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Abstract

This paper introduces a novel alpha power exponentiated Weibull-Pareto distribution based on the alpha
power transformation. We derive several properties of the new distribution, including moments, quantile
function, mean residual life, mean waiting time, and order statistics. Estimating model parameters is
performed using the method of maximum likelihood. Then, for the purpose of evaluating the effectiveness
of the estimates, we conduct some simulation studies. Finally, we demonstrate the superiority of this new
model by analyzing three real-life data sets.

Key Words: Alpha Power Transformation; Exponentiated Method; T-X Family; New Weibull-Pareto
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1. Introduction

Probability distributions are required for many theoretical and practical statistical methods, including infer-
ence, modeling, survival analysis, and reliability analysis. Statistical distributions are useful in many fields.
In engineering, for instance, they can be used to model the life cycle of a machine. In medical sciences, statis-
tical distributions have been used to study the duration to recurrence of some types of cancer after surgical
removal and survival times of patients after surgery. The probability distribution therefore provides essential
information about statistical inference and data analysis. Such information may be useful for making some
critical decisions. Accordingly, selecting the appropriate distribution to employ when modeling the data is
extremely important. Identifying a suitable distribution for a set of data significantly enhances the accuracy
of the statistical analysis. Frequently, data may exhibit certain characteristics that cannot be adequately
explained by a classical distribution. It is therefore crucial to develop new methods for modifying existing
distributions in order to improve the goodness of fit.

In recent years, there has been an increased interest in extending existing classical distributions to obtain
greater flexibility in modeling data from different fields of study. Most of these extensions are obtained
through developing methods for generating new classes of distributions that extend the existing standard
models. Various techniques have been proposed in the literature to generate new distributions by adding one
or more additional shape parameter(s). Examples of such well-known generators include the beta-G family
proposed by Eugene et al. (2002), Gamma-G (type 1) by Zografos and Balakrishnan (2009), the Kw-G
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by Jones (2009), McDonald-G by Alexander et al. (2012), Gamma-G (type 2) by Risti¢ and Balakrishnan
(2012), Gamma-G (type 3) by Torabi and Hedesh (2012), among others.

Additionally, Alzaatreh et al. (2013) developed a general technique that allows the use of any baseline dis-
tribution as a generator. This innovative technique is described as the transformed transformer (T — X)
family of distributions.

Based on the T'— X technique, Nasiru and Luguterah (2015) suggested the new Weibull-Pareto (NWP)
distribution. Following that, Al-Omari et al. (2019) combined the two methods of the exponentiated class
and the T — X family in order to introduce the exponentiated new Weibull-Pareto (ENWP) distribution.
Thus, the cumulative distribution function (CDF) of the ENWP distribution is expressed as

N
F(a) = [1-e@)] (1)
The corresponds probability distribution function (PDF) is expressed as

fz) = %xﬂ—leﬂi(g)ﬁ {1 B eﬂs(%)g]w—l7 o

where 8, 8,w,6 > 0 and = > 0.

Recently, Mahdavi and Kundu (2017) have proposed a new technique called the alpha power transformation
(APT) for adding an extra parameter to a family of distributions. This parameter provides more flexibility
to the CDF and PDF of an APT family which can be expressed as

oF @) 1

o ifa>0,a#1
FAPT(.Z’) = (3)
F(x) ifa=1,
1(;’% ()@ ifa>0,a #1
fapr(z) = (4)
f(x) ifa=1,

where F(z) and f(z) represent the CDF and PDF of any continuous distribution.

This family of distributions has been applied by many authors, include Mahdavi and Kundu (2017) who
applied the APT technique to the exponential distribution to obtain the alpha power exponential (APE)
distribution, Nassar et al. (2017) proposed a three-parameter distribution, known as the alpha power Weibull
distribution, Dey et al. (2018) introduced the alpha power transformed Lindley distribution, Ihtisham et al.
(2019) introduced the alpha power Pareto distribution, Dey et al. (2019) proposed the alpha power trans-
formed inverse Lindley distribution and Eghwerido et al. (2020) presented the alpha power Gompertz distri-
bution.

The main aim of this article is to introduce a new probability distribution, called the alpha power exponenti-
ated new Weibull-Pareto distribution (APENWPD), based on a new technique. Particularly, this technique
combines the three approaches of T' — X, exponentiated, and APT in order to increase the flexibility of
modelling real data.

