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Abstract

The Transportation Problem (TP) is a mathematical optimization technique which regulates the flow of items along
routes by adopting an optimum guiding principle to the total shipping cost. However, instances including road hazards,
traffic regulations, road construction and unexpected floods sometimes arise in transportation to ban shipments via
certain routes. In formulating the TPs, potential prohibited routes are assigned a large penalty cost, M, to prevent
their presence in the model solution. The arbitrary usage of the big M as a remedy for this interdiction does not go
well with a good solution. In this paper, a two-phase method is proposed to solve a TP with prohibited routes. The
first phase is formulated as an All-Pairs Least Cost Problem (APLCP) which assigns respectively a non-discretionary
penalty cost M?

ij ≤M to each of n prohibited routes present using the Floyd’s method. At phase two, the new penalty
values are substituted into the original problem respectively and the resulting model is solved using the transportation
algorithm. The results show that, setting this modified penalty cost (M?) logically presents a good solution. Therefore,
the discretionary usage of the M ≤ ∞ is not a guarantee for good model solutions. The modified cost M? ≤ M so
attained in the sample model, is relatively less than the Big M(≤ ∞) and gives a good solution which makes the
method reliable.

Key Words: Adjacency Matrix, All-pairs Least Cost Problem, Floyd’s Method, Large Penalty Cost, Modified Penalty
Cost, Shortest-Route Problems.

Mathematical Subject Classification: 90B06.

1. Background

The transport infrastructure is made up of nodes (such as cities, factories, warehouses, fuel stations, airports, railway
stations) and arcs (such as cables, roads, pipelines, air, rail roads) which are used for the flow of resources using
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vehicles, to satisfy consumer needs. Items may be produced and transported from m sources to n destinations, or
in-between cities to meet supply and demand at a total minimum cost. The TP was introduced in the twentieth
century when Hitchcock (1941) formulated a model for resource allocation. Before Hitchcock’s work, Monge (1781)
formalized the transport theory for the study of optimal transportation and resource allocation. The distribution of
goods across networks is controlled by selecting the best set of shipping routes that minimize total Transportation Cost
(TC) according to Hitchcock (1941). A transportation model is balanced when the number of units supplied equals
the number of units demanded and unbalanced otherwise. Several methods including the Dantzig’s North-west Corner
Rule (NCR), the Least Cost Method (LCM) and the Vogel’s Approximation Method (VAM) developed by Reinfeld
& Vogel (1958), help to find starting solutions to the problem whereas the stepping-stone method by Charnes &
Cooper (1954), and the Modified Distribution (MODI) are used to find optimal solutions. Ackora-Prah et al.
(2016) applied the Euclidean model in an optimal location of a power station in Accra-Ghana. The Euclidean model
minimizes transportation cost T =

