs indicating that 

the month rain precipitations are increasing over the years, except for months June and August where the statistical 
data analysis do not show difference of rain precipitations over the years (p-value > 0.05).  In addition, for all 12 

months, we observe significant effects of the covariates longitude (long), latitude (lat) and altitude (alt) (p-value < 

0.05) in the response month rain precipitation. Longitude (long) in all months have MLE for the corresponding 

regression parameter with positive sign; latitude (lat) has negative signs for the MLE of the regression parameters 

considering the months January, February, March, April, May, November and December and positive signs for the 

MLE of the regression parameters considering the months June, July, August, September, and October. Altitude (alt) 

have positive signs for the MLE of the regression parameters considering all months (rain precipitation higher for 

greater altitudes). That is, 

• Countries in January: Kyrgyzstan, Tadjikistan and Turkmenistan (p-value < 0.05) have negative MLE for 

their respective regression parameters, indicating that these three countries have month rain precipitations 

smaller than the rain precipitation in Kazakhstan (reference). Uzbekistan (p-value < 0.05) has positive MLE 

for the corresponding regression parameter, an indication that the month rain precipitation is larger than for 
Kazakhstan (reference). 
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• Countries in February: Kyrgyzstan, Tadjikistan and Turkmenistan (p-value < 0.05) have negative MLE for 

their respective regression parameters, indicating that these three countries have month rain precipitations 

smaller than the month rain precipitation in Kazakhstan (reference). The month rain precipitation in 

Uzbekistan (p-value > 0.05) does not show statistically difference of the month rain precipitation in 

Kazakhstan (reference). 

• Countries in March: the same conclusions as observed in February are observed for the month March. 

• Countries in April: Kyrgyzstan, Tadjikistan, Turkmenistan and Uzbekistan (p-value < 0.05) have negative 

MLE for their respective regression parameters, indicating that these four countries have month rain 

precipitations smaller than the month rain precipitation in Kazakhstan (reference). 

• Countries in May: the same conclusions as observed in April are observed for the month May. 

• Countries in June: Turkmenistan and Uzbekistan (p-value < 0.05) have negative MLE for their respective 

regression parameters, indicating that these two countries have month rain precipitations smaller than the 

rain precipitation in Kazakhstan (reference). The month rain precipitation in Kyrgyzstan (p-value < 0.05) is 

greater than the month rain precipitation Kazakhstan (reference) since the corresponding MLE is positive. 

The month rain precipitation in Tadjikistan (p-value > 0.05) does not show statistically difference of the 

month rain precipitation in Kazakhstan (reference). 

• Countries in July: Kyrgyzstan, Tadjikistan and Turkmenistan (p-value < 0.05) have positive MLE for their 

respective regression parameters, indicating that these three countries have month rain precipitations larger 

than the month rain precipitation in Kazakhstan (reference). Uzbekistan (p-value > 0.05) does not show 

statistically difference of the month rain precipitation in Kazakhstan (reference). 

• Countries in August: Kyrgyzstan and Turkmenistan (p-value < 0.05) have positive MLE for their respective 

regression parameters, indicating that these two countries have month rain precipitations greater than the 

month rain precipitation in Kazakhstan (reference). The month rain precipitation in Uzbekistan (p-value < 

0.05) is smaller than the month rain precipitation Kazakhstan (reference) since the corresponding MLE is 

negative. The month rain precipitation in Tadjikistan (p-value > 0.05) does not show statistically difference 

of the month rain precipitation in Kazakhstan (reference). 

• Countries in September: Tadjikistan and Uzbekistan (p-value < 0.05) have negative MLE for their 
respective regression parameters, indicating that these two countries have month rain precipitations smaller 

than the month rain precipitation in Kazakhstan (reference). The month rain precipitation in Kyrgyzstan (p-

value < 0.05) is greater than the month rain precipitation in Kazakhstan (reference) since the corresponding 

MLE is positive. The month rain precipitation in Turkmenistan (p-value > 0.05) does not show statistically 

difference of the month rain precipitation in Kazakhstan (reference). 