This article is planned as follows: in Section 2, we define the APENWPD and provide some plots for its PDF
and hazard rate function. We derive in Section 3 some fundamental statistical properties of the APENWPD.
In Section 4, we discuss the estimation of the unknown model parameters using the maximum likelihood
method and Section 5 provides some simulation studies that evaluate these estimates. In Section 6, we
consider three applications that show the efficiency of the introduced distribution. Finally, in Section 7, we
offer some concluding remarks.
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2. The alpha power exponentiated new Weibull-Pareto distribution

In this section, we present the five-parameter alpha power exponentiated new Weibull-Pareto distribution
(APENWPD). We obtain the CDF and PDF of APENWPD via inserting (1) and (2) in (3) and (4) as

follows e
[1—875(%)}
al 11 ras0a#1
Pla) - oz ez )

[1 _ e—é(%)ﬁr ifa=1,

-1 |:176_5(%)B:| i

15%? %15’1675(%)ﬁ [1 — 675(%)13}(0 a ifa>0a#1
flz) = (6)
2\8 2\ 8 w—1
%xﬁ_le_é(?) [1 — 6_5(5) } if =1,
where «, £,0,w,d >0 and = > 0.
The survival function, S(z) =1 — F(z), of the APENWPD is expressed as
[17{5(%)5]“71
Hll-a ifa>0a#1
S(x) = (7)

1 {1_6—6(%)‘T if o= 1.

The hazard rate function, h(z) = f;ix;, of the APENWPD is expressed as
x

h(z) = (8)

if o =1.

2.1. Special cases of the APENWPD
e The APENWPD reduces to the ENWP distribution at v = 1.

e The APENWPD reduces to the new Weibull Pareto distribution at o« = w = 1.

2.2. Expansion for the PDF.

This subsection provides an expansion for the APENWPD PDF in (6). Particularly, using the following
series representation

ar =y U oy, o)

g!

9=0
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we obtain the PDF as follows

8

Fo) = log v w3 2B=1,-5(3) z loga [ il

)ﬁ w—14wg
T a—1 68 }

(10)

Furthermore, applying the following binomial series expansion
- -1
i g [O1 1)

\B1w—1ltwg
o [1 — (%) } in (10), we can rewrite the PDF of APENWPD as follows

fla) = - i - W;ﬁﬁ B—1 ZZ loga Yo+t (w — 1d—|— o.)g) (e 6(%)’3>(d+1)

g=0 d=0

ZZT gP~le @+ (%) (12)

=0 d=0

where

1 wop AMwV”@@+U—§. (13)

Tea 1 VT d

Figure 1 and Figure 2 illustrate some various shapes of the PDF and h(z) of the APENWPD for some
particular parameters. Several shapes such as symmetric, near symmetric, inverted J-shaped, right-skewed,
and left-skewed shape are observed for the density of the APENWPD in Figure 1. Additionally, Figure 2
indicates that the hazard rate function for the APENWPD features a wide variety of asymmetrical shapes.
This indicate to the flexibility of the APENWPD for modeling data set with various shapes.

3. Properties of the APENWPD

In this section, we will discuss some distributional properties of the APENWPD. These properties are
discussed in the following subsections.

3.1. Quantile function

The quantile function for the APENWPD can be derived by inverting the distribution function in (5) as

1 log (P(ax—1)+1) = :
xpzﬁ_—g <log<1—( loga ) ))1 ) (14)

where 0 < p < 1. The median of the APENWPD can be then obtained as

Zo.50 = 0 - 7% <log (1 B <—10g(2)1jg12g(a + 1)) w>>] |

In addition, the 25" percentile and the 75! percentile of the APENWPD are given as

e il oz
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Figure 1: Plots of the PDF of the APENWPD.

R [ _% <log (1 3 <10g(4) ;;gloO%(BaJr 1)>w>>] |

3.2. Moments

If X ~APENWPD(a,3,0,w,6), then the r*" moment of X is given by the following

B _ Wb 07 F S logoz)g'H wlg+1)—1 1 \*
s TS (D) ) s )

g=0d=0

Proof. The r*" moment of the random variable (RV) X with PDF f(z) is defined by

ur=FE (") = /000 " f(x)dx. (15)

Substituting by (12), we obtain

ZZ / L1 —(d+1)5(g) da. (16)

g=0d=0
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Figure 2: Plots of the hazard rate function of the APENWPD.
Applying the substitution y = (d + 1) (%)B, in the integral, then we have

r+8—-1 1
e 0 1 FE © x
E(z") = — | = 9”5*1/ Jevd
=23 S () 0w,
g=0d=0
after integrating, we obtain
= 0 1 SR r
E(z") = | — 0T+ﬁ—1r( 1), 17
(@) ;dz_orﬁ((dﬂ)a) (0) - (17)

where 7 is given by (13), on using 7 in the above integral, we have

r 71 oo 00 %-}-1
_ wd'd w2 Z S (-1 1oga )a+! (w(g +d1) - 1) (di1> r (; + 1) . (18)
g=0d=0
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Therefore, the mean of the APENWPD is easily expressed as