∑ζ=m
i=1 Ψiρidi from a target location to m locations with (xi, yi) co-ordinates

using tial−derivatives. Potential situations including traffic regulations, strike actions and poor road conditions arise
to forbid routes and this affects real life activities including transportation. In view of this a large penalty (M≤ ∞) is
assigned to forbidden routes if they appear in transportation models to control the solution process. The introduction
of this penalty in the models removes forbidden routes from the solution. Li et al. (2019) addressed an outsourced
routing decision to minimize total transportation cost in a vehicle routing problem using two algorithms which were
claimed to be effective following their model results. Amaliah et al. (2019) also presented an initial feasible solution
to find a near optimal solution to the TP. They compared their method with the VAM, the Juman and Hoque method
and the Total Differences Method 1 (TDM1) presented by Hosseini (2017) using twenty-four data examples and the
new method was claimed to yield better results. The shortest-path problem (Dijkstra , 1959) is about finding a path
between vertices in a graph such that the total sum of the edge weights is minimum. Prasad & Singh (2020) stood
on the LCM and MODI to propose a two-step exact algorithm (claimed to be effective) for solving balanced and
unbalanced TPs. However, there was no strong conclusions drawn from the study results, though it was claimed to
have been supported with numerical examples of large systems. The shortest-path problem can be defined for graphs
which are undirected, directed, unweighted, weighted or mixed as presented by Aini & Salehipour (2012). These
paths are constructed in time proportional to their lengths according to Seidel (1995). Amongst Dijkstra’s algorithm
shown by Dijkstra (1959), Phil (2010) and Amoako (2019), Bellman–Ford algorithm, Johnson’s algorithm as shown
by Cormen et al. (2001), and others is the Floyd’s method by Floyd which was deliberately designed to solve
shortest-route problems according to Khamami & Saputra (2019). The Floyd’s algorithm by Floyd which is also also
implemented by Ramadhan et al. (2018), simultaneously calculates minimum weights of routes that connect a pair of
points and all pairs of points in a network and it is widely used in determining shortest paths in a graph according to
Iheonu & Inyama (2016). Amoako (2019) defined a network as a set of points and a set of arcs connecting all pairs
of the points where the arcs are associated with a flow. Khamami & Saputra (2019) used a modified version of the
Floyd’s method to develop a Shortest Path Determination Application (SPDA) to control transport routes in a city and
the application yielded good results with accuracy, following a comparative analysis with results from the traditional
Floyd’s method. Kamal et al. (2021) presented a Multi-Objective TP with type-2 trapezoidal fuzzy objective functions.
A two-phase technique was applied in transforming the trapezoidal objective function into an equivalent form and a
Fuzzy Goal Programming (FGP) technique was employed to solve the problem for optimal decisions. Ekanayake et
al. (2021) developed an alternative for finding optimum solutions to TPs in which an iterative scheme was ran for
balanced and unbalanced problems. A comparative analysis was conducted with thirty-five (35) numerical examples
such that, the new method was claimed to be effective. According to Lee et al. (2022), transportation activities
undergo deterioration due to disasters bringing about a ban on shipments along various routes in and around our cities.
Saleh & Shiker (2022) provided a new modification of the VAM to discover initial basic feasible solutions. The study
was supported by numerical examples to yield near optimal results. Kane et al. (2022) applied the transportation
algorithm to solving Fuzzy TPs (FTPs). The fuzzy problems were transformed using a proposed alternative approach,
due to fuzziness (being considered) in rim values and the shipping costs per route, before they were solved. The
proposed method was claimed to be an alternative approach to solving such FTPs with less uncertainty. In contrast
to many other researches that has been done on transportation solution methods, there has not been a consideration of
assigning a non-discretionary cost to prohibited routes in transportation models. This study is therefore motivated to
propose a remedy for the large penalty cost on prohibited routes in TPs using a two-phase technique which comprises
of Floyd and TP methods. This proposal follows the argument that, the big M(≤ ∞) varies potentially up to infinity
as seen in many literatures including Taylor (1999). The new method produced small costs (relative to M), leading
to a good solution. The results show that if a TP has a set of prohibited routes, at least one of them potentially leaves
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the model solution. Furthermore, for all systems (TPs) of order 1 × n or order n × 1 with prohibited routes, each
route becomes a candidate solution; this makes the ‘non-discretionary cost’ approach reliable. The proposed method,
results and discussions are presented in the following sections 2 to 5.

2. The Floyd’s Algorithm

Transportation and communication organizations encounter shortest-route problems due to instances where shortest
distances are required. Finding a shorter route between two endpoints in a graph involves a detour via other points
in that graph. The Floyd’s algorithm shown by Floyd (1962) and Hougardy (2010) solves all-pairs shortest-route
problem based on inductive arguments, following an application of a dynamic programming technique to attain an
adjacency matrix (of all vertices) as indicated by Cormen et al. (1990) of shortest distances in O(n3) computations.
For i := 1, 2, . . . , n and j := 1, 2, . . . , n, let di(i, j) denote (at the ith stage) the potential length of shortest path
between two nodes i and j of n nodes, subject to the condition that this path uses n− 1 internal nodes. Then di?(i, j)
denotes the actual shortest distance between i and j. di(i, j) is computed at the ith stage. The Floyd’s algorithm first
computes di(i, j) for all pairs (i, j) of nodes and terminates after it computes di?(i, j) for all pairs of nodes (i, j).
Therefore, given di(i, j), we have:

di?(i, j) = min
{
di(i, j),

{∑(
di(i, k), di(k, j)

)}
; k(6=i,j) ∈ [1, n]

}
; i, j ∈ [1, n], j 6= i (1)

In this equation (1), k represents the kth internal node in the adjacency matrix, i denotes the immediate stage (row or
column) of the matrix and the

∑(
di(i, k), di(k, j)

)
denotes a detour from the immediate vertex via all internal nodes

which are connected to it in the network. This equation (1) can be applied to solving all-pairs least costs problems in
transportation and other related fields.

3. The Two-phase Method

Variables which represent prohibited routes in TPs rarely appear in optimal solutions due to a large penalty transporta-
tion cost associated with them as illustrated in Table 1.

Table 1: A prohibited route in model solution

PPPPPPPPSi

Pj P3 P1 P2 Supply

S1 M 11 10

150 150 300

S2 7 6 12

250 250

Demand 150 250 150

As an alternative, these variables can be excluded from the model formulation (which shall be discussed later) accord-
ing to Taylor (1999). Equation (2) shows an introduction of the penalty cost C∗ = M for prohibited route into the
objective function of the TP as reported by Iheonu & Inyama (2016).

