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Abstract

The paper considers the class of f -divergence regression models as alternatives to parametric regression models (such
as Dirichlet regression) for compositional data. The special cases examined in this paper include the Jensen-Shannon,
Kullback-Leibler, Hellinger, χ2 and total variation divergence. Strong advantages of the proposed regression models
are a) the absence of parametric assumptions and b) the ability to treat zero values (which commonly occur in practice)
naturally. Extensive Monte Carlo simulation studies comparatively assess the performance of the models in terms of
bias and an empirical evaluation using real data examining further aspects, such as predictive performance and com-
putational cost. The results reveal that Kullback-Leibler and Jensen-Shannon divergence regression models exhibited
high quality performance in multiple directions. Ultimately, penalized versions of the Kullback-Leibler divergence
regression are introduced and illustrated using real data rendering this model the optimal model to utilise in practice.

Key Words: compositional data; f -divergence regression models; penalized regression models; Dirichlet regression.

Mathematical Subject Classification: 62H99, 62J02.

1. Background

Compositional data are non-negative multivariate vectors whose variables (typically called components) conveying
only relative information. When the vectors are normalized to sum to 1, their sample space is the standard simplex

SD−1 =

{
(y1, ..., yD)T

∣∣∣∣yi ≥ 0,

D∑
i=1

yi = 1

}
, (1)

where D denotes the number of components.
Examples of such data may be found in many different fields of study and the extensive scientific literature that has
been published on the proper analysis of this type of data is indicative of its prevalence in real-life applications1.
Analysis of compositional data may be carried out in various ways which can be summarized in two directions: either
by transforming the data or not. In the first direction, the most popular transformations are the logarithms of ratios
formed by the components (Aitchison, 1982, Aitchison, 2003), some properties of which can be found in Jooa and
Lee (2021). It must be stressed though that this school of thought is not the only one and has been heavily criticised by
Scealy and Welsh (2014). Other approaches include taking the square root of the data, resulting in data which lie on the
hypersphere (Stephens, 1982, Scealy and Welsh, 2011) or Box-Cox type transformations (Greenacre, 2009, Tsagris
et al., 2011, Tsagris and Stewart, 2020). The second direction is to apply transformation free parametric models.

1For a substantial number of specific examples of applications involving compositional data see Tsagris and Stewart (2020).
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These include the Dirichlet distribution (Gueorguieva et al., 2008, Tsagris and Stewart,2018), the simplex distribution
(Barndorff-Nielsen and Jørgensen, 1991), the Liouville distribution (Rayens and Srinivasan,1994) and a generalized
Dirichlet distribution (Graf, 2020a).
The widespread occurrence of this type of data in numerous scientific fields that involve covariates, has necessitated the
need for valid regression models which in turn has led to several developments in this area, many of which have been
proposed recently. The first regression model for compositional response data was developed by Aitchison (2003) and
was based on the additive log-ratio transformation. Tolosana-Delgado and von Eynatten (2009) also used the additive
log-ratio and Egozcue et al. (2012) extended Aitchison’s regression model by using a transformation similar to the
isometric log-ratio transformation (Egozcue et al., 2003) but instead of the popular Helmert sub-matrix (Tsagris et al.,
2011), they employed a data dependent orthogonal matrix. Moving along the same lines, Tsagris (2015b) generalized
Aitchison’s regression model via the α-transformation. Morais et al. (2018) studied the automobile market shares as
a function of media investments using several regression models, whereas Katz and King (1999) studied the effect of
predictor variables on the predicted vote using a Bayesian approach. Fry et al. (2000) proposed a new methodology
to model Australian household expenditure data and Larrosa (2003) studied the capital composition across different
country economics. Iyengar and Dey (2002) investigated the generalized Liouville family of distributions that admits
negative or mixed correlation and also contains non-Dirichlet distributions with non-positive correlation. Wang et al.
(2007) used a hyper-spherical transformation to model the three components of the primary, secondary, and tertiary
sectors in the Chinese economy in order to predict their future sector compositions. Gueorguieva et al. (2008), Hijazi
and Jernigan (2009) and Melo et al. 2009) modelled compositional data using Dirichlet regression (DR) while more
recently, Graf (2020a) introduced a generalized DR model.
An important issue in compositional data is the presence of zeros that prohibit the use of the logarithmic transforma-
tions, an issue that is not addressed in most papers. In the case of the log-ratio and DR models, either zero imputation
techniques must be applied prior to fitting the models or proper adjustments must be made to the regression models
(Tsagris and Stewart, 2018). Various other alternative strategies have been proposed in the literature. Scealy and
Welsh (2011) transformed the data onto the unit hyper-sphere and introduced the Kent regression which treats zero
values naturally. Leininger et al. (2013) modelled spatial compositional data with zeros from the Bayesian stance.
Mullahy (2015) estimated regression models of economic share data where the shares could take zero values with
nontrivial probability. Tsagris (2015a) suggested a non-parametric regression model utilising the Jensen-Shannon (JS)
divergence, examined in the present paper, while the α-regression Tsagris (2015b) is another possibility. Murteira
and Ramalho (2016) discussed alternative regression models, also applicable when zero values are present, in the
field of econometrics, such as the Kullback-Leibler (KL) divergence regression that is also examined in this paper and
non-linear least squares regression. More recently, Tsagris and Stewart (2018) introduced the Zero Adjusted Dirichlet
Regression (ZADR).
This paper examines from an empirical point of view, the f -divergence regression models and compares them to the
parametric DR and ZADR models. The family of f -divergence regression models is suggested for compositional
data because they are distribution free and are thus not affected by the true data distribution, they are computationally
more efficient, scalable to large sample sizes, they can estimate regression coefficients with low bias and treat zero
values naturally. However they are not fully non-parametric as they specify the form of the link function between
the compositional data and the covariates. Instead of maximising the likelihood of a parametric model, the proposed
regression models rely on some distance minimization, and specifically minimisation of the f -divergence measure.
Some of the f -divergence measures examined in this paper satisfy the metric properties, such as the Jensen-Shannon
divergence2, but not all of them3. The family of f -divergence regression models is significantly large and hence
some regression models will be presented here, namely those that can treat zero values naturally. To the best of our
knowledge, not all of the regression models presented here have been considered in the literature.
A Monte-Carlo simulation study investigates the bias of the divergence regression coefficients and compares them to
the parametric DR and ZADR models. Secondly, using real data the bias of the regression coefficients of each model
is estimated using non-parametric bootstrap. The predictive performance of each regression model is estimated in
order to give more insight into their properties and finally, their computational cost is also evaluated. The bias is a
statistical measure describing, to some degree, the correctness of the regression estimates. Predictive performance and
computational cost are two important aspects in the data science field where practitioners are more interested in fast
and accurate predictions, rather than statistical inference.
The paper further introduces penalized regression using the KL divergence. Penalized versions of the KL regression,

2Endres and Schindelin (2003) and Österreicher and Vajda (2003), independently, proved that the JS divergence satisfies the triangle inequality.
3The KL divergence for instance is not a metric.
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such as ridge, Least Absolute Shrinkage and Selection Operator (LASSO), and elastic net are introduced and illus-
trated using real data. To the best of our knowledge, no one has studied penalized compositional regression without
employing a log-ratio transformation. Shimizu (2019) for instance explored elastic net regression but using a log-ratio
transformation, which evidently is not applicable when zero values are present. Note also that the main strand of
research on penalized regression is directed toward the case where compositional data are predictor variables and not
response variables (Xia et al., 2013, Lin et al., 2014, Shi et al., 2016).
The rest of the paper is structured as follows. Section 2 reviews the background of f -divergence measures and presents
the relevant f -divergence regression models and two parametric regression models. Section 3 contains simulation
studies comparing the aforementioned regression models and empirically evaluating them using real data. Section 4
introduces penalized versions of the KL regression and illustrates their performance using real data, while the last
section concludes the paper.

2. f -divergence based regression models and parametric regression models

2.1. f -divergence measures

Let P and Q denote two probability measures. A widely studied family of f -divergences between probability mea-
sures is Csiszar’s f -divergence Csiszár, 1967 and Csiszár (1974), defined as Df (P,Q) =

∫
M

dP
dQQ, where M is a

measurable space, f : [0,∞) → (−∞,∞] is a convex function such that f(1) = 0, f ′′(1) > 0 and P is absolutely
continuous with respect to Q. It is known that for all probability measures P and Q, the Dφ(P,Q) is non-negative and
when P = Q, Dφ(P,Q) = 0.
The choices of f and the corresponding f -divergences considered in the current paper are presented in Table 1. These
divergences have been extensively examined and a summary of relationships can be found in Jain and Srivastava
(2007), Jain and Saraswat (2012) and Melbourne et al. (2019). It should be noted that the choice of f(t) = (t−1) log t

leads to the Jeffreys divergenceEf
{(

1− g(x)
h(x)

)
log
(
h(x)
g(x)

)}
, which was not considered here because it is not defined

with zeros.

Table 1: A list of the f -divergences considered in the present work.
Type f(t) Df (h, g)

Kullback–Leibler divergence t log t Eh

{
log
(
h(x)
g(x)

)}
Jensen-Shannon divergence t log 2t

1+t + log 2
1+t Eh

{
log 2h(x)

h(x)+g(x)

}
+ Eg

{
log 2g(x)

h(x)+g(x)

}
Hellinger distance 1

2 (
√
t− 1)2 1

2Eh

{(
1−

√
h(x)
g(x)

)2
}

χ2-distance (t− 1)2 Eh

{
(h(x)−g(x))2

h(x)g(x)

}
Total variation distance |t− 1| Eh

{∣∣∣1− g(x)
h(x)

∣∣∣}

2.2. Minimum f -divergence regression models

The minimum f -divergence regression models are drawn from Table 1. For the regression models considered here, the
fitted compositional vectors will be related to the predictor variables (x), via the parametric form hs (B; x) defined as

hs (B; x) =


1

1+
∑D
k=2 e

xTβββk
if s = 1

ex
Tβββs

1+
∑D
k=2 e

xTβββk
if s = 2, ..., D,

 (2)

where B = (βββ1, . . . ,βββd) with βββs = (β0s, β1s, ..., βps)
T , s = 1, . . . , d denoting the set of regression coefficients. This

functional form is by no means restrictive but was chosen as it is the most popular in these circumstances.
The KL regression was examined by Murteira and Ramalho (2016)4, where the matrix of the regression coefficients

4Murteira and Ramalho (2016) termed it multinomial logit regression.
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B is estimated via minimization of the KL divergence. Tsagris (2015a) proposed the use of the JS regression as a
better alternative to the log-ratio regressions proposed by Aitchison (2003). JS regression springs from minimizing
the JS metric between the observed and the fitted compositions with respect to the regression coefficients. The other
three competing models are the Hellinger (HG) regression, χ2 (CS) regression and the Total Variation (TV) regression,
where each of them estimates the matrix of the regression coefficients B via minimization of the HG, the χ2 and the
TV distance, respectively.

• KL regression: minB

∑n
i=1 yTi log yi

hi(B;x) .

• JS regression: minB

∑D
i=1

(
yTi log 2yi

yi+hi(B;x) + hi (B; x)
T

log 2hi(B;x)
yi+hi(B;x)

)
.

• HG regression: minB

∑n
i=1 jTD

(√
yi −

√
hi (B; x)

)2

.

• CS regression: minB

∑n
i=1 jTD

(yi−hi(B;x))2

hi(B;x) .

• TV regression: minB

∑n
i=1 jTD |yi − hi (B; x)|.

The n denotes the sample size of the observations and jD = (1, ... . . . , 1)T is the D-dimensional vector of 1s.