WS T o logOzg+1 wlg+1)—1 1 \F /1
p=B(r) = ZZ ( p >(d+1> F<ﬁ+1). (19)

g=0d=0

Additionally, from (18) and (19), the variance for the APENWPD can be given by
0_2 :E(IE2) _ ,LL2

(wzzf_l i 3 bg;‘!)E'H(w(g +d1) - 1) <d.1H)EHF (; +1>> PR

9g=0d=0

3.3. Moment generating function

If X follows APENWPD, then the moment generating function (MGF) (M, (t)) can be derived as

_ ig’:i " wh” 6 B l)d(log;)ngl <w(g +d1) - 1> <d_1H> %+1F (; . 1) | (1)

3.4. Characteristic function

Let X ~ APENWPD(a, f3,60,w,0), then the characteristic function, ¢, (t), of X can be obtained as

St (e D () ()

g=0d=07r=0

Proof. In order to determine the characteristic function of the APENWPD, we apply

et = By = 37 [T et 0t ) g
0

d=0

Then, we have

Applying the series representation of € given in (22), we obtain

tw — it
o ZZ()

,
d=0r=0 0

o0

21 o=@t 15(5)" g,

o]
ztz Zt
g Moy

r=0

where p, is computed based on (18). Thus, the characteristic function of the APENWPD can be described
as follows

iii it)" wzrf 15 (_Dd(log;)“rl (w(g +d1) - 1) (dil> 5+ . (; . 1) R

g=0 r=0

O
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3.5. Mean residual life and mean waiting time

The mean residual life (MRL) function of the APENWPD, say u(t), with f(x) given by (6), is obtained from

p(t) = TS0 L, (24)

where S(t) is the survival function, E(t) is the mean and I = fot zf(x)dx

/ ZT‘Tﬂ ~(@+15(5)” g
0

d=0
1l oo oo L1 B
wh5™ (log )9 fw(g+1) —1 1 \?" t 1
I= (-1)d—=—— — yl@d+1)6(-) ,=+1], (25)
_ !
a—1 = g! d d+1 0 Ié]
where v (a, b) fo Le~®dz denotes the lower incomplete gamma function. Thus, the MRL of APENWPD

is obtained by substituting (7), (19), and (25) into (24), as follows

ff‘:.;:)qz CEpl S

2 P 2]

Similarly, if X has the CDF (5), then its mean waiting time (MWT), fi(¢) can be defined as follows

At) =t — % /0 o f(2)da, (26)

where I = fot x f(z)dx denotes the first incomplete moment given by (25). Thus, the MWT of the APENWPD
can be derived by substituting the equations (5) and (25) in equation (26) as follows

1

(a—1) (“fff )PP DS G D) (dil)é+lv(<d+1>6(;>ﬂ7é+1)>
. |

{1—{5( )ﬁr .

fi(t) =

Dl

¢ (27)

3.6. Shannon and Rényi entropies

Entropy is a measure of variation or uncertainty of the RV X. The Shannon entropy, SEx, of an RV X
with PDF f(z) is defined as follows

SEx = Bl-log /o)l = - [ " log( (@) f(@)d (28)
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Using the PDF specified in (6), SEx can be derived as

16 w logozg'H wlg+1)—1\|8-1
SEX_log(lgawaﬂ) PN {( d )[ﬂ

9=0d=0
() () et
<w(g —|—d2) - 1) (iloioi) }, (29)

where k is the Euler constant.
In addition, the Rényi entropy, (REx (v)) might be obtained as follows

REX (’U) =

ivlog (/Ooof(x)”dx>;v>0,v7él. (30)

Inserting (6) into (30) yields
1 loga wdp\" [ _ {2\ B vw—1)
Ex(v) = ——1 woo v (B 1>( 6(0) {1_ 6(0]
REx (v) 1—@0g<<a—195> /0 x e e

v |:1—e76( )B:| :

dz .
Then, after solving the integral, the Rényi entropy of the APENWPD can be written as

v wloga 1 o (loga)? afv(w—1)4wg

REm(v)—lvlog(al)—&-lUlog(ZZ ' (v)? (-1) d

N ( X >v<ﬁ51>+ér(v(ﬁ_1) N 1) (31)
v+d B B .

s

(67

Table 1 displays the mean, variance, skewness and Kurtosis of APENWPD for various values of «, 3, 0, w
and §. For fixed 8, 0, w and §, the values of the mean and the variance of APENWPD are increasing with
the increase of a. While the skewness and Kurtosis values are decreasing as the value of « increases. Also,
at fixed «, 0, w and 9, the variance, skewness and Kurtosis decrease with increasing f.