Min. Z =

m∑
i=1

n∑
j=m+1

C∗
ij
Xij , C

∗
ij
=

{
M for prohibited routes

C
ij

otherwise
(2)

where C∗ is the shipping costs associated with the transport routes and Xij represents the amount of units that can be
shipped from source i to destination j. From the equation (2) it follows that: The TP contains at least one prohibited
route for some C∗ = ∞(≥ M). The penalty cost M in equation (2) approximately equals 1010 according to Floyd
(1962). The two-phase method is proposed to rectify problems of prohibited routes in transportation models. The
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method first replaces the cost M (for prohibited routes) with a modified (non-arbitrary) penalty costs calculated from
the Floyd’s method (using equation (1)) before solving the model.

3.1. The Two-Phase Algorithm

Input: A transportation matrix
Output: An optimal solution
Phase I

Step 1: Develop an adjacency matrix (from an APLCP) to contain nodes (vertices) and determine
by equation (1), the minimum penalties for each prohibited route, using the equation (1).

Step 2: Replace all penalties in the original transportation model with corresponding minimum
penalty costs.

Phase II
Step 3: Solve the resulting model for an optimal solution, using the transportation method.

3.2. Numerical Illustration

In Figure1 below is a network of seven nodes which comprises S1, S2, S3 as sources, and P1, P2, P3, P4 as destina-
tions. Each source Si (i = 1, 2, 3) is linked to all destinations {Pj}4j=1

via SiPj , a set of routes. Given that there are
1000 units available for supply and that, 1000 units are demanded by consumers, the problem’s objective is to decide
on the amount Xij (units) of a single commodity to distribute across the best set of routes in order to minimize the
cost of transportation.

Figure 1: The Transportation Network.

Table 2 represents the problem with costs (for each route), supplies (250, 350, 400) at its sources and demands
(180, 320, 120, 380) at its destinations.

A Two-Phase Method for Solving Transportation Models with Prohibited Routes. 752



Pak.j.stat.oper.res. Vol.18 No.3 2022 pp 749-758 DOI: http://dx.doi.org/10.18187/pjsor.v18i3.3911

Table 2: Represents TP data with costs, supplies and demands.

PPPPPPPPSi

Pj P1 P2 P3 P4 Supply

S1 9 14 12 17

250

S2 11 10 6 10

350

S3 12 8 15 7

400

Demand 180 320 120 380

The objective of this problem is defined as to:

Min.Z= 9x
11

+ 14x
12

+ 12x
13

+ 17x
14

+ 11x
21

+ 10x
22

+ 6x
23

+ 10x
21

+ 12x
31

+ 8x
32

+ 15x
33

+ 7x
34

S.t.: x11 + x12 + x13 + x14 = 250
x21 + x22 + x23 + x21 = 350
x

31
+ x

32
+ x

33
+ x

34
= 400

x
11

+ x
21

+ x
31

= 180
x

12
+ x

22
+ x

32
= 320

x
13

+ x
23

+ x
33

= 120
x14 + x21 + x34 = 380

xij ≥ 0
(3)

where Z in the equation 3 is the objective function, the set of three lines in equation 3 denotes the supply constraints,
the set of four lines in equation 3 represents the demand constraints, and the equation 3 denotes feasibility (non-
negativity) constraints.

4. Results and Discussion

4.1. Optimal Solution to the Original problem

Table 3 shows the optimal solution (shipment list) to the original problem (with no prohibited routes), where X14 =
180 units (See Table 3, column 3 ) can be transported via the route S1P1 at a per unit cost of 9 (See Table 3, column
4 ) and total cost of 1, 620 (See Table 3, column 5 ), in the same way with the other routes, yielding the optimal value
as 8440.

Table 3: Represents Optimal solution.

From ( Si) To (Pj) Shipment (Xij) Cost per unit (Cij) Shipment cost
S1 P1 180 9 1, 620
S1 P2 70 14 980
S2 P2 230 10 2, 300
S2 P3 120 6 720
S3 P2 20 8 160
S3 P4 380 7 2, 660
Optimal value (Z): 8440
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4.2. Optimal Solution due to prohibited routes

4.2.1. Solution due to interdiction along one route

Suppose that there is a ban on shipments along the route S1P1 in the above problem (equation (3)). Then the shipping
cost associated with this route is M (very large, as shown in Table 4) such that, the objective function is defined as to:

Min. Z = M x
11
+14x

12
+12x

13
+17x

14
+11x

21
+10x

22
+6x

23
+10x

21
+12x

31
+8x

32
+15x

33
+7x

34
(4)

subject to the model constraints in equation (3). According to phase I of the two-phase algorithm, Table 5 forms the

Table 4: Represents TP data with prohibited route(s).

PPPPPPPPