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Abstract 

In this article, a class of Poisson-regression based estimators has been proposed for estimating the finite 

population mean in simple random sampling without replacement (SRSWOR). The Poisson-regression model is 

the most common method used to model count responses in many studies. The expression for bias and mean 

square error (MSE) of proposed class of estimators are obtained up to first order of approximation. The proposed 

estimators have been compared theoretically with the existing estimators, and the condition under which the 

proposed class of estimators perform better than existing estimators have been obtained. Two real data sets are 

considered to assess the performance of the proposed estimators. Numerical findings confirms that the proposed 

estimators dominate over the existing estimators such as Koc (2021) and Usman et al. (2021) in terms of mean 

squared error. 
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1. Introduction 

Ratio type estimators take advantage of the correlation between the auxiliary variable 𝑔 and the study variable y. 

When data on the auxiliary variable is available, the ratio estimator is a good choice for estimating the population 

mean. In sampling theory, population information of the auxiliary variable, such as coefficient of variation or 

kurtosis, is frequently employed to improve the efficiency of the estimation for a population mean for the ratio 
estimator. However, the outlier problem, which occurs when data has extreme values, reduces efficiency because 

traditional estimators are sensitive to extreme values. In order to handle this problem, Kadilar, Candan, and Cingi 

(2007) adapted Huber-M estimate related to ratio estimator presented in Kadilar and Cingi (2004). They obtained the 

MSE equations in order to decrease the effect of outlier problem. Oral and Kadilar (2011a, 2011b) considered 
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maximum likelihood approach and they modified maximum likelihood estimators into Kadilar–Cingi estimators. 

Zaman and Bulut (2019) introduced new robust ratio estimators based on the estimators given in Kadilar, Candan, 

and Cingi (2007). Zaman (2019) provided some combining robust estimators for the population mean using the ratio 

estimators presented in Zaman and Bulut (2019). Ali et al. (2021) developed a class of robust-regression type 

estimators, by utilizing Zaman and Bulut (2019), in case of sensitive research under simple random sampling 
scheme. Zaman and Bulut (2020) suggested new regression-type estimators by using robust regression estimates and 

robust covariance matrices in the stratified random sampling. 

Furthermore, it is problematic of using a linear regression model when the mean is large enough for the count data, 

this is the situation when Poisson distribution converges to normal distribution. The regression model is the most 

widely used method for modelling. The linear model links the estimated value with supplementary variables, 

negative prediction values are possible. The validity of hypothesis testing in linear regression is also dependent on 

the supposition of variables constant variance. These suppositions are erroneous for count data. As a result, in the 

applied sciences, modelling count data, the used technique is the Poisson regression. Koc (2021) and Usman et al. 

(2021) used the Poisson regression method for improving the population mean of the study variable. In this article, 

we attempted to propose estimators for estimating the population mean of the study variable Y using information on 

the auxiliary variable G using Poisson regression model. The mathematical properties of proposed estimators, such 

as bias and mean square error were examined using large sample approximation. The proposed estimators have been 
shown to outperform all other estimators tested in the literature. Numerical illustrations have also been done in 

support of current investigation. 

In Poisson regression, the study variable 𝑌𝑖(𝑦𝑖 = 0,1,2,… )is the number of events that occur at a particular period, 

with a Poisson distribution given by 

𝑃(𝑦𝑖 , 𝜃𝑖) =
𝑒−𝜃𝑖𝜆𝑖

𝑦𝑖

𝑦𝑖!
, 𝜃 > 0                                                                                          (1) 

The mean and variance are same in Poisson distribution and is given by 

𝐸(𝑌𝑖) = 𝑉𝑎𝑟(𝑌𝑖) = 𝜃𝑖 
The 𝐿(𝜃, 𝑦) i.e., log-likelihood of 𝑃(𝑦𝑖 , 𝜃𝑖) is defined as; 

𝐿(𝜃, 𝑦) =∑(𝑦𝑖𝑙𝑛(𝜃𝑖) − 𝜃𝑖 − 𝑙𝑛(𝑦𝑖!))

𝑛

𝑖=1

                                                                           (2) 

Let G be the matrix of order 𝑛 × (𝑘 + 1) of the auxiliary variable. Then, the association between 𝑌𝑖 and ith row of 

matrix, 𝑔𝑖 associating through 𝑑(𝜃𝑖), 𝑖𝑠
 

𝑙𝑛(𝜃𝑖) = 𝜉𝑖 = 𝑔𝑖
𝑇𝐵                                                                                                  (3) 

Where,  𝐵 = 𝐵0, 𝐵1 , … , 𝐵𝑘 are the regression parameters. 

 Differentiating (3) with respect to B yields �̆� which represents the maximum likelihood estimators of B.    

 

∑(𝑦𝑖𝑒𝑥𝑝(𝑔𝑖
𝑇𝐵)𝑔𝑖)

𝑛

𝑖=1

                                                                                                (4) 

For solving such k equations, we use iterative methods such as Newton-Raphson algorithms and Fisher Scoring 

algorithms (see Cameron and Trivedi (1998), Montgomery et al. (2006), and Koc (2021). 

 

2. Estimators from the literature 

This section gives a brief introduction of some well-known estimators/ classes of estimators from the literature. 