3.7. Order statistics

Suppose X1, Xo, ....., X,, are the observed values of a sample from the APENWPD and X;.,, denotes the i*"
order statistic. The density of X;., can be defined as

N f@) [F@) T - P (32)

fim(x) = (= Dlm—a)
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Table 1: The mean, variance, skewness and kurtosis of the APENWPD for some choices of
parameter values.

Q@ B8 0 w é mean variance skewness kurtosis
2 1 2 0.8234 0.8014 1.9769 7.3099

05 1 3 3 4 1.2131 0.6386 1.5003 5.4793
’ 6 10 6 2.6972 1.3102 1.3017 4.8974

12 20 10 4.0349 1.9485 1.2566 4.7812

2 1 2 1.0898 1.0744 1.6631 5.9169

15 1 3 3 4 1.4625 0.7939 1.2892 4.7345
' 6 10 6 3.0590 1.5765 1.1325 4.3594

12 20 10 4.4771 2.3272 1.0967 4.2845

2 1 2 1.2725 1.2229 1.5051 5.3402

3 1 3 3 4 1.6282 0.8678 1.1808 4.4337

6 10 6 3.2965 1.6934 1.0448 4.1493

12 20 10 4.7666 2.4810 1.0137 4.0930

2 1 2 1.1241 0.3839 0.8584 3.3634

05 9 3 3 4 1.8171 0.3382 0.71137 3.3126
’ 6 10 6 3.9422 0.6438 0.7529 3.4692

12 20 10 6.8648 1.2947 0.7975 3.5674

2 1 2 1.3246 0.4259 0.6436 2.9958

15 9 3 3 4 2.0055 0.3662 0.5498 3.0687
’ 6 10 6 4.2014 0.7033 0.6058 3.2142

12 20 10 7.2320 1.4263 0.6517 3.2932

2 1 2 1.4535 0.4333 0.5285 2.8905

3 9 3 3 4 2.1253 0.3685 0.4623 3.0127

6 10 6 4.3667 0.7126 0.5266 3.1473

12 20 10 7.4666 1.4526 0.5735 3.2150

Substituting by equations (5) and (6) in (32), we have

(-1~
Bli,n—i+ 1)(a—1)n1

o a{l_eié(%)ﬁr . , (33)

fzn(x) = f(l’) l1—«

where B(a,b) refers to the beta function. An expansion of the binomial series is given as follows

(x —2)" = Zn:(_l)y (”) a2, (34)
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By applying the binomial series expansion given in equation (34), f;.,(x) can be expressed as follows

B log « i n—1\ (—1)""1HuHyspaln—H-0
f“"(gs)_B(i,n—z—i—l a_anZ( >< > &

v © w—1 (y+l+1)|:
B—1,-5(%) [1 _e—é(y)ﬁ} o (35)
4. Maximum likelihood estimates
Assume z1, 2, X3, ...., T, represent a random sample from the APENWPD), then the log-likelihood function

(¢) is given as

L log o wé B - § — 3
(e, B,0,w,d;x) =nlog <a = 1> + nlog <96> +(B- 1);10gx¢ ~ 9 ;xi +
(w—=1) Zlog {1 - 6_6(%)5] + logaz [1 - 6_6(%)6} . (36)
i=1 i=1

On taking partial derivatives of the log-likelihood in (36) with respect to the parameters and equating the

results to zero, we get
o0 1 (n(a—1-aloga) <~
—— - w | =0 37
e’ a( (a—=1)loga 2771 ’ (37)

i=1

/4 — 81 . )
% %—kz:logxz eﬁZx {logxl log(g)}+zeg(e)ﬁ

i=1

() 10g (%) {(“n Y 4 loga(w) “—1} _ (33)

2

O _ —nB N~ pspgp1_ OB (NP szt (w—1) oot

0 0 +;xi5f19 0 (9> ¢’ — Floga(wn’™ =0, (39)
o _ *—1—210 +1o ai lo 0, (40)
Do w L OBITIORAL 1771 gni =

i

00 _n Tiol O sy oy 0= 1) ol

%—5—T+Zle (%) (ﬁ) + log a(w)n; =0, (41)
where s

N = |:1 — 6_6(%) :| .