• Countries in October: Turkmenistan (p-value < 0.05) has negative MLE for its respective regression 

parameter, indicating that this country has month rain precipitation smaller than the month rain precipitation 

in Kazakhstan (reference); the other three countries (Kyrgyzstan, Tadjikistan and Uzbekistan ) have p-value 

> 0.05 which does not indicate difference with the month rain precipitation in Kazakhstan (reference). 

• Countries in November: Kyrgyzstan, Tadjikistan and Turkmenistan (p-value < 0.05) have negative MLE 

for their respective regression parameters, indicating that these three countries have month rain precipitation 
smaller than the month rain precipitation in Kazakhstan (reference). Uzbekistan have p-value > 0.05, which 

does not indicate difference with the month rain precipitation in Kazakhstan (reference). 

• Countries in December: Kyrgyzstan and Turkmenistan (p-value < 0.05) have negative MLE for their 

respective regression parameters, indicating that these two countries have month rain precipitation smaller 

than the month rain precipitation in Kazakhstan (reference). The month rain precipitation in Uzbekistan (p-

value < 0.05) is greater than the month rain precipitation Kazakhstan (reference) since the corresponding 

MLE is positive. The month rain precipitation in Tadjikistan (p-value > 0.05) does not show statistically 

difference of the month rain precipitation in Kazakhstan (reference). 

3.2. Month Rain Precipitation Averages 

Table B.2 at the end of the manuscript shows the maximum likelihood estimators (MLE) for the means (3) 

assuming the Weibull distribution (1) not considering the presence of the covariates for the rain precipitation averages 

(averages of the precipitation sums over all stations for a specified month and region) of each one of the 12 months 
during the follow-up period of 120 years  (use of the Minitab software) considering the five countries in Central Asia 

(211-Kazakhstan, 213-Kyrgyzstan, 227-Tadjikistan, 229-Turkmenistan and 231-Uzbekistan). Table B.2, also shows 

the sample means and sample standard deviations of the data and 95% confidence intervals for the means obtained 

using normal asymptotical methods for MLE (use of the software Minitab). We observe accurate 95% confidence 



Pak.j.stat.oper.res.  Vol.18  No.2 2022 pp 465-482  DOI: http://dx.doi.org/10.18187/pjsor.v18i2.3976 

 

Spatial-temporal factors affecting monthly rainfall in some Central Asian countries assuming a Weibull regression model 471 

 

intervals for the means are obtained for the rain precipitation means in all cases. It is important to point out that large 

sample sizes are observed in all cases.  The sample sizes for each country are respectively given by: 211-Kazakhstan 

(N = 2947), 213-Kyrgyzstan (N = 2655), 227-Tadjikistan (N = 1821), 229-Turkmenistan (N = 1055) and 231-

Uzbekistan (N = 5410). Figure A.7 shows the observed sample means and the estimated Weibull means estimated by 

maximum likelihood method indicating an excellent fit of the Weibull distribution for the rain precipitation data in all 

countries. 

3.3. Month Rain Precipitation Average in Different Geographical Areas 

The observational locations in the five countries are in different geographical areas where the rain precipitation 

usually is very different depending on the local characteristics. Considering some special areas where it is expected 

great differences in the yearly rain precipitations (agro, desert, forest, semi-desert and urban area), the sample 

precipitations averages (standard-deviations) observed in the follow-up periods are given, respectively, by:  25.570 

(7.164) for agro area (N=109); 10.620 (3.763) for desert area (N=90); 59.67 (19.65) for forest area (N=71); 15.937 

(4.074) for semi-desert (N=104) area and 25.635 (4.240) for urban area (N=109). Figure A.8 shows the histograms of 

the yearly rain means considering the five areas. where it is observed that some regions (agro, forest and urban areas 

have more asymmetrical shapes for the histograms indicating that these regions the precipitation have a more not 

normal behavior in the observed follow-up periods. In this case, we also assume Weibull distributions in the data 

analysis. Finally, Table B.3 presents, respectively, the MLE for the shape, scale and mean (3) for the Weibull 
distribution for each region (agro, forest, desert, semi-desert and urban) obtained using the software Minitab. From 

the results of Table B.1, we observe that the obtained maximum likelihood estimates (MLE) for the precipitation 

means are very close to the sample precipitation averages in each area, an indication of the good fit of the Weibull 

distribution for the data. 