2.3. Dirichlet regression with and without zero values

Dirichlet distribution is a natural parametric model for compositional data, since its support is the simplex whose
probability density function is

f (y) =
Γ (φ)∏D

s=1 Γ (φµs)

D∏
s=1

yφµs−1
s , (3)

where φ > 0 is the concentration parameter and 0 < µs < 1 denotes the mean vector of the distribution satisfying∑D
s=1 µs = 1. This parametrization allows to link µs to some covariates using the link function in Eq. (2). DR was

extensively examined by Gueorguieva et al. (2008), where the Dirichlet distributed adjusted for covariates yields the
following log-likelihood to be maximized with respect to B and φ

` (y; B, φ) = n log Γ (φ)−
n∑
i=1

D∑
s=1

log Γ (φfsi (B; x)) +

n∑
i=1

D∑
s=1

(φfsi (B; x)− 1) log ysi. (4)

To tackle the problem of zero values, Tsagris and Stewart (2018) proposed the ZADR model. There are g populations
(or groups) corresponding to each observed subset of non-zero components of the compositional vector Y. Let G
denote the vector indexing the non-zero components of Y. Further let θb = P [G = gb] (the marginal probability
that an observation comes from population b) where gb is the vector with 1s and 0s corresponding to population b and∑B
b=1 θb = 1. In general, the density of Y with non-zero components corresponding to population b∗ is then

fY (y) =

B∑
b=1

fY,G (y,gb) = fY,G (y,gb∗) (5)

where gb∗ is the vector of indices corresponding to the nonzero components of y. Note that for b 6= b∗, fY,G(y,gb) =
0. Now let yb∗ of length Db∗ denote the vector containing the non-zero components of y and hb∗(yb∗) the density of
Yb∗ . Eq. (5) can be written as

fY(y) = fY,G(y,gb∗) = fY|G(y|gb∗)θb∗ = fb∗(yb∗)θb∗ (6)

While in Stewart and Field (2011) hb∗(yb∗) was chosen to be the multiplicative logistic normal distribution, Tsagris
and Stewart (2018) considered the Dirichlet distribution (3). Let Sb denote the set of observations with zeros indexed
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by gb. Each set therefore contains nb observations having zeros in the same components. The Dirichlet log-likelihood
function in (4) when adjusted to accommodate zero values becomes

` (y; B, φ) =n1log(θ1) + n1 log Γ (φ)−
∑

{i:yi∈ S1}

D1∑
s=1

log Γ (φh1si (B; x))

+
∑

{i:yi∈S1}

D1∑
s=1

(φa∗1si − 1) log y1si + . . .

+ n0log(θ0) + n0 log Γ (φ)−
∑

{i:yi∈S0}

D0∑
s=1

log Γ (φh0si (B; x))

+
∑

{i:yi∈S0}

D0∑
s=1

(φh0si (B; x)− 1) log y0si

(7)

where for b = 1, . . . , B,Db denotes the number of non-zero components in population b,
∑B
b=1 nb = n,

∑B
b=1 θb = 1,

D1 and D0 denote the number of components without zero values and S1 and S0 their associated sample spaces.

2.4. Comments on these regression models

The f -divergence regression models require the correct form of a covariance matrix (Murteira and Ramalho, 2016)
which unfortunately is not available in closed form and for this reason non-parametric bootstrap must be employed.
Further, the asymptotic properties of their regression coefficients with compositional responses have not been stud-
ied. On the contrary, parametric regression models have the benefit of the log-likelihood which implies asymptotic
normality of the estimated parameters. However, under model miss-specification, this property holds true only if the
distribution is a member of the exponential family (Gourieroux et al., 1984) and hence the Dirichlet class of distri-
butions does not meet this property. These theoretical properties will be examined via both Monte Carlo simulation
studies and real data analysis attempting to shed more light on the empirical behavior of the models with respect to
their regression coefficients and predictive performance. Finally, the empirical evaluations will provide guidance as to
the suitability of each regression model under realistic conditions.

3. Comparison of the regression models

The empirical comparison of the regression models will be based on both simulation studies and real data analysis,
covering multiple directions. Those experiments will explore the behavior of the regression models under different
circumstances and subsequently will narrow down the available choices. All computations took place using the R
package Compositional (Tsagris et al., 2022).

3.1. Simulation studies

Simulation studies were conducted to illustrate the performance of the f -divergence regression models with the axis
of comparison being the bias of the estimated coefficients. Two cases were considered, with and without outliers,
irrespective of zero values being present or not. The hard cases will prove more beneficiary as they will provide
evidence as to which regression model should be used under more difficult circumstances. The simulation studies will
further depict the performance of the (parametric) DR and ZADR models.
For a range of sample sizes n = (100, 300, 500, 1000, 2000, 3000, 5000), the design matrix X, composed of 1 or 3
predictor variables, was generated from a normal distribution with the response compositional data (Y) consisting of
D = 4, 7 or 10 components. At first, Euclidean data were generated as

µi =
(
ex

T
1 βββ1+e1 , . . . , ex

TβββD+eD
)
, (8)

where i = 1, . . . , n, ej ∼ N(0, 1), j = 2, . . . , D. The matrix of regression coefficients B =
(
βββT2 , . . . ,βββ

T
D

)
was

generated from a normal distribution, with the constant terms being generated from N(−2, 1) and the slopes from
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N(2, 1). The data were then mapped onto the simplex using the inverse of the additive log-ratio transformation

y =

(
1

1 +
∑D
j=2 µj

,
µ2

1 +
∑D
j=2 µj

, . . . ,
µD

1 +
∑D
j=2 µj

)T
.

The bias measured as the difference between the true (B) and the estimated (B̃) regression coefficients from either
regression model was computed via the Frobenius norm

∥∥∥B̃−B
∥∥∥
F

averaged over 500 repetitions. The data were
intentionally not generated from a Dirichlet distribution since DR is tested and because a question of interest is to
examine the behavior of the DR under model miss-specification.
The aforementioned scenario was repeated by adding zeros, completely at random, to the data. A random sample of
25% of the observations was selected and for each compositional vector, 40% of the components were set to zero. For
example, when D = 4, 1 component was set to zero, when D = 7 there were 2 components and when D = 10, 3
components were set to zero. Those vectors were again normalized to sum to 1.

3.1.1. The case of no outliers

The results of the estimated bias with 1 and 3 predictor variables are presented in Tables 2 and 3 respectively. Table
2 contains the results with 1 predictor variable. When D = 4 components, JS regression produces the most accurate
regression coefficients, regardless of zero values being present or not. KL and TV regression models are the second
best options, whereas HG and DR, ZADR perform the worst and CS regression is somewhere in the middle. With
D = 7 components the results are nearly similar. The exception is that in the presence of zero values, the CS does
surprisingly well with large sample sizes. JS and TV perform satisfactorily well, relative to their competitors. Finally,
with D = 10 components, the conclusions have changed and the DR and ZADR are the most accurate models. When
no zero values are present, DR estimates coefficients with the lowest bias, while with zero values present CS regression
is preferred with ZADR being second best, and JS ranking third best. The overall picture is not clear as there is no
unanimously best regression for either case of zero values being present or not.
Moving on to Table 3 which contains the results with 3 predictor variables, the conclusions change. The HG regression
model still remains the least accurate, but the DR and ZADR models now perform poorly in comparison to their
competitors. With no values present, JS, KL and TV regression models are to be preferred, regardless of the number
of components with their performance varying according to the sample size and the number of components. With zero
values present though, the optimal regression models seem to be TV and JS, with the latter performing substantially
better with increasing sample sizes. The KL regression is the third best option, with ZADR and CS performing three
times poorer than KL regression.
Summing up, there are two distinct directions. With no zero values, the choice between KL, JS or TV regression is
not clear enough. With zero values present though, TV regression has evidently outperformed KL and JS, in almost
all cases.

3.1.2. The case of outliers

Robustness properties of f -divergence estimators have been studied but mainly in the univariate space and not in the
multivariate space as is the focus of the current paper. For instance, Jiménz and Shao (2001) showed that no minimum
divergence estimator is better than the minimum Hellinger distance estimator, in terms of both second-order efficiency
and robustness. However, it has already been observed that the HG regression model produced the worst coefficients
in terms of bias. Hence, in order to empirically assess the effect of the outliers on the bias of the regression models,
the second simulation study scenario involves outliers.
Euclidean data were generated using Eq. (8), their norm is computed and a fraction equal to 5% of those with the
highest norm is selected and their values are tripled. This way those observations become very influential and deviate
from the rest of the data. Further, zero values are very likely to occur thus making the estimation even harder. In
order to further increase the difficulty, this scenario was implemented with 3 predictor variables only. The case of 1
predictor variable seemed rather easy and was excluded. Since the DR/ZADR models and the HG regression were
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Table 2: Relative bias
(∥∥∥B̃−B

∥∥∥
F

)
of the regression coefficients for each regression model with 1 predictor

variable. Values greater than 1 indicate higher bias than the KL regression model, whereas values less than 1
indicate lower bias.

No zero values present Zero values present
D = 4 components

Sample size KL JS HG CS TV DR KL JS HG CS TV ZADR
n=100 1.000 0.811 6.297 1.310 1.143 1.614 1.000 0.690 4.107 1.311 1.079 2.170
n=300 1.000 0.694 6.597 1.418 0.953 1.334 1.000 0.589 6.015 1.955 1.129 3.632
n=500 1.000 0.681 6.613 1.415 0.933 1.489 1.000 0.567 7.126 2.485 1.244 4.419
n=1000 1.000 0.659 6.654 1.426 0.885 1.050 1.000 0.521 8.503 2.949 1.322 5.254
n=2000 1.000 0.654 6.612 1.427 0.864 1.152 1.000 0.407 9.716 3.576 1.434 6.089
n=3000 1.000 0.653 6.704 1.428 0.869 1.301 1.000 0.397 10.387 3.830 1.550 6.466
n=5000 1.000 0.655 6.626 1.427 0.865 1.208 1.000 0.302 10.520 3.929 1.611 6.612

D = 7 components

Sample size KL JS HG CS TV DR KL JS HG CS TV ZADR
n=100 1.000 0.634 3.451 1.595 0.785 1.036 1.000 0.675 5.268 1.316 0.972 0.917
n=300 1.000 0.602 3.303 1.635 0.705 1.109 1.000 0.760 4.917 1.195 1.182 1.254
n=500 1.000 0.600 3.287 1.638 0.710 1.097 1.000 0.768 5.158 1.065 1.174 1.348
n=1000 1.000 0.594 3.269 1.646 0.710 1.106 1.000 0.828 5.708 0.865 1.299 1.547
n=2000 1.000 0.593 3.256 1.648 0.703 1.102 1.000 0.818 5.527 0.701 1.253 1.484
n=3000 1.000 0.595 3.252 1.645 0.707 1.103 1.000 0.817 5.509 0.619 1.257 1.497
n=5000 1.000 0.595 3.249 1.643 0.705 1.103 1.000 0.822 5.549 0.525 1.261 1.461

D = 10 components

Sample size KL JS HG CS TV DR KL JS HG CS TV ZADR
n=100 1.000 0.601 1.920 1.650 0.685 0.288 1.000 0.607 12.220 1.387 0.866 0.387
n=300 1.000 0.574 1.787 1.720 0.664 0.305 1.000 0.692 2.677 1.351 1.048 0.562
n=500 1.000 0.573 1.746 1.726 0.652 0.298 1.000 0.749 2.869 1.206 1.124 0.601
n=1000 1.000 0.571 1.745 1.730 0.653 0.306 1.000 0.805 2.142 1.012 1.239 0.695
n=.2000 1.000 0.571 1.736 1.737 0.651 0.306 1.000 0.801 2.152 0.803 1.222 0.688
n=3000 1.000 0.569 1.752 1.740 0.646 0.308 1.000 0.800 2.134 0.683 1.221 0.699
n=5000 1.000 0.568 1.735 1.742 0.646 0.307 1.000 0.804 2.145 0.616 1.219 0.695

shown to be highly biased in comparison to the other regression models, it was decided to exclude them from the
outliers investigation scenario.
Table 4 contains the results of the estimated coefficient bias for each of the 4 f -divergence regression models, namely
KL, JS, CS and TV regression. Regardless of the number of components the CS regression model produced the most
biased regression coefficients. On the antipode, KL and JS regression models were the most robust with KL being
the most robust. The TV regression produced coefficients whose bias is twice and thrice the bias of the JS and of the
KL regression models respectively. Evidently, the KL regression model has outperformed the other 3 f -divergence
regression models, namely, JS, CS and TV.