Then we can obtain the maximum likelihood estimates (MLEs) for each parameter by the solving system
of equations ((37)—(41)). Also, we can find the solution to the equations analytically by using the routine
”optim” in R.
5. Simulation study

In this section, we discuss some simulation studies to investigate the behavior of the MLEs for the unknown
parameters of the APENWPD for various sample sizes and different values of the parameters. Particularly,
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50, 100, 150, 200, 250 and 500 sample sizes were considered from the APENWPD with 1000 replications.
Two different sets of parameters are assumed; Set 1 (o = 0.5, = 0.4,0 = 0.5,w = 0.5,6 = 0.5) and Set
2 (a =15,=15,0 =15,w = 2,0 = 2). The average estimates and the mean squared errors (MSEs)
of the MLEs are calculated for the different sample sizes. The simulation results of the average estimates

Table 2: A Simulation Study of the APENWPD.

Set 1 Set 2
Sample Size Par. MLE MSE MLE MSE
a 1.8223 7.2409 2.8661 15.4106
50 B 0.4903 0.1288 1.9816 2.1052
0 3.8778 21.7650 3.1326 4.9315
w 0.6491 0.6588 2.8277 7.5988
§ 1.4010 1.8698 6.5020 37.8807
@ 1.5929 5.2285 2.8559 14.1591
100 B 0.4524 0.0670 1.7963 1.0122
0 3.3810 15.0810 3.0535 4.3191
w 0.5113 0.2813 2.3828 3.5758
§ 1.2062 1.2408 6.1374 33.0459
«@ 1.4069 3.7896 2.7255 12.1431
150 B 0.4338 0.0458 1.7055 0.5427
0 2.8847 10.6481 2.9485 3.7016
w 0.4937 0.1559 2.2160 2.0187
é 1.1226 0.9816 5.7460 27.0947
Q@ 1.2731 2.74301 2.6338 10.3104
200 I} 0.4217 0.0375 1.6997 0.4645
0 2.7471 9.1424 2.8396 3.1539
w 0.4909 0.1490 2.1065 1.4098
1) 1.0906 0.8509 5.4189 22.7318
« 1.1067 1.9696 2.3021 8.0300
950 153 0.4149 0.0300 1.7221 0.4560
0 2.6177 8.5965 2.7985 2.8910
w 0.4956 0.1336 2.0346 1.0570
é 1.0372 0.7129 5.1597 19.6327
@ 0.9339 0.9962 2.1483 5.5442
500 I5) 0.4114 0.0216 1.6465 0.2463
0 1.8489 3.7354 2.5835 2.1862
w 0.4799 0.0955 2.0306 0.7557
6 0.8821 0.4336 4.5441 13.6413

and the MSEs are demonstrated in Table 2. We can notice that the MSE decreases as n increases and the

parameters’ MLEs becomes closer to the actual parameter.

6. Applications

In this section, we consider three real-life data sets. The fit of the APENWPD is compared with some other
distributions, namely the exponentiated Weibull Weibull (EWW) distribution by Elgarhy and Hassan (2019),
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exponentiated new Weibull-Pareto (ENWP) distribution by Al-Omari et al. (2019), alpha power inverse
Weibull (APIW) distribution by Basheer (2019), APT inverse Lomax (APTIL) distribution by ZeinEldin
et al. (2020), Weibull (W) distribution and exponential (E) distribution for the three data sets.

First Data Set.

The first data set is from Meeker and Escobar (1998), this data set concerns with a large system with 30
units, in which the failure and running times are 2.75, 0.13, 1.47, 0.23, 1.81, 0.30, 0.65, 0.10, 3.00,1.73, 1.06,
3.00, 3.00, 2.12, 3.00, 3.00, 3.00, 0.02, 2.61, 2.93, 0.88, 2.47, 0.28, 1.43, 3.00, 0.23, 3.00, 0.80, 2.45, 2.66.

Second Data Set.