1. Kadilar and Cingi (2004) propose the following estimators for the estimation of population mean �̅� in simple 
random sampling. 

y̅KC1 =
�̅� + 𝑏(�̅� − �̅�)

�̅�
�̅�                                                                                                (5) 

y̅KC2 =
�̅� + 𝑏(�̅� − �̅�)

(�̅� + 𝐶𝑔)
(�̅� + 𝐶𝑔)                                                                                   (6) 

y̅KC3 =
�̅� + 𝑏(�̅� − �̅�)

(�̅� + 𝛽2(𝑔))
(�̅� + 𝛽2(𝑔))                                                                               (7)  

y̅KC4 =
�̅� + 𝑏(�̅� − �̅�)

(�̅�𝛽2(𝑔) + 𝐶𝑔)
(�̅�𝛽2(𝑔) + 𝐶𝑔)                                                                            (8) 



Pak.j.stat.oper.res.  Vol.18  No. 4 2022 pp 985-994  DOI: http://dx.doi.org/10.18187/pjsor.v18i4.3955 

 

 
Modified Regression Estimators for Improving Mean Estimation -Poisson Regression Approach 987 

 

y̅KC5 =
�̅� + 𝑏(�̅� − �̅�)

(�̅�𝐶𝑔 + 𝛽2(𝑔))
(�̅�𝐶𝑔 + 𝛽2(𝑔))                                                                           (9) 

Here, 𝐶𝑔 and 𝛽2(𝑔) are the population coefficient of variation and the population coefficient of kurtosis respectively 

of the auxiliary variable. �̅� and �̅� are the sample means of the study and auxiliary variable respectively and it is 

assumed that the population mean �̅� of the auxiliary variable G is known. Here 𝑏 =
𝑠𝑔𝑦

𝑠𝑔
2  is obtained by the least 

square. Where 𝑠𝑔
2 and 𝑠𝑦

2 are the sample variances of auxiliary and study variable respectively and 𝑠𝑔𝑦  is the sample 

covariance between the auxiliary and study variable. 

The MSE of the estimators 5-9 can be found using a first degree of approximation of the Taylor series expansion and 

is as follows; 

MSE(y̅KCi) = 𝜆[𝑅𝐾𝐶𝑖
2 𝑆𝑔

2 + 2𝐵𝑅𝐾𝐶𝑖𝑆𝑔
2 +𝐵2𝑆𝑔

2 − 2𝑅𝐾𝐶𝑖𝑆𝑔𝑦 − 2𝐵𝑆𝑔𝑦 + 𝑆𝑦
2]                                   (10) 

Where i=1, 2, …, 5, 𝐵 =
𝑆𝑔𝑦

𝑆𝑔
2   is obtained by least square method 𝑓 =

𝑛

𝑁
 ; n is the sample size and N is the population 

size and 𝜆 =
1

𝑛
−

1

𝑁
 

Where: 

𝑅𝐾𝐶1 = 𝑅 =
�̅�

�̅�
 ,   𝑅𝐾𝐶2 =

�̅�

�̅� + 𝐶𝑔
  , 𝑅𝐾𝐶3 =

�̅�

�̅� + 𝛽2(𝑔)
 

𝑅𝐾𝐶4 =
�̅�𝛽2(𝑔)

�̅�𝛽2(𝑔) + 𝐶𝑔
  , 𝑅𝐾𝐶5 =

�̅�𝐶𝑔

�̅�𝐶𝑔 + 𝛽2(𝑔)
 

2. Motivated from Kadilar and Cingi (2004), Koc (2021) proposed a new way to improve the estimators by adding 

Poisson regression-based ratio estimators as follows; 
 

y̅1 =
�̅� + 𝑏𝑃(�̅� − �̅�)

�̅�
�̅�                                                                                              (11) 

y̅2 =
�̅� + 𝑏𝑃(�̅� − �̅�)

(�̅� + 𝐶𝑔)
(�̅� + 𝐶𝑔)                                                                                 (12) 

y̅3 =
�̅� + 𝑏𝑃(�̅� − �̅�)

(�̅� + 𝛽2(𝑔))
(�̅� + 𝛽2(𝑔))                                                                            (13) 

y̅4 =
�̅� + 𝑏𝑃(�̅� − �̅�)

(�̅�𝛽2(𝑔)+ 𝐶𝑔)
(�̅�𝛽2(𝑔) + 𝐶𝑔)                                                                       (14) 

y̅5 =
�̅� + 𝑏𝑃(�̅� − �̅�)

(�̅�𝐶𝑔 + 𝛽2(𝑔))
(�̅�𝐶𝑔 + 𝛽2(𝑔))                                                                     (15) 

The mean square error of y̅i , 𝑖 = 1,2, . . ,5 is given as; 

MSE(y̅i) = 𝜆[𝑅𝐾𝐶𝑖
2 𝑆𝑔

2 + 2𝐵𝑃𝑅𝐾𝐶𝑖𝑆𝑔
2 + 𝐵𝑃

2𝑆𝑔
2 − 2𝑅𝐾𝐶𝑖𝑆𝑔𝑦 − 2𝐵𝑃𝑆𝑔𝑦 + 𝑆𝑦

2] , 𝑖 = 1, 2, … ,5                      (16) 

The value of 𝐵𝑝 can be obtained by using Poisson regression model. 

3. Usman et al. (2021) proposed a regression estimator using Poisson regression model and is given as 

�̅�𝑈 = �̅� + 𝑏𝑃(�̅� − �̅�)                                                                                                   (17) 
The mean square of �̅�𝑈 is given as; 

MSE(�̅�𝑈) = 𝜆[𝑆𝑦
2 − 2𝐵𝑃𝑆𝑔𝑦 +𝐵𝑃

2𝑆𝑔
2]                                                                            (18) 

 

3. Proposed Estimators 

In this section, a new efficient class of ratio-cum-regression type estimator for estimation the population mean under 

SRSWOR based on Poisson regression method is proposed. Some members of the family of estimators are written in 

Table 1. Expressions for bias and MSE are obtained up to first degree of approximation.  

Ȥ𝑃𝑖 = �̅� {(
𝛼𝑖�̅� + 𝛽𝑖
𝛼𝑖�̅� + 𝛽𝑖

)

𝛼𝑖�̅�

𝛼𝑖�̅�+𝛽𝑖

+ 𝑏𝑃 (1 −
�̅�

�̅�
)}                                                                 (19) 

Where, 𝛼𝑖 ≠ 0 and 𝛽𝑖  may be any constant or functions of some known parameters of auxiliary variable G, which 

are determined such that the MSE of Ȥ𝑃𝑖 , 𝑖 = 1 , 2 , … , 15 is minimum. 

Table1:Some members of the proposed family of estimators using different values of 𝛼 and 𝛽 
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S.No. Values Estimators 

𝜶𝒊 𝜷𝒊 
1 𝛼1 = 1 𝛽1 = 𝑆𝑔 

Ȥ𝑃1 = �̅� {(
𝛼1�̅� + 𝛽1
𝛼1�̅� + 𝛽1

)

𝛼1�̅�

𝛼1�̅�+𝛽1

+ 𝑏𝑃 (1 −
�̅�

�̅�
)} 

2 𝛼2 = 𝐶𝑔 𝛽2 = 𝑆𝑔 

Ȥ𝑃2 = �̅� {(
𝛼2�̅� + 𝛽2
𝛼2�̅� + 𝛽2

)

𝛼2�̅�

𝛼2�̅�+𝛽2

+ 𝑏𝑃 (1 −
�̅�

�̅�
)} 

3 𝛼3 = 𝜌𝑔𝑦 𝛽3 = 𝑆𝑔 

Ȥ𝑃3 = �̅� {(
𝛼3�̅� + 𝛽3
𝛼3�̅� + 𝛽3

)

𝛼3�̅�

𝛼3�̅�+𝛽3

+ 𝑏𝑃 (1 −
�̅�

�̅�
)} 

4 𝛼4 = 1 𝛽4 = 𝑓𝑆𝑔 

Ȥ𝑃4 = �̅� {(
𝛼4�̅� + 𝛽4
𝛼4�̅� + 𝛽4

)

𝛼4�̅�

𝛼4�̅�+𝛽4

+ 𝑏𝑃 (1 −
�̅�

�̅�
)} 

5 𝛼5 = 𝜌𝑔𝑦 𝛽5 = 𝑓𝑆𝑔  

Ȥ𝑃5 = �̅� {(
𝛼5�̅� + 𝛽5
𝛼5�̅� + 𝛽5

)

𝛼5�̅�

𝛼5�̅�+𝛽5

+ 𝑏𝑃 (1 −
�̅�

�̅�
)} 

6 𝛼6 = 𝜌𝑔𝑦𝐶𝑔 𝛽6 = 𝑓𝑆𝑔  

Ȥ𝑃6 = �̅� {(
𝛼6�̅� + 𝛽6
𝛼6�̅� + 𝛽6

)

𝛼6�̅�

𝛼6�̅�+𝛽6

+ 𝑏𝑃 (1 −
�̅�

�̅�
)} 

7 𝛼7 = 1 𝛽7 = 𝑓(1 − 𝑓)𝑆𝑔 

Ȥ𝑃7 = �̅� {(
𝛼7�̅� + 𝛽7
𝛼7�̅� + 𝛽7

)

𝛼7�̅�

𝛼7�̅�+𝛽7

+ 𝑏𝑃 (1 −
�̅�

�̅�
)} 

8 𝛼8 = 1 𝛽8 = 2𝑓(1 − 𝑓)𝑆𝑔 

Ȥ𝑃8 = �̅� {(
𝛼8�̅� + 𝛽8
𝛼8�̅� + 𝛽8

)

𝛼8�̅�

𝛼8�̅�+𝛽8

+ 𝑏𝑃 (1 −
�̅�

�̅�
)} 

9 𝛼9 = 1 
𝛽9 = (

𝑓

1 − 𝑓
)𝑆𝑔  

Ȥ𝑃9 = �̅� {(
𝛼9�̅� + 𝛽9
𝛼9�̅� + 𝛽9

)

𝛼9�̅�

𝛼9�̅�+𝛽9

+ 𝑏𝑃 (1−
�̅�

�̅�
)} 

10 𝛼10 = 1 
𝛽10 = (

𝑓

1+ 𝑓
)𝑆𝑔 

Ȥ𝑃10 = �̅� {(
𝛼10�̅� + 𝛽10
𝛼10�̅� + 𝛽10

)

𝛼10�̅�

𝛼10�̅�+𝛽10

+ 𝑏𝑃 (1 −
�̅�

�̅�
)} 

11 𝛼11 = 1 
𝛽11 = (

𝑓

1 + 2𝑓
)𝑆𝑔 

Ȥ𝑃11 = �̅� {(
𝛼11�̅� + 𝛽11
𝛼11�̅� + 𝛽11

)

𝛼11�̅�

𝛼11�̅�+𝛽11

+ 𝑏𝑃 (1 −
�̅�

�̅�
)} 

12 𝛼12 = 1 
𝛽12 = (

2𝑓

1 + 2𝑓
)𝑆𝑔 

Ȥ𝑃12 = �̅� {(
𝛼12�̅� + 𝛽12
𝛼12�̅� + 𝛽12

)

𝛼12�̅�

𝛼12�̅�+𝛽12

+ 𝑏𝑃 (1 −
�̅�

�̅�
)} 

13 𝛼13 = 𝐶𝑔 
𝛽13 = (

2𝑓

1− 𝑓
)𝑆𝑔 

Ȥ𝑃13 = �̅� {(
𝛼13�̅� + 𝛽13
𝛼13�̅� + 𝛽13

)

𝛼13�̅�

𝛼13�̅�+𝛽13

+ 𝑏𝑃 (1 −
�̅�

�̅�
)} 

14 𝛼14 = 𝜌𝑔𝑦 
𝛽14 = (

2𝑓

1− 𝑓
)𝑆𝑔 

Ȥ𝑃14 = �̅� {(
𝛼14�̅� + 𝛽14
𝛼14�̅� + 𝛽14

)

𝛼14�̅�

𝛼14�̅�+𝛽14

+ 𝑏𝑃 (1 −
�̅�

�̅�
)} 

10 𝛼15 = 1 
𝛽15 = (

1 − 2𝑓

1 + 2𝑓
)𝑆𝑔 

Ȥ𝑃15 = �̅� {(
𝛼15�̅� + 𝛽15
𝛼15�̅� + 𝛽15

)

𝛼15�̅�

𝛼15�̅�+𝛽15

+ 𝑏𝑃 (1 −
�̅�

�̅�
)} 
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The Bias of the proposed estimator Ȥ𝑃𝑖 , 𝑖 = 1 , 2 , … , 15 up to first order of approximation is given as, 

𝐵𝑖𝑎𝑠(Ȥ𝑃𝑖) = 𝜆�̅� [
𝜑𝑖
3(𝜑𝑖 + 1)

2
𝐶𝑔
2 − (𝜑𝑖

2 +𝐵𝑃)𝐶𝑔𝑦]                                                      (20) 

The MSEof the proposed estimator Ȥ𝑃𝑖 , 𝑖 = 1 , 2 , … , 15 up to first order of approximation is given as  

 

𝑀𝑆𝐸(Ȥ𝑃𝑖) = 𝜆[𝑆𝑦
2 +𝑅2(𝜑𝑖

2 + 𝐵𝑃)
2𝑆𝑔

2 − 2𝑅(𝜑𝑖
2 + 𝐵𝑃)𝑆𝑔𝑦]                                               (21) 

Where: 

𝜑𝑖 =
𝛼𝑖�̅�

𝛼𝑖�̅� + 𝛽𝑖
  , i = 1, 2, 3, , 15  

𝜑1 =
�̅�

�̅� + 𝑆𝑔
  ,                           𝜑2 =

𝐶𝑔�̅�

𝐶𝑔𝐺̅̅ ̅̅ ̅ + 𝑆𝑔
  ,                     𝜑3 =

𝜌𝑔𝑦�̅�

𝜌𝑔𝑦�̅� + 𝑆𝑔
  ,              𝜑4 =

�̅�

�̅� + 𝑓𝑆𝑔
  ,    

𝜑5 =
𝜌𝑔𝑦�̅�

𝜌𝑔𝑦�̅� + 𝑓𝑆𝑔
,                   𝜑6 =

𝜌𝑔𝑦𝐶𝑔�̅�

𝜌𝑔𝑦𝐶𝑔�̅� + 𝑓𝑆𝑔
  ,             𝜑7 =

�̅�

�̅� + 𝑓(1 − 𝑓)𝑆𝑔
  ,   𝜑8 =

�̅�

�̅� + 2𝑓(1 − 𝑓)𝑆𝑔
  ,    

𝜑9 =
�̅�

�̅� + (
𝑓

1−𝑓
) 𝑆𝑔

,             𝜑10 =
�̅�

�̅� + (
𝑓

1−𝑓
) 𝑆𝑔

,          𝜑11 =
�̅�

�̅� + (
𝑓

1+2𝑓
) 𝑆𝑔

,      𝜑12 =
�̅�

�̅� + (
2𝑓

1+2𝑓
) 𝑆𝑔

,    

𝜑13 =
𝐶𝑔�̅�

𝐶𝑔�̅� + (
2𝑓

1−𝑓
) 𝑆𝑔

,      𝜑14 =
𝜌𝑔𝑦�̅�

𝜌𝑔𝑦�̅� + (
2𝑓

1−𝑓
) 𝑆𝑔

,     𝜑15 =
�̅�

�̅� + (
1−2𝑓

1+2𝑓
) 𝑆𝑔

 

 

For the detailed derivation of the expression of Bias and MSE of the proposed estimator Ȥ𝑃𝑖 , 𝑖 = 1 , 2 , … , 15 one can 
see the Appendix-A. 