3.2. Empirical comparison

Table 5 contains information on 13 real datasets, most of which do not contain zero values. The datasets with zero
values present may contain either a small or a very large portion of compositional vectors with at least one zero
element. Both the sample size and number of components vary greatly, but the number of covariates is either 1, 2 or
8.

3.2.1. Estimated bias

The first axis of comparison is the estimated bias of regression coefficient when applied to those 13 real datasets.
The models were be fitted to the datasets and their coefficients were extracted and were treated as the true ones. The
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Table 3: Bias
(∥∥∥B̃−B

∥∥∥
F

)
of the regression coefficients for each regression model with 3 predictor variables.

Values greater than 1 indicate higher bias than the KL regression model, whereas values less than 1 indicate
lower bias.

No zero values present Zero values present
D = 4 components

Sample size KL JS HG CS TV DR KL JS HG CS TV ZADR
n=100 1.000 0.996 18.765 1.482 1.744 8.382 1.000 0.608 3.351 1.769 0.779 1.903
n=300 1.000 0.758 22.854 2.083 1.233 11.748 1.000 0.270 2.305 2.049 0.222 1.635
n=500 1.000 0.646 22.645 2.179 0.984 11.887 1.000 0.281 1.868 2.021 0.183 1.534
n=1000 1.000 0.522 25.279 2.402 0.951 13.466 1.000 0.278 2.047 2.121 0.112 1.470
n=2000 1.000 0.431 25.034 2.414 0.815 13.414 1.000 0.331 2.141 2.253 0.075 1.693
n=3000 1.000 0.393 24.788 2.417 0.751 13.340 1.000 0.294 2.269 2.226 0.114 1.662
n=5000 1.000 0.375 24.542 2.398 0.706 13.254 1.000 0.291 2.287 2.297 0.078 1.652

D = 7 components

Sample size KL JS HG CS TV DR KL JS HG CS TV ZADR
n=100 1.000 1.099 24.590 1.138 1.549 3.966 1.000 0.670 4.186 1.493 0.573 0.881
n=300 1.000 1.068 36.785 1.372 1.536 4.937 1.000 0.451 3.481 1.895 0.374 1.168
n=500 1.000 1.042 44.174 1.509 1.492 4.075 1.000 0.492 3.590 2.073 0.341 1.063
n=1000 1.000 1.022 65.585 1.905 1.477 4.695 1.000 0.411 3.180 2.150 0.178 0.915
n=2000 1.000 1.082 89.163 2.236 1.714 4.688 1.000 0.407 4.053 2.229 0.206 1.137
n=3000 1.000 0.995 102.149 2.685 1.674 4.471 1.000 0.366 3.339 2.520 0.173 0.956
n=5000 1.000 1.042 138.104 3.538 1.989 4.852 1.000 0.377 3.991 2.423 0.127 1.210

D = 10 components

Sample size KL JS HG CS TV DR KL JS HG CS TV ZADR
n=100 1.000 0.942 20.434 1.097 1.456 0.964 1.000 0.362 6.354 1.661 0.729 0.389
n=300 1.000 0.818 21.979 1.224 1.227 1.019 1.000 0.321 5.625 2.246 0.469 0.453
n=500 1.000 0.769 21.588 1.269 1.161 0.949 1.000 0.316 7.055 2.323 0.390 0.231
n=1000 1.000 0.742 22.413 1.296 1.143 1.165 1.000 0.249 4.515 2.934 0.183 0.768
n=2000 1.000 0.732 22.267 1.302 1.149 1.200 1.000 0.267 4.275 2.832 0.106 0.753
n=3000 1.000 0.730 22.099 1.313 1.132 1.063 1.000 0.220 5.087 2.867 0.163 0.500
n=5000 1.000 0.723 21.996 1.322 1.124 1.185 1.000 0.236 4.794 3.009 0.134 0.501

coefficients were then estimated again using non-parametric bootstrap and the Frobenius norm of their difference
served as an estimate of their bias.
Table 6 contains the results that clearly show that HG regression produced highly biased estimates in comparison to
its competitors, in some cases, regardless of zero values being present or not. When no zero values are present, the DR
performed equally well to the the f -divergence regression models. For data with zero values though, ZADR produced
really biased coefficients in 3 datasets, showing signs of failure. However, in 2 datasets, the reported bias of ZADR
was the lowest. Further, it is worthy to remark that TV regression exhibited really high bias in 1 dataset.

3.2.2. Predictive performance

The previous axis of comparison can be characterised as a purely statistical one, while the predictive performance is
closer to the machine learning field where it is considered of higher importance than the model’s statistical inference.
The 10-fold cross-validation (CV) procedure was implemented in order to estimate the predictive performance of the
regression models. The 10-fold CV pipeline splits the dataset into 10 mutually exclusive folds or sets at random. One
fold is left aside playing the role of the test fold, while the other 9 are collected in what is termed the training fold. The
regression model is applied to the training fold and using the values of the covariates of the test fold the regression
models predict the compositional response values of the test fold. The KL and JS divergences evaluate the regression
model’s predictive performance. This process is repeated 10 times so that all folds have played the role of the test set.
However, to avoid optimistic results due to random chance, the aforementioned 10-fold CV process was repeated 10
times with different folds (splits) each time and the models’ predictive performance was calculated from aggregation
over the 10 folds across all repetitions.
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Table 4: Bias
(∥∥∥B̃−B

∥∥∥
F

)
of the regression coefficients for each regression model with 3 predictor variables,

when outliers are present. Values greater than 1 indicate higher bias than the KL regression model, whereas
values less than 1 indicate lower bias.

D = 4 components D = 7 components D = 10 components

KL JS CS TV KL JS CS TV KL JS CS TV

n=100 1.000 1.170 13.943 1.774 1.000 1.250 12.135 1.822 1.000 1.227 20.045 1.955
n=300 1.000 1.200 21.500 1.800 1.000 1.414 15.600 2.079 1.000 1.243 31.765 2.044
n=500 1.000 1.185 23.444 1.778 1.000 1.564 18.479 2.376 1.000 1.265 35.120 2.171
n=1000 1.000 1.273 28.227 1.909 1.000 1.814 22.031 2.876 1.000 1.286 43.242 2.440
n=2000 1.000 1.368 32.526 2.105 1.000 1.906 24.576 3.059 1.000 1.436 50.090 2.782
n=3000 1.000 1.421 32.632 2.158 1.000 1.898 23.818 3.011 1.000 1.544 57.279 3.176
n=5000 1.000 1.444 34.167 2.278 1.000 1.976 25.169 3.145 1.000 1.594 60.594 3.234

Table 5: Information on the datasets
Dataset Dimensions Proportion (%) of vectors Number of Reference

(n×D) with at least one zero value predictors

Bayesite 21× 4 0.00 2 Aitchison (2003)
Box 25× 5 0.00 1 Aitchison (2003)
Cars 144× 5 0.00 8 Graf (2020b)
Cox 25× 5 0.00 2 Aitchison (2003)
Firework 81× 5 0.00 2 Aitchison (2003)
GDP 27× 12 0.00 1 Eurostat
Lake 39× 3 0.00 1 Aitchison (2003)
Fish 75× 26 0.00 1 Greenacre (2018)
Data 89× 9 89.90 1 Rozenas (2015)
Elections 67× 10 34.32 8 Smith (2002)
Foraminifers 30× 4 16.67 1 Aitchison (2003)
Gemas 2083× 22 0.04 2 Templ et al. (2011)
Glacial 92× 3 13.04 2 van den Boogaart et al. (2018)

Table 7 presents the KL and JS divergences of each regression model applied to each dataset. HG regression produced
highly biased regression coefficients whose effect is reflected in the model’s predictive performance. Its predictive
performance was the worst observed and in some cases, it was multiple times higher. With the Box, Cars, Cox and
Gemas datasets, for instance, the HG proved very weak in providing accurate predictions based on the KL divergence.
When the predictive performance is measured via the JS divergence, the conclusions were similar, only this time the
differences were less magnified. This behavior of the models’ predictive performance is independent of zero values
being present or not.

3.2.3. Computational cost

The computational cost is the third axis of comparison among the 6 candidate regression models. The results are
presented in Table 8. With no zero values present, the KL regression was the faster overall, with DR coming last.
On datasets with zero values present and with larger sample sizes and number of components the computational cost
increased dramatically. Especially for the ZADR model which required minutes to fit in these 5 datasets. KL evidently
outperformed all of its competitors. HG regression required a reasonable amount of time, but at the cost of high bias
as already discussed.

The computational cost assists in making decisions as to which regression model to use and for what purpose. When
the interest lies in obtaining accurate regression coefficients, the computational cost is not that important and the
answer relies upon the results presented in Tables 2 and 3. In that instance, the safest choices are the KL, JS and
TV regression models. If, on the contrary, the interest lies in accurate predictions the computational cost contributes
significantly to the choice of the regression model. As depicted in Table 7, all regression models except for HG
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Table 6: Bootstrap based estimated bias.
Regression model

Dataset KL JS HG CS TV DR
Bayesite 1.000 1.040 2.278 0.940 1.013 0.982
Box 1.000 1.000 2.000 1.000 1.267 0.967
Cars 1.000 1.000 1.000 1.000 1.000 1.011
Cox 1.000 1.000 1.969 1.000 1.021 1.010
Firework 1.000 1.089 2.285 0.905 1.386 0.892
GDP 1.000 0.992 2.210 1.039 1.069 0.946
Lake 1.000 1.085 2.463 0.902 1.183 1.000
Fish 1.000 1.000 1.817 1.000 1.000 0.986
Dataset KL JS HG CS TV ZADR
Data 1.000 0.671 12.630 0.671 14.616 0.808
Elections 1.000 0.999 1.050 0.998 1.000 0.976
Foraminimers 1.000 0.929 4.089 1.089 1.455 0.571
Gemas 1.000 1.053 1.003 1.057 1.003 1.087
Glacial 1.000 1.158 15.342 0.842 1.105 1.055

Table 7: Predictive performance measured by Kullback-Leibler and Jensen-Shannon divergences. Values
greater than 1 indicate worst performance than the KL regression model, whereas values less than 1 indicate
better performance.

Kullback-Leibler divergence Jensen-Shannon divergence

Regression model

Dataset KL JS HG CS TV D KL JS HG CS TV D
Bayesite 1.000 1.006 1.392 0.994 1.006 0.994 1.000 1.010 1.709 0.981 1.019 0.990
Box 1.000 1.016 3.143 1.016 1.000 1.016 1.000 1.000 6.333 1.000 1.000 1.000
Cars 1.000 1.000 7.739 1.000 1.043 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Cox 1.000 1.000 12.500 1.000 1.111 1.000 1.000 1.000 8.000 1.000 1.000 1.000
Firework 1.000 1.010 1.087 0.995 1.026 1.031 1.000 1.000 1.160 1.011 1.043 0.995
GDP 1.000 1.000 3.588 1.000 1.000 1.000 1.000 0.938 6.312 1.000 1.000 0.938
Lake 1.000 1.030 1.881 0.978 0.970 1.037 1.000 1.000 1.978 1.022 1.011 1.011
Fish 1.000 1.000 15.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Dataset KL JS HG CS TV ZADR KL JS HG CS TV ZADR
Data 1.000 0.961 2.701 0.948 3.753 1.000 1.000 0.884 3.581 0.907 1.279 0.930
Elections 1.000 1.000 2.462 1.000 1.000 3.204 1.000 1.000 4.571 1.000 1.000 1.957
Foraminimers 1.000 1.012 2.406 1.056 1.056 0.981 1.000 0.985 2.149 1.179 0.993 0.985
Gemas 1.000 1.083 4.015 1.000 1.125 1.208 1.000 0.952 5.619 1.286 1.000 1.476
Glacial 1.000 1.006 3.579 1.003 1.088 1.118 1.000 1.007 1.287 1.009 1.178 1.206

produce predictions of nearly similar accuracy. Further, the computational cost plays an important role in selecting the
regression model. KL regression is the apparent winner as it requires fractions of a second to fit to all 13 datasets.