The second data set obtained from Nichols and Padgett (2006). This data set comprises the tensile strength
of 100 observations of carbon fibers. The second data values are: 3.7, 3.11, 4.42, 3.28, 3.75, 2.96, 3.39, 3.31,
3.15, 2.81, 1.41, 2.76, 3.19, 1.59, 2.17, 3.51, 1.84, 1.61, 1.57, 1.89, 2.74, 3.27, 2.41, 3.09, 2.43, 2.53, 2.81, 3.31,
2.35,2.77, 2.68, 4.91, 1.57, 2.00, 1.17, 2.17, 0.39, 2.79, 1.08, 2.88, 2.73, 2.87, 3.19, 1.87, 2.95, 2.67, 4.20, 2.85,
2.55,2.17, 2.97, 3.68, 0.81, 1.22, 5.08, 1.69, 3.68, 4.70, 2.03, 2.82, 2.50, 1.47, 3.22, 3.15, 2.97, 2.93, 3.33, 2.56,
2.59, 2.83, 1.36, 1.84, 5.56, 1.12, 2.48, 1.25, 2.48, 2.03, 1.61, 2.05, 3.60, 3.11, 1.69, 4.90, 3.39, 3.22, 2.55, 3.56,
2.38,1.92, 0.98, 1.59, 1.73, 1.71, 1.18, 4.38, 0.85, 1.80, 2.12, 3.65.

Third Data Set.

The data represents a COVID-19 data belong to Canada of 36 days, from 10 April to 15 May 2020 see the
link: https://covidl9.who.int. The data are as follows: 3.1091, 3.3825, 3.1444, 3.2135, 2.4946, 3.5146,
4.9274, 3.3769, 6.8686, 3.0914, 4.9378, 3.1091, 3.2823, 3.8594, 4.0480, 4.1685, 3.6426, 3.2110, 2.8636, 3.2218,
2.9078, 3.6346, 2.7957, 4.2781, 4.2202, 1.5157, 2.6029, 3.3592, 2.8349, 3.1348, 2.5261, 1.5806, 2.7704, 2.1901,
2.4141, 1.9048.

The negative log-likelihood value (—¢), Cramer-von Mises (W) statistic, Anderson-Darling (A) statistic and
the Kolmogorov— Smirnov (K-S) test value with its p-value are considered to compare the fit of the APEN-
WPD with the other distributions. The APENWPD performance compared with other distributions for the
three real data sets that shown in Tables 3, 5 and 7. In addition, the MLEs and standard errors (SEs) of the
parameters for the APENWPD with the other competing distributions for the three data sets are shown in
Tables 4, 6 and 8.

Tables 3, 5 and 7 demonstrate that the APENWPD has the lowest values of —¢, W, A and K-S test values
as well as the best p-values. This means that the APENWPD provides the best fit as compared to the other
competing distributions for the three real data sets.

Table 3: Goodness-of-fit measures for the first data sets.

Distribution Statistics
—L K-S p - value W A

APENWP 37.3808 0.2146 0.1261 0.2937 1.9174
EWW 37.4793 0.2364 0.07 0.3627 2.3513
ENWP 38.45037 0.2385 0.0659 0.3619 2.2925
APTIL 54.03125 0.2912 0.0124 0.3723 2.1490
APIW 56.92328 0.2719 0.0237 0.4387 2.4763
W 46.15873 0.2195 0.111 0.3317 2.1107
E 47.13504 0.2161 0.1214 0.3678 2.0022

Figures 3, 4 and 5 present the three data sets’ histogram with the estimated PDF of the competing distri-
butions. This graphical goodness-of-fit method also supports the results of Tables 3, 5 and 7. To illustrate,
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Table 4: The MLEs and SE (in parenthesis) for first data set.

Distribution Estimated Parameters
APENWP 2.5086 7.1883 4.2511 0.1062 8.9533
(&, 5,0,&,0) (1.87036) (0.0025) (0.0025) (0.0284) (0.0025)
EWW 0.1275 13.4932 2.2933 0.0079 3.1017
(a,d, B, N\, %) (0.0239) (0.0026) (0.0026) (0.0012) (0.0026)
ENWP 7.1512 4.6192 0.1283 13.2910 -
(3,0,0,0) (0.0026) (0.0026) (0.0234) (0.0026)
APTIL 0.9585 0.3903 18.3745 - -
(a,b,é%) (0.9273) (0.3026) (58.8040)
APIW 116.3505 0.1681 0.8196 - -
(6,\,) (228.7952) (0.0774) (0.0997)
W 1.2650 1.8802 - - -
(,%) (0.2044) (0.2821)
E 0.5649 - - - -
(A) (0.1031)

Table 5: Goodness-of-fit measures for the second data sets.