 

4. Efficiency Comparison: 

In this section, we present the comparison of the proposed estimators (Ȥ𝑃𝑖  , i = 1,2,… ,15)with Koc (2021) (y̅i , i =
1, 2,… ,5) and Usman et al. (2021)(y̅U) 
 

4.1. Comparing the MSE of proposed estimator Ȥ𝑷𝒊 , 𝐢 = 𝟏, 𝟐,… , 𝟏𝟓with Koc (2021) �̅�𝐢, 𝐢 = 𝟏, 𝟐,… , 𝟓 

Ȥ𝑃𝑖  , i = 1,2,… ,15  Perform better than y̅i, i = 1, 2, … ,5 if 

𝑀𝑆𝐸(y̅i) >  𝑀𝑆𝐸(Ȥ𝑃𝑖) 
𝜆[𝑅𝐾𝐶𝑖

2 𝑆𝑔
2 + 2𝐵𝑃𝑅𝐾𝐶𝑖𝑆𝑔

2 + 𝐵𝑃
2𝑆𝑔

2 − 2𝑅𝐾𝐶𝑖𝑆𝑔𝑦 − 2𝐵𝑃𝑆𝑔𝑦 + 𝑆𝑦
2] > 𝜆[𝑆𝑦

2 +𝑅2(𝜑𝑖
2 +𝐵𝑃)

2𝑆𝑔
2 − 2𝑅(𝜑𝑖

2 +𝐵𝑃)𝑆𝑔𝑦] 

{𝑅𝐾𝐶𝑖
2 −𝑅2(𝜑𝑖

2 +𝐵𝑃)
2 + 2𝐵𝑃𝑅𝐾𝐶𝑖 + 𝐵𝑃

2}𝑆𝑔
2 − 2{𝑅𝐾𝐶𝑖 − 𝑅(𝜑𝑖

2 + 𝐵𝑃) + 𝐵𝑃}𝑆𝑔𝑦 > 0 

 

4.1. Comparing the MSE of proposed estimator Ȥ𝑷𝒊 , 𝐢 = 𝟏, 𝟐,… , 𝟏𝟓with Usman et al. (2021) �̅�𝐔 

Ȥ𝑃𝑖  , i = 1,2,… ,15  Perform better than y̅U if 

𝑀𝑆𝐸(y̅U) >  𝑀𝑆𝐸(Ȥ𝑃𝑖) 
𝜆[𝑆𝑦

2 − 2𝐵𝑃𝑆𝑔𝑦 +𝐵𝑃
2𝑆𝑔

2] > 𝜆[𝑆𝑦
2 + 𝑅2(𝜑𝑖

2 +𝐵𝑃)
2𝑆𝑔

2 − 2𝑅(𝜑𝑖
2 +𝐵𝑃)𝑆𝑔𝑦] 

{𝐵𝑃
2 −𝑅2(𝜑𝑖

2 + 𝐵𝑃)
2}𝑆𝑔

2 + 2{𝑅(𝜑𝑖
2 +𝐵𝑃) − 𝐵𝑃}𝑆𝑔𝑦 > 0 

 

5. Empirical Study:  

To examine the performance of the proposed class of estimator Ȥ𝑃𝑖 , 𝑖 = 1 , 2 ,… , 15 over the other well-known 

estimators, two real data sets have been considered. The descriptions of the populations along with the values of 

various parameters are listed in Table 2 and Table 3. 

 

Population: 1 

We consider the dataset collected between 2006 and 2010 from the Afyon Respiratory Disease Hospital and the 
Afyon Environmental Department Air Pollution Unit, which was used by Koc (2021). The number of patients 

admitted to the hospital on a weekly basis was taken as the dependent variable Y, and PM10 was taken as the 

explanatory variable G. 
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Table: 2The descriptive statistics of population 1 are 

𝑁 =213 𝑛 = 40 �̅� = 4.676056338 �̅� = 116.1915 

𝐶𝑦 =0.633555159 𝐶𝑔 = 0.439846 𝛽2(𝑔) = − 0.6908 𝑆𝑦 = 2.962539616 

𝑆𝑔 =51.10636 𝑆𝑔𝑦 = 53.51706 𝜌𝑔𝑦 = 0.353 𝐵𝑙 = 0.02049002 

𝐵𝑃 =0.004    

 

Population: 2  

We consider the dataset obtained from TUIK of 81 provinces in 2019 used by Koc (2021). The number of people 

who died due to traffic accidents was taken as a dependent variable Y, and the number of motor vehicles was taken 

as explanatory variable G. 