Figure A.9 shows the fitted Weibull distributions for each considered area considering the MLE of the shape and 

scale parameters of the Weibull distribution in each area presented in Table 3, from where, it is possible to get all 

inferences of interest as the probabilities for the rain precipitation to be in specified intervals of interest. From Figure 

A.9, it is possible to observe that the rain precipitation means are very concentrated (small variability) for the desert 

and semi-desert areas, while for the forest and agro areas the variability of the rain precipitation are very large, possibly 

affected by the climate change observed in the world in the last decades.  

4. Concluding Remarks 

As an important conclusion of our study is that for all months of the year, it is observed significant effects of time 

(years) except for the months June and August were the amount of rain are not affected. Also, it is observed significant 

effects of the covariates longitude (long), latitude (lat) and altitude (alt) in the response month rain precipitation. The 

rain precipitations have different behavior in the twelve months of the year considering the five countries (Kazakhstan, 
Kyrgyzstan, Tadjikistan, Turkmenistan and Uzbekistan). In addition, considering different geographical areas it is 

observed that rain precipitation means have small variability for the desert and semi-desert areas (small amount of 

rain with not great variability), while for the forest and agro areas the variability of the rain precipitation is very large. 

Finally, it is important to point out that other distributions for positive random variables could be assumed in the data 

analysis of rain precipitation data, as generalizations of the Weibull distribution as for example, the exponentiated-

Weibull family (Muldholkar et al., 1995) but in our application the Weibull distribution was very well fitted by the 

data. 
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Appendix A. Figures 

 

Figure A.1. Central Asia countries (downloaded from http://www.sairamtourism.com/ca_today on 

09/APR/12). 

 

 

 

 

 

Figure A.2. Histograms of the monthly rain precipitations in Kazakhstan. 
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Figure A.3. Histograms of the monthly rain precipitations in Kyrgystan. 

 
 

 

Figure A.4. Histograms of the monthly rain precipitations in Tadjikistan. 
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Figure A.5. Histograms of the monthly rain precipitations in Turkmenistan. 

 
 

 

Figure A.6. Histograms of the monthly rain precipitations in Uzbekistan. 
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Figure A.7. Observed and the estimated Weibull means for the rain precipitations (211-Kazakhstan, 213-

Kyrgyzstan, 227-Tadjikistan, 229-Turkmenistan and 231-Uzbekistan) 
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Figure A.8. Histograms for the rain monthly precipitations in different areas (agro, desert, forest, semi-desert 

and urban areas)   
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Figure A.9. Fitted Weibull distributions for the rain precipitation in each area (agro, desert, forest, semi-

desert, and urban areas) 

 
 

Appendix B. Tables 

 

 