Distribution Statistics
—/ K-S p - value W A

APENWP 140.53 0.0586 0.8821 0.0670 0.3950
EWW 140.8305 0.0653 0.7881 0.0792 0.4605
ENWP 140.7303 0.0640 0.8074 0.0754 0.4381
APTIL 207.9825 0.3468 7.181 x 1011 3.2218 16.6530
APIW 159.2739 0.1363 0.04878 0.4938 3.1044
W 140.9957 0.0632 0.8196 0.0701 0.4602
E 195.9886 0.3219 2.011 x 10799 3.4635 17.4211

Table 6: The MLEs and SE (in parenthesis) for second data set.

Distribution Estimated Parameters
APENWP 4.7642 1.8260 3.4698 1.6920 2.7632
(&,53,0,&,6) (10.2342) (0.6762) (29.8453) (0.9437) (43.4064)
EWW 1.7455 9.3059 0.8789 0.0107 2.2291
(a,é, B, A, %) (1.0040) (19.0056) (0.6620) (0.0074) (1.1058)
ENWP 2.3595 2.0710 1.3736 0.5740 -
(3,0,&,6) (0.5869) (10.2816) (0.6233) (6.6881) -
APTIL 17.4689 0.0317 53.0660 - -
(a,b,&) (14.6067) (0.0265) (44.9768)
APIW 1123.1269 0.7799 2.3420 - -
(6,\,5) (1944.7938) (0.2175) (0.1513)
W 2.7928 2.9321 - - -
(a,7) (0.2134) (0.1107)
E 0.3829 - - - -
(\) (0.0383)
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Table 7: Goodness-of-fit measures for the third data sets.

Distribution Statistics
—/ K-S p - value W A

APENWP 47.4345 0.1029 0.8408 0.0654 0.3986
EWW 48.1423 0.1064 0.8101 0.0909 0.5404
ENWP 48.0936 0.1053 0.8197 0.0889 0.5274
APTIL 83.5687 0.4016 1.812 x 1079 1.7112 8.4869
APIW 49.7715 0.1315 0.5625 0.1289 0.8716
W 51.4743 0.1500 0.3925 0.1979 1.1424
E 78.7798 0.4097 1.128 x 107% 1.8685 8.9490

Table 8: The MLEs and SE (in parenthesis) for third data set.

Distribution Estimated Parameters
APENWP 23.4016 1.0586 0.1636 19.2673 0.1916
(&,53,0,0,6) (48.4934) (0.4652) (0.5582) (36.3015) (0.6730)
EWW 12.3997 12.2822 1.8298 0.1881 0.5991
(d,é, B, A, %) (21.2760) (76.7683) (4.8860) (0.7794) (1.5789)
ENWP 1.5117 9.7120 8.1758 13.6473 -
(3,0,&,0) (0.6071) (139.0037) (9.3442) (294.9714) -
APTIL 4.7407 0.1576 51.9843 - -
(a,b,&) (3.7393) (0.1275) (58.6711)
APIW 64.8470 19.3576 4.1376 - -
(a,1,3) (105.9448) (11.1635) (0.4937)
W 3.3138 3.6372 - - -
(a,7) (0.3789) (0.1941)
E 0.3047 - - - -
(\) (0.0508)

it is evident from Figures 3, 4 and 5 that the APENWPD fits the histogram more closely than the other
competing models. That is, it is apparent that the APENWPD best fits these data sets when compared to
other distributions considered here. Therefore, APENWPD has the potential to compete with other distri-
butions used commonly in literature to fit lifetime data.

7. Conclusions

When describing and predicting real-world phenomena, statistical distributions are extremely useful. Many
distributions have been developed, but there is always the opportunity to develop distributions that are more
flexible or that fit specific data scenarios. This has motivated researchers to explore and develop new and
more flexible distributions. In this study, a five-parameter APENWPD distribution is introduced based on
a new technique for generating distributions. In this method, three techniques are combined: T-X family,
exponentiated method, and APT, which provides a greater degree of adaptability to the suitability of practical
data sets. Among the characteristics that are relevant to the proposed distribution is the diversity of shapes
that the density and the hazard rate functions of the distribution can take. Some mathematical properties
of this new distribution are provided. Estimation of the unknown parameters is discussed by employing the
maximum likelihood technique. Then, to demonstrate the consistency of the estimates, various simulation
studies are conducted. The results indicate that the proposed estimators demonstrate good performance.
Furthermore, three real data sets are used to show the new model’s flexibility against the competitive models.
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The results indicate the APENWPD provides the best fit among some other competitive models. Thus, the
proposed distribution possesses great potential for wider applications in statistics. In the future, it might be
possible to develop regression model based on the APENWPD and compare it with some existing models.
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Figure 3: a Histogram and the fitted PDFs for first data set.
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Figure 4: a Histogram and the fitted PDFs for second data set.
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Figure 5: a Histogram and the fitted PDFs for third data set.