 

 

Table: 3 The descriptive statistics of population 2 are  

𝑁 = 81 𝑛 = 20 �̅� = 82.40740741 �̅� = 274308 

𝐶𝑦 = 1.025504149 𝐶𝑔 = 1.90331 𝛽2(𝑔) = 35.77509 𝑆𝑦 = 84.50913823 

𝑆𝑔 = 522093 𝑆𝑔𝑦 = 38124520.6 𝜌𝑔𝑦 = 0.864077723 𝐵𝑙 = 0.02049002 

𝐵𝑃 = 6.131𝐸 − 07    

 

Table: 4 Mean square error of the existing and proposed estimators for population 1 and population 2 

Estimators Population 1 Population 2 

y̅1 0.18587 334.73926 

y̅2 0.18549 334.73236 

y̅3 0.18648 334.60966 

y̅4 0.18643 334.73906 

y̅5 0.18728 334.67116 

y̅𝑈 0.17037 267.16300 
Ȥ𝑃1 0.15599 179.62946 

Ȥ𝑃2 0.161537 111.18094 

Ȥ𝑃3 0.164036 193.63367 

Ȥ𝑃4 0.166353 68.14308 

Ȥ𝑃5 0.157918 70.09819 

Ȥ𝑃6 0.156482 86.12029 

Ȥ𝑃7 0.1679 74.05904 

Ȥ𝑃8 0.162312 82.08443 

Ȥ𝑃9 0.164673 75.05373 

Ȥ𝑃10 0.167644 71.68617 

Ȥ𝑃11 0.168662 79.98185 

Ȥ𝑃12 0.163265 75.44276 

Ȥ𝑃13 0.156066 77.54750 

Ȥ𝑃14 0.15685 150.51009 

Ȥ𝑃15 0.159036 76.67033 
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Table: 5The PRE of the proposed estimators with the existing estimators for population 1 

Estimators y̅1 y̅2 y̅3 y̅4 y̅5 y̅U 

Ȥ𝑃1 119.15562 118.91125 119.54637 119.51546 120.05664 109.21617 

Ȥ𝑃2 115.06181 114.82584 115.43913 115.40929 115.93188 105.46385 

Ȥ𝑃3 113.30824 113.07587 113.67982 113.65044 114.16506 103.85656 

Ȥ𝑃4 111.73480 111.50566 112.10122 112.07224 112.57972 102.41437 

Ȥ𝑃5 117.69937 117.45799 118.08535 118.05482 118.58939 107.88140 

Ȥ𝑃6 118.78249 118.53890 119.17202 119.14122 119.68070 108.87417 

Ȥ𝑃7 110.70330 110.47627 111.06634 111.03763 111.54042 101.46891 

Ȥ𝑃8 114.51595 114.28111 114.89149 114.86179 115.38190 104.96353 

Ȥ𝑃9 112.87475 112.64326 113.24490 113.21563 113.72828 103.45922 

Ȥ𝑃10 110.87500 110.64762 111.23859 111.20984 111.71341 101.62628 

Ȥ𝑃11 110.20446 109.97846 110.56586 110.53728 111.03780 101.01168 
Ȥ𝑃12 113.84959 113.61611 114.22294 114.19342 114.71050 104.35275 
Ȥ𝑃13 119.09454 118.85030 119.48509 119.45420 119.99510 109.16019 
Ȥ𝑃14 118.50229 118.25927 118.89090 118.86017 119.39838 108.61734 
Ȥ𝑃15 116.87050 116.63082 117.25376 117.22345 117.75425 107.12167 

 

 Table: 6 The PRE of the proposed estimators with the existing estimators for population 2 

Estimators y̅1 y̅2 y̅3 y̅4 y̅5 y̅U 

Ȥ𝑃1 186.34986 186.34603 186.27772 186.34976 186.31196 148.73006 

Ȥ𝑃2 301.07612 301.06991 300.95956 301.07594 301.01487 240.29569 

Ȥ𝑃3 172.87244 172.86888 172.80552 172.87234 172.83728 137.97342 

Ȥ𝑃4 491.23001 491.21988 491.03983 491.22972 491.13007 392.06183 

Ȥ𝑃5 477.52910 477.51926 477.34423 477.52882 477.43196 381.12682 

Ȥ𝑃6 388.68803 388.68002 388.53755 388.68780 388.60896 310.22074 

Ȥ𝑃7 451.98973 451.98042 451.81475 451.98947 451.89778 360.74327 

Ȥ𝑃8 407.79872 407.79032 407.64084 407.79849 407.71576 325.47342 

Ȥ𝑃9 445.99949 445.99030 445.82683 445.99924 445.90876 355.96233 

Ȥ𝑃10 466.95095 466.94133 466.77018 466.95069 466.85596 372.68416 

Ȥ𝑃11 418.51902 418.51040 418.35699 418.51878 418.43388 334.02954 

Ȥ𝑃12 443.69964 443.69050 443.52787 443.69939 443.60938 354.12676 

Ȥ𝑃13 431.65706 431.64816 431.48994 431.65681 431.56924 344.51530 

Ȥ𝑃14 222.40320 222.39862 222.31710 222.40307 222.35796 177.50505 

Ȥ𝑃15 436.59556 436.58656 436.42653 436.59531 436.50674 348.45683 

 