Table B.1. MLE, SE and p-values of Weibull regression model for the 12 months 

January MLE SE p-value February MLE SE p-value 

Intercept 3.24759 0.732515 < 0.001 Intercept 2.13626 0.742636 0.004 

Long 0.014535 0.001644 < 0.001 Long 0.015329 0.001639 < 0.001 

Lat -0.11618 0.005091 < 0.001 Lat -0.13722 0.005029 < 0.001 

Alt 4.88E-05 1.27E-05 < 0.001 Alt 5.16E-05 1.27E-05 < 0.001 

Years 0.002056 0.000351 < 0.001 Years 0.003063 0.00036 < 0.001 

Kyrgyzstan -0.52434 0.03717 < 0.001 Kyrgyzstan -0.43304 0.03668 < 0.001 

Tadjikistan -0.12921 0.049453 0.009 Tadjikistan -0.10012 0.048675 0.040 

Turkmenistan -0.53372 0.058006 < 0.001 Turkmenistan -0.67419 0.057304 < 0.001 

Uzbekistan 0.089959 0.038781 0.020 Uzbekistan 0.064284 0.038234 0.093 

Shape 1.05691 0.007127  Shape 1.06365 0.007149  

March MLE SE p-value April MLE SE p-value 

Intercept 8.05906 0.697847 < 0.001 Intercept 4.38317 0.758461 < 0.001 

Long 0.014241 0.001529 < 0.001 Long 0.020741 0.001693 < 0.001 

Lat -0.17125 0.004496 < 0.001 Lat -0.13783 0.005046 < 0.001 

Alt 8.77E-05 1.18E-05 < 0.001 Alt 0.0002 1.33E-05 < 0.001 

Years 0.001027 0.000337 0.002 Years 0.001947 0.000368 < 0.001 

Kyrgyzstan -0.37026 0.031807 < 0.001 Kyrgyzstan -0.3465 0.034147 < 0.001 

Tadjikistan -0.18022 0.042709 < 0.001 Tadjikistan -0.34299 0.046648 < 0.001 

Turkmenistan -0.84901 0.051642 < 0.001 Turkmenistan -0.90794 0.057404 < 0.001 

Uzbekistan -0.02875 0.033683 0.393 Uzbekistan -0.21643 0.036944 < 0.001 

Shape 1.17442 0.007764  Shape 1.05879 0.007217  

May MLE SE p-value June MLE SE p-value 

Intercept -2.01748 0.821702 0.014 Intercept -9.00574 1.5399 < 0.001 
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Long 0.02775 0.001848 < 0.001 Long 0.021715 0.003393 < 0.001 