4. Penalized KL regression

The 21st century signified the explosion of data, especially of big data. One such example is the case of regression
with numerous possible predictor variables for which a variable selection must occur prior to fitting the regression
model. The most famous variable selection algorithms rely on constrained optimization or penalization.
Ridge regression (Hoerl and Kennard, 1970) is the first penalized regression that poses a restriction on the square form
of the coefficients. Ridge regression in some consists of minimizing the following function

min
ΘΘΘ

D (y;ΘΘΘ) +
λ

2
‖B‖2F , (9)

where Θ = (B, φ) denotes the parameter space in general, so as to account for both f -divergence regression models
and for DR/ZADR models. The functionD (y;ΘΘΘ) can be any of the aforementioned divergences or the negative of the
log-likelihood of any parametric model (not just of DR or ZADR). The λ is the Lagrangian parameter measuring the
weight of the constraint and ‖B‖F denotes the Frobenius norm of the matrix of regression coefficients B. The choice
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Table 8: Duration (in seconds) of the regression models.
Regression model

Dataset KL JS HG CS TV D
Bayesite 0.00 0.04 0.04 0.03 0.03 0.05
Box 0.00 0.02 0.02 0.01 0.03 0.03
Cars 0.00 0.17 0.97 0.24 0.19 4.73
Cox 0.00 0.01 0.04 0.06 0.08 0.09
Firework 0.00 0.08 0.06 0.06 0.11 0.18
GDP 0.00 0.19 0.34 0.14 0.17 0.37
Lake 0.00 0.01 0.01 0.01 0.01 0.02
Fish 0.04 0.39 3.39 1.86 0.74 6.01
Total 0.05 0.91 4.87 2.41 1.38 11.47

KL JS HG CS TV ZADR
Data 0.00 0.18 0.21 0.08 0.19 0.45
Elections 0.01 4.63 3.14 3.08 2.35 55.07
Foraminifers 0.00 0.01 0.02 0.01 0.02 0.03
Gemas 0.44 188.40 2.01 92.78 93.10 781.03
Glacial 0.00 0.04 0.02 0.02 0.02 0.11
Total 0.46 193.26 5.39 95.97 95.68 836.69

of λ is data dependent and is ordinarily made via cross-validation.
Least Absolute Selection and Shrinkage Operator (LASSO) on the other hand imposes the absolute norm constraint
on the regression coefficients, that is, minimization of the following function

min
ΘΘΘ

D (y;ΘΘΘ) + λ

D∑
s=2

‖βββs‖1 , (10)

where ‖βββs‖1 is the L1 norm of the vector βββs. Elastic net is a weighted combination of ridge (9) and LASSO (10)

min
ΘΘΘ

D (y;ΘΘΘ) + λ

(
1− α

2
‖B‖2F + α

D∑
s=2

‖βββs‖1

)
, (11)

where α ∈ [0, 1]. Evidently, when α = 0 one ends up with ridge regression, while when α = 1 LASSO emerges.
It is well known that LASSO is likelihood or distance-based dependent, meaning that LASSO solution is not generic
and applicable to all models. For instance, LASSO implementation of ZADR differs from LASSO implementation of
DR. The same is true for all f -divergence regression models. The R package glmnet (Friedman et al., 2010) implements
LASSO multinomial logistic regression which is in fact a penalized minimization of the KL divergence. This enables
its use in the compositional data regression setting and thus the resulting regression shall be termed LASSO-KL
regression. KL regression is the only model, among those examined in this paper, that can be implemented with all
three types of penalization, LASSO, ridge, and elastic net. Further, it is highly computationally efficient, rendering it
currently the only available choice for penalized f -divergence regression.
The main difference however is that glmnet adopts a different link function. The link function in Eq. (2) is the inverse
of the additive log-ratio transformation (Aitchison, 1982, Aitchison, 2003), whereas glmnet utilises the inverse of the
centred log-ratio transformation and does not include the constant term.

hs (B; x) =
ex

Tβββs∑D
k=1 e

xTβββk
for s = 1, ..., D. (12)

The implications of (12) are straightforward. For compositional data with D components and p predictor variables,
the f -divergence (and the parametric) regression models using (2) would estimate (D − 1) × (p + 1) regression
coefficients. Their interpretation is the expected log change of each component relative to the first component. On the
contrary, LASSO-KL regression, uses (12) and estimates D × (p+ 1) regression coefficients, whose interpretation is
the logarithmic change of each component relative to the mean. This implies that the penalisation takes place over
all D sets of regression coefficients, i.e. s = 1, . . . , D and not s = 2, . . . , D as in Eqs. (9)-(11). The L1 norm
constraint takes care of the redundancies (Friedman et al., 2010). Unfortunately, penalized f -divergence regression
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models specifically for compositional data have not been explored and hence their theoretical properties are not known.

The computational cost revealed that in order to apply ridge, LASSO or elastic net, a computationally efficient re-
gression model, regardless of zero values being present or not, must be employed. Evidently, DR and ZADR models
and most f -divergence regression models can be computationally prohibitive, especially with large sample sizes. KL
regression model is to be preferred as it is computationally efficient and its predictive performance was shown to be
similar to that of JS, CS and TV regression. But, glmnet’s implementation allows only for LASSO-KL regression and
this is why KL regression is selected for further evaluation and assessment.