Table 4 shows that our proposed estimators Ȥ𝑃𝑖  , i = 1,2,… ,15 have minimum MSE than Koc (2021) 
y̅i 𝑖 = 1 , 2,… , 5 and Usman et al. (2021)y̅U for both population 1 and population 2. 
Table 5 presents the efficiency comparison based on percent relative efficiency of our proposed estimators 
Ȥ𝑃𝑖  , i = 1,2,… ,15 with y̅i 𝑖 = 1 , 2, … , 5 and y̅U using population 1. It can be seen that our proposed estimators 
are more efficient than y̅i 𝑖 = 1 , 2, … , 5 and y̅U. Among all the proposed estimators we can also see from table 
5 that the proposed estimator  Ȥ𝑃1 is more efficient using population 1. 
Table 6 presents the efficiency comparison based on percent relative efficiency of our proposed estimators 
Ȥ𝑃𝑖  , i = 1,2,… ,15 with y̅i 𝑖 = 1 , 2, … , 5 and y̅U using population 2. It can be seen that our proposed estimators 
are more efficient than y̅i 𝑖 = 1 , 2, … , 5 and y̅U. Among all the proposed estimators we can also see from Table 
6 that the proposed estimator  Ȥ𝑃4 is more efficient using population 2. 
Also, from Table 5 and Table 6 we see that our proposed estimators Ȥ𝑃𝑖  , i = 1,2,… ,15 perform much better in 
population 2 than population 1. 
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6. Conclusion:  

In this paper, we have proposed a class of estimators Ȥ𝑃𝑖  , i = 1,2,… ,15 by using simple random sampling for 

estimation of population mean based on the Poisson regression model. The proposed estimator was found to 

generate more efficient results than estimators suggested by Koc (2021) y̅i 𝑖 = 1 , 2,… , 5and Usman (2021)y̅U. A 
comparative study of the proposed estimators with the existing estimators has also been presented. To evaluate the 

benefits of the proposed estimator over others, a real data set was investigated in support of the current study, and it 

is clear that the proposed class of estimators is more competent as compared to existing estimators in terms of 

percent relative efficiency, as all values exceed 100. As a result, for count data analysis, we strongly indorse 

choosing proposed class of estimators instead of existing estimator. 
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Appendix-A: A detailed derivation of Bias and MSE for the proposed class of estimators in the present study. 

To obtain the bias and MSE of the proposed estimator Ȥ𝑃𝑖 , 𝑖 = 1 , 2 , … , 15, we write 

𝜂0 =
�̅� − �̅�

�̅�
  , 𝑎𝑛𝑑     𝜂1 =

�̅� − �̅�

�̅�
 

Such that 𝐸(𝜂0) = 𝐸(𝜂1) = 0 and to first degree of approximation 

𝐸(𝜂𝑜
2) = λ𝐶𝑦

2  ,   𝐸(𝜂1
2) = λ𝐶𝑔

2  ,   𝐸(𝜂0𝜂1) = λ𝐶𝑔𝑦 

Now expressing the (19) in terms of 𝜂’s, we have 

Ȥ𝑃𝑖 = �̅�(1 + 𝜂0){(
𝛼𝑖�̅� + 𝛽𝑖

𝛼𝑖�̅�(1 + 𝜂1) + 𝛽𝑖
)

𝛼𝑖�̅�

𝛼𝑖�̅�+𝛽𝑖

+ 𝑏𝑃 (1 −
�̅�(1 + 𝜂1)

�̅�
)}                                   (22) 

Now expanding the right-hand side of Ȥ𝑃𝑖 , 𝑖 = 1 , 2 ,… , 15 at (22) and neglecting terms of 𝜂’s having power greater 

than two we have 

Ȥ𝑃𝑖 = �̅�(1 + 𝜂0)

{
 
 

 
 

(
1

1+
𝛼𝑖�̅�

𝛼𝑖�̅�+𝛽𝑖
𝜂1
)

𝛼𝑖�̅�

𝛼𝑖�̅�+𝛽

− 𝑏𝑃𝜂1

}
 
 

 
 

 

 

Ȥ𝑃𝑖 = �̅�(1 + 𝜂0)[(1 + 𝜑𝑖𝜂1)
−𝜑𝑖 − 𝑏𝑃𝜂1] 

Where: 

𝜑𝑖 =
𝛼𝑖�̅�

𝛼𝑖�̅� + 𝛽𝑖
  , i = 1, 2, 3, , 15 

𝜑1 =
�̅�

�̅� + 𝑆𝑔
  ,                           𝜑2 =

𝐶𝑔�̅�

𝐶𝑔𝐺̅̅ ̅̅ ̅ + 𝑆𝑔
  ,                     𝜑3 =

𝜌𝑔𝑦�̅�

𝜌𝑔𝑦�̅� + 𝑆𝑔
  ,              𝜑4 =

�̅�

�̅� + 𝑓𝑆𝑔
  ,    

𝜑5 =
𝜌𝑔𝑦�̅�

𝜌𝑔𝑦�̅� + 𝑓𝑆𝑔
,                   𝜑6 =

𝜌𝑔𝑦𝐶𝑔�̅�

𝜌𝑔𝑦𝐶𝑔�̅� + 𝑓𝑆𝑔
  ,             𝜑7 =

�̅�

�̅� + 𝑓(1 − 𝑓)𝑆𝑔
  ,   𝜑8 =

�̅�

�̅� + 2𝑓(1 − 𝑓)𝑆𝑔
  ,    

𝜑9 =
�̅�

�̅� + (
𝑓

1−𝑓
) 𝑆𝑔

,             𝜑10 =
�̅�

�̅� + (
𝑓

1−𝑓
) 𝑆𝑔

,          𝜑11 =
�̅�

�̅� + (
𝑓

1+2𝑓
) 𝑆𝑔

,      𝜑12 =
�̅�

�̅� + (
2𝑓

1+2𝑓
) 𝑆𝑔

,    

𝜑13 =
𝐶𝑔�̅�

𝐶𝑔�̅� + (
2𝑓

1−𝑓
) 𝑆𝑔

,      𝜑14 =
𝜌𝑔𝑦�̅�

𝜌𝑔𝑦�̅� + (
2𝑓

1−𝑓
) 𝑆𝑔

,     𝜑15 =
�̅�

�̅� + (
1−2𝑓

1+2𝑓
) 𝑆𝑔

 