Lat -0.06208 0.005756 < 0.001 Lat 0.226768 0.011357 < 0.001 

Alt 0.000368 1.51E-05 < 0.001 Alt 0.000846 2.75E-05 < 0.001 

Years 0.003157 0.000396 < 0.001 Years -0.0002 0.000728 0.780 

Kyrgyzstan -0.18817 0.038122 < 0.001 Kyrgyzstan 0.568895 0.070371 < 0.001 

Tadjikistan -0.32028 0.052121 < 0.001 Tadjikistan 0.063426 0.096453 0.511 

Turkmenistan -0.8336 0.064833 < 0.001 Turkmenistan -0.7288 0.123077 < 0.001 

Uzbekistan -0.40092 0.041737 < 0.001 Uzbekistan -0.23833 0.075869 0.002 

Shape 0.944881 0.006535  Shape 0.507737 0.00374  

July MLE SE p-value August MLE SE p-value 

Intercept -29.6909 2.13402 < 0.001 Intercept -31.8302 2.37305 < 0.001 

Long 0.025072 0.0046 < 0.001 Long 0.021018 0.00507 < 0.001 

Lat 0.492529 0.016213 < 0.001 Lat 0.647153 0.017978 < 0.001 

Alt 0.00127 0.000038 < 0.001 Alt 0.001561 4.18E-05 < 0.001 

Years 0.003668 0.001002 < 0.001 Years 0.000889 0.001128 0.431 

Kyrgyzstan 1.06991 0.098628 < 0.001 Kyrgyzstan 1.29148 0.10857 < 0.001 

Tadjikistan 0.366697 0.13512 0.007 Tadjikistan 0.271521 0.149872 0.070 

Turkmenistan 0.422353 0.172853 0.015 Turkmenistan 1.53434 0.192511 < 0.001 

Uzbekistan - 0.1841 0.105557 0.081 Uzbekistan -0.23541 0.117654 0.045 

Shape 0.366611 0.002568  Shape 0.328926 0.002185  

September MLE SE p-value October MLE SE p-value 

Intercept -44.4029 2.13289 < 0.001 Intercept -9.69988 1.35753 < 0.001 

Long 0.010007 0.004712 0.034 Long 0.020514 0.002997 < 0.001 

Lat 0.420884 0.016273 < 0.001 Lat 0.07973 0.009608 < 0.001 

Alt 0.001084 3.83E-05 < 0.001 Alt 0.000348 2.34E-05 < 0.001 

Years 0.013259 0.000999 < 0.001 Years 0.003789 0.000646 < 0.001 

Kyrgyzstan 0.586624 0.100466 < 0.001 Kyrgyzstan 0.009618 0.063313 0.879 

Tadjikistan -0.72912 0.137843 < 0.001 Tadjikistan -0.08294 0.085749 0.333 

Turkmenistan 0.193518 0.174033 0.266 Turkmenistan -0.40399 0.10542 < 0.001 

Uzbekistan -0.40382 0.108063 < 0.001 Uzbekistan 0.015114 0.067105 0.822 

Shape 0.357941 0.00251  Shape 0.579933 0.004195  

November MLE SE p-value December MLE SE p-value 

Intercept -1.83605 0.919812 0.046 Intercept -0.60266 0.813177 0.459 

Long 0.023503 0.002023 < 0.001 Long 0.014865 0.00181 < 0.001 

Lat -0.02295 0.006313 < 0.001 Lat -0.06769 0.005637 < 0.001 

Alt 0.000158 1.56E-05 < 0.001 Alt 9.63E-05 0.000014 < 0.001 

Years 0.002217 0.000443 < 0.001 Years 0.002949 0.000392 < 0.001 

Kyrgyzstan -0.22353 0.043158 < 0.001 Kyrgyzstan -0.4569 0.040123 < 0.001 

Tadjikistan -0.17385 0.058404 0.003 Tadjikistan -0.07308 0.053731 0.174 

Turkmenistan -0.41281 0.070467 < 0.001 Turkmenistan -0.46032 0.063428 < 0.001 

Uzbekistan 0.058594 0.045371 0.197 Uzbekistan 0.121883 0.041747 0.004 

Shape 0.857381 0.005926 
 

Shape 0.954871 0.006472 
 



Pak.j.stat.oper.res.  Vol.18  No.2 2022 pp 465-482  DOI: http://dx.doi.org/10.18187/pjsor.v18i2.3976 

 

Spatial-temporal factors affecting monthly rainfall in some Central Asian countries assuming a Weibull regression model 481 

 

 

 

Table B.2. MLE of mean of the Weibull distribution for the 12 months and the five countries 