An empirical evaluation will take place illustrating the performance of LASSO-KL regression. The most suitable
datasets, those with more that two predictor variables, are Cars and Elections. The first dataset is zero value free,
while the second contains a high proportion of zero values.

4.1. Cars dataset

The Cars dataset comprises of segment shares of 144 car sales in 5 categories according to the size of the car chassis,
with 8 predictor variables. The dataset is publicly available via the R package SGB (Graf, 2020b).

Figure 1 illustrates the performance of LASSO-KL regression. In (a) the trace plot appears. That is, the Euclidean
norm of each set of coefficients is plotted versus the logarithm of the λ values. Each coloured line corresponds to the
Euclidean norm of the coefficients of each predictor variable. In (b) performance of the cross-validated LASSO-KL
regression is depicted. The estimated KL divergence (with error bars) for is plotted for various values of λ. The
minimum KL divergence (0.006113) is achieved when λ = 2.99 × 10−6 and is denoted with the left dotted vertical
line. However, according to Hastie et al. (2009) the “one-standard-error” rule should be used with cross-validation.
The value of λ corresponding to the most parsimonious model whose error is no more than one standard error above
the error of the best model should be chosen. Based on this rule the value λ = 1.236×10−4 (highlighted with the right
dotted line) is chosen and its corresponding KL divergence is equal to 0.006370. LASSO with λ = 0 is equivalent to
the KL regression, that is no penalisation is applied. By examining Figure 1(b) is can be observed that a value of λ
greater than zero does offers a significant improvement in the KL regression’s predictive performance as the the KL
divergence when λ = 0 is equal to 0.023340 which is 3.664 times the KL divergence when λ > 0.

(a) (b)
Figure 1: Cars dataset: (a) LASSO coefficients plot and (b) Cross-validated deviance as a function of log (λ).
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4.2. Elections dataset

The Elections dataset contains the results of the 2000 U.S. presidential election in the 67 counties of Florida. The
number of votes each of the 10 candidates received and were normalized to compositional and there are 8 predictor
variables that can be linked to these compositional data. In 23 out of those 67 counties some candidates received no
vote and hence zero values appear.
Figure 2 presents the results of LASSO-KL regression applied to this dataset. Figure 2(a) shows the trace plot of
the set of coefficients of each predictor variable while and the results of the 10-fold cross-validation are presented
in Figure 2(b). The chosen value of λ following the ”one-standard-error” rule is 0.009006 with a KL divergence
equal to 0.02717. This time the error bars are wider showing greater variability in LASSO-KL regression’s predictive
performance. KL regression (LASSO-KL regression with λ = 0) on the other hand produces a KL divergence equal
to 0.02534, which is 0.933 the KL divergence estimated by LASSO-KL regression and this is evident in Figure 2(b).
This motivated the use of the elastic net as a means of improving the performance of LASSO-KL regression. 11
equidistant values of α, from 0 up to 1 were used and for each value of α cross-validation of LASSO-KL regression was
implemented. Figure 2(c) visualises the results, where the ”one-standard-error” rule was again followed. Evidently,
the minimum KL divergence was observed when α = 0, which corresponds to ridge regression. In that instance the
KL divergence was equal to 0.02733, which is again higher than the KL divergence of the simple KL regression.
This example showed that neither LASSO-KL regression, ridge or elastic net yielded better performance than simple
KL regression. This conveys the message that some times simpler regression models perform better than more complex
or more advanced regression models.

5. Conclusions

The perk of the divergence regression models is their ability to treat compositional data with zero values present,
unlike parametric regression models for which adaptation is required, as in the case of the DR The downside of the
first family of regression models though is the lack of straightforward statistical inference as they are likelihood-free.
Secondly, they have not attracted research interest, especially in the field of compositional data. Parametric models
enjoy nice theoretical properties as they are likelihood based, but the case of DR proved weak in the simulation studies.
Since divergence regression models have not been widely studied in the context of compositional data we realized
the need to perform a large scale comparison between them and a parametric competitor which is able to account for
zero values. Based on simulation studies we concluded that the Hellinger divergence regression model should not be
used as it produces highly unbiased regression estimates, regardless of zero values present in the data, and has low
predictive performance. DR and ZADR models were also shown to produce biased estimates. With outliers present,
KL and JS regression models seem to be the optimal models and they exhibited a comparable performance. This helps
limit the choice of which regression model to use and when, to these two models. If the goal is to build a fast predictive
model, then KL regression is apparently preferable to the JS regression model.
Based on the real data, DR performed satisfactorily, whereas ZADR failed in most cases. The performance of the
f -divergence regression models was similar to that observed in the simulation studies. When it came to predictive
performance, the results were similar, as HG had the smallest accuracy, while the other regression models produced
similar predictions. Among them, the KL regression is to be selected as it can build a regression model in fractions of
a second. Further, its penalized version, that it also extremely fast, renders the KL regression a highly attractive model
for practical purposes.

References

1. Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society.
Series B, 44(2):139–177.

2. Aitchison, J. (2003). The statistical analysis of compositional data. New Jersey: Reprinted by The Blackburn
Press.

3. Barndorff-Nielsen, O. E. and Jørgensen, B. (1991). Some parametric models on the simplex. Journal of
Multivariate Analysis, 39(1):106–116.

4. Csiszár, I. (1967). Information-type measures of difference of probability distributions and indirect observa-
tion. studia scientiarum Mathematicarum Hungarica, 2:229–318.

f -divergence and parametric regression models for compositional data 879



Pak.j.stat.oper.res. Vol.18 No.4 2022 pp 867-882 DOI: http://dx.doi.org/10.18187/pjsor.v18i4.3969

(a) (b)

(c)
Figure 2: Elections dataset: (a) LASSO coefficients plot and (b) Cross-validated deviance as a function of log (λ).

5. Csiszár, I. (1974). Information measures: A critical survey. In Transactions of the Seventh Prague Conference
on Information Theory, Statistical Decision Functions, Random Processes, pages 73–86.

6. Egozcue, J., Pawlowsky-Glahn, V., Mateu-Figueras, G., and Barceló-Vidal, C. (2003). Isometric logratio
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