Alpha Power Exponentiated New Weibull-Pareto Distribution: Its Properties and Applications 719



Pak.j.stat.oper.res. Vol.18 No. 3 2022 pp 703-720 DOI: http://dx.doi.org/10.18187/pjsor.v18i3.3937

References

Al-Omari, A. I., Al-khazaleh, A. M., and Al-khazaleh, M. (2019). Exponentiated new weibull-pareto distri-
bution. Investigacidn Operacional, 40(2):165-175.

Alexander, C., Cordeiro, G. M., Ortega, E. M., and Sarabia, J. M. (2012). Generalized beta-generated
distributions. Computational Statistics & Data Analysis, 56(6):1880-1897.

Alzaatreh, A., Lee, C., and Famoye, F. (2013). A new method for generating families of continuous distri-
butions. Metron, 71(1):63-79.

Basheer, A. M. (2019). Alpha power inverse weibull distribution with reliability application. Journal of
Taibah University for Science, 13(1):423-432.

Dey, S., Ghosh, I., and Kumar, D. (2018). Alpha-power transformed lindley distribution: properties and
associated inference with application to earthquake data. Annals of Data Science, pages 1-28.

Dey, S., Nassar, M., and Kumar, D. (2019). Alpha power transformed inverse lindley distribution: A
distribution with an upside-down bathtub-shaped hazard function. Journal of Computational and Applied
Mathematics, 348:130-145.

Eghwerido, J. T., Nzei, L. C., and Agu, F. I. (2020). The alpha power gompertz distribution: Characteriza-
tion, properties, and applications. Sankhya A, pages 1-27.

Elgarhy, M. and Hassan, A. (2019). Exponentiated weibull weibull distribution: Statistical properties and
applications. Gazi University Journal of Science, 32(2):616-635.

Eugene, N., Lee, C., and Famoye, F. (2002). Beta-normal distribution and its applications. Communications
in Statistics-Theory and methods, 31(4):497-512.

Ihtisham, S., Khalil, A., Manzoor, S., Khan, S. A., and Ali, A. (2019). Alpha-power pareto distribution: Its
properties and applications. PloS one, 14(6):0218027.

Jones, M. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages.
Statistical Methodology, 6(1):70-81.

Mahdavi, A. and Kundu, D. (2017). A new method for generating distributions with an application to
exponential distribution. Commaunications in Statistics-Theory and Methods, 46(13):6543-6557.

Meeker, W. and Escobar, L. (1998). Statistical methods for reliability data john wiley & sons new york.
New York.

Nasiru, S. and Luguterah, A. (2015). The new weibull-pareto distribution. Pakistan Journal of Statistics
and Operation Research, pages 103—114.

Nassar, M., Alzaatreh, A., Mead, M., and Abo-Kasem, O. (2017). Alpha power weibull distribution: Prop-
erties and applications. Communications in Statistics-Theory and Methods, 46(20):10236-10252.

Nichols, M. D. and Padgett, W. (2006). A bootstrap control chart for weibull percentiles. Quality and
reliability engineering international, 22(2):141-151.

Risti¢, M. M. and Balakrishnan, N. (2012). The gamma-exponentiated exponential distribution. Journal of
statistical computation and simulation, 82(8):1191-1206.

Torabi, H. and Hedesh, N. M. (2012). The gamma-uniform distribution and its applications. Kybernetika,
48(1):16-30.

ZeinEldin, R. A., Ahsan ul Haq, M., Hashmi, S., and Elsehety, M. (2020). Alpha power transformed inverse
lomax distribution with different methods of estimation and applications. Complexity, 2020.

Zografos, K. and Balakrishnan, N. (2009). On families of beta-and generalized gamma-generated distributions
and associated inference. Statistical methodology, 6(4):344-362.

Alpha Power Exponentiated New Weibull-Pareto Distribution: Its Properties and Applications 720



	1 Introduction
	2 The alpha power exponentiated new Weibull-Pareto distribution 
	2.1 Special cases of the APENWPD
	2.2 Expansion for the PDF.

	3 Properties of the APENWPD
	3.1 Quantile function
	3.2 Moments
	3.3 Moment generating function
	3.4 Characteristic function
	3.5 Mean residual life and mean waiting time
	3.6 Shannon and Rényi entropies
	3.7 Order statistics

	4 Maximum likelihood estimates
	5 Simulation study
	6 Applications
	7 Conclusions