Row month Country 

sample 

Sample 

mean 

sd MLE mean lower 95% Upper 95% 

1 January 211 19.956 18.149 19.957 19.347 20.586 

2 January 213 21.569 21.348 21.723 20.832 22.652 
3 January 227 42.330 43.950 42.903 40.570 45.370 

4 January 229 24.332 20.361 24.219 22.957 25.550 

5 January 231 41.790 36.425 41.693 40.692 42.720 

6 February 211 19.294 18.529 19.248 18.609 19.984 

7 February 213 25.124 24.830 25.140 24.286 26.132 

8 February 227 48.960 48.250 49.103 46.715 51.614 

9 February 229 23.414 20.101 23.330 22.057 24.676 

10 February 231 44.299 38.613 44.172 43.111 45.260 

11 March 211 27.842 29.998 27.841 26.828 28.892 

12 March 213 41.996 37.052 41.912 40.504 43.369 

13 March 227 77.350 73.360 77.366 73.862 81.035 

14 March 229 34.871 26.720 34.653 33.018 36.369 
15 March 231 64.613 53.781 64.552 63.136 65.999 

16 April 211 37.698 42.048 35.312 36.618 40.085 

17 April 213 54.353 43.454 54.333 52.721 55.994 

18 April 227 72.090 65.790 72.037 68.929 75.286 

19 April 229 26.830 24.072 26.986 25.299 28.785 

20 April 231 55.502 50.315 55.460 54.026 56.932 

21 May 211 44.138 51.182 44.820 42.809 46.926 

22 May 213 64.240 42.151 64.338 62.792 65.921 

23 May 227 56.370 51.940 56.346 53.847 58.962 

24 May 229 14.710 18.357 16.709 14.978 18.640 

25 May 231 34.171 36.731 34.912 33.757 36.107 
26 June 211 37.723 42.753 38.891 37.044 40.831 

27 June 213 51.615 34.788 51.454 50.138 52.804 

28 June 227 19.160 23.025 22.912 20.905 25.111 

39 June 229 3.312 8.958 5.188 3.875 6.945 

30 June 231 10.714 18.058 18.302 16.721 20.033 

31 July 211 33.641 37.601 38.129 35.793 40.616 

32 July 213 40.287 35.117 40.475 38.881 42.134 

33 July 227 10.628 18.147 20.870 17.469 24.934 

34 July 229 2.290 6.861 2.298 1.687 3.129 

35 July 231 5.581 14.016 10.996 9.659 12.518 

36 August 211 24.017 28.723 31.590 29.085 34.310 
37 August 213 27.447 29.768 31.155 29.160 33.287 

38 August 227 4.999 9.951 10.640 8.574 13.205 

39 August 229 1.931 7.137 1.428 1.055 1.932 

40 August 231 2.955 9.652 3.752 3.279 4.294 

41 September 211 19.087 20.175 22.529 21.074 24.086 

42 September 213 20.947 22.038 22.337 21.124 23.620 

43 September 227 4.394 8.316 9.305 7.590 11.408 

44 September 229 2.474 7.287 2.931 2.152 3.990 

45 September 231 4.228 8.890 8.508 7.528 9.615 

46 October 211 28.266 26.602 28.482 27.382 39.627 

47 October 213 31.742 33.983 32.299 30.841 33.825 

48 October 227 25.145 39.040 30.928 17.801 34.406 
49 October 229 8.177 13.190 14.115 11.491 17.338 

50 October 231 21.837 32.634 27.464 25.805 29.230 

51 November 211 28.562 24.797 28.462 27.546 29.410 
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52 November 213 30.413 28.802 30.552 29.335 31.820 

53 November 227 32.113 39.328 34.072 31.691 36.633 

54 November 229 14.520 15.132 15.415 14.129 16.817 

55 November 231 32.243 37.142 32.765 31.680 33.887 

56 December 211 24.981 22.312 24.966 24.208 25.749 
57 December 213 24.724 26.805 25.410 24.197 26.684 

58 December 227 41.970 47.350 42.415 40.088 44.878 

59 December 229 20.923 17.858 21.033 19.735 22.416 

60 December 231 41.049 41.352 41.100 39.976 42.256 

 

 

Table B.3. MLE for the shape, scale and rain precipitation mean of the Weibull distribution in different areas 

(agro, desert, forest, semi-desert, and urban areas) 

 MLE SE Lower 95 % Upper 95 % 

Agro Area 

α 3.8046 0.2661 3.3171 4.3637 

λ 28.2129 0.7505 26.7796 29.7229 

mean 25.5002 0.7167 24.1334 26.9443 

Desert Area 

α 3.0292 0.2444 2.5860 3.5484 

λ 11.8500 0.4338 11.0296 12.7315 

mean 10.5864 0.4010 9.8288 11.4024 

Forest Area 

α 3.2806 0.2937 2.7525 3.9099 

λ 66.5811 2.5508 61.7647 71.7730 

mean 59.7066 2.3886 55.2039 64.5766 

Semi-Desert Area 

α 3.9927 0.2743 3.4896 4.5682 

λ 17.4643 0.4534 16.5978 18.3761 

mean 15.8281 0.4349 14.9981 16.7040 

Urban Area 

α 6.0713 0.4099 5.3187 6.9305 

λ 27.4490 0.4594 26.5630 28.3645 
mean 25.4816 0.4669 24.5827 26.4133 

 