Ȥ𝑃𝑖 = �̅�(1 + 𝜂0) [1 − 𝜑𝑖
2𝜂1 +

𝜑𝑖
3(𝜑𝑖 + 1)

2
𝜂1
2 − 𝑏𝑃𝜂1] 

Ȥ𝑃𝑖 = �̅� [1 − 𝜑𝑖
2𝜂1 +

𝜑𝑖
3(𝜑𝑖 + 1)

2
𝜂1
2 − 𝑏𝑃𝜂1 + 𝜂0 − 𝜑𝑖

2𝜂0𝜂1 − 𝑏𝑃𝜂0𝜂1] 

Ȥ𝑃𝑖 − �̅� = �̅� [𝜂0 −𝜑𝑖
2𝜂1 +

𝜑𝑖
3(𝜑𝑖 + 1)

2
𝜂1
2 − 𝑏𝑃𝜂1 −𝜑𝑖

2𝜂0𝜂1 − 𝑏𝑃𝜂0𝜂1]                             (23) 

Taking expectation of both sides of (23) we get the bias of Ȥ𝑃𝑖 , 𝑖 = 1 , 2 ,… , 15up to first order of approximation as 
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𝐸(Ȥ𝑃𝑖 − �̅�) = �̅� [𝐸(𝜂0) − 𝜑𝑖
2𝐸(𝜂1) +

𝜑𝑖
3(𝜑𝑖 + 1)

2
𝐸(𝜂1

2) − 𝑏𝑃𝐸(𝜂1) − 𝜑𝑖
2𝐸(𝜂0𝜂1) − 𝑏𝑃𝐸(𝜂0𝜂1)] 

𝐸(Ȥ𝑃𝑖 − �̅�) = �̅� [𝐸(𝜂0) − 𝜑𝑖
2𝐸(𝜂1) +

𝜑𝑖
3(𝜑𝑖 + 1)

2
𝐸(𝜂1

2) − 𝑏𝑃𝐸(𝜂1) − 𝜑𝑖
2𝐸(𝜂0𝜂1) − 𝑏𝑃𝐸(𝜂0𝜂1)] 

𝐸(Ȥ𝑃𝑖 − �̅�) = �̅� [
𝜑𝑖
3(𝜑𝑖 + 1)

2
𝐸(𝜂1

2) − (𝜑𝑖
2 +𝐵𝑃)𝐸(𝜂0𝜂1)] 

𝐵𝑖𝑎𝑠(Ȥ𝑃𝑖) = 𝜆�̅� [
𝜑𝑖
3(𝜑𝑖 + 1)

2
𝐶𝑔
2 − (𝜑𝑖

2 + 𝐵𝑃)𝐶𝑔𝑦]                                                        (24) 

Squaring both sides (23) and neglecting terms of  𝜂’shaving power greater than two, we have 

(Ȥ𝑃𝑖 − �̅�)
2 = �̅�2 [𝜂0 −𝜑𝑖

2𝜂1 +
𝜑𝑖
3(𝜑𝑖 + 1)

2
𝜂1
2 − 𝑏𝑃𝜂1 −𝜑𝑖

2𝜂0𝜂1 − 𝑏𝑃𝜂0𝜂1]

2

 

(Ȥ𝑃𝑖 − �̅�)
2 = �̅�2[𝜂0

2 + (𝜑𝑖
4 + 𝑏𝑝

2 + 2𝑏𝑝𝜑𝑖
3)𝜂0

2 − 2(𝜑𝑖
2 + 𝑏𝑝)𝜂0𝜂1]                                        (25) 

Taking expectation of both sides (25), we get the MSE of the proposed class of estimator Ȥ𝑃𝑖 , 𝑖 = 1 , 2 , … , 15  to the 

first degree of approximation. 

𝐸(Ȥ𝑃𝑖 − �̅�)
2 = 𝑀𝑆𝐸(Ȥ𝑃𝑖) = �̅�

2[𝐸(𝜂0
2) + (𝜑𝑖

2 +𝐵𝑃)
2𝐸(𝜂1

2) − 2(𝜑𝑖
2 + 𝑏𝑝)𝐸(𝜂0𝜂1)] 

𝑀𝑆𝐸(Ȥ𝑃𝑖) = 𝜆[𝑆𝑦
2 +𝑅2(𝜑𝑖

2 +𝐵𝑃)
2𝑆𝑔

2 − 2𝑅(𝜑𝑖
2 +𝐵𝑃)𝑆𝑔𝑦]                                                (26) 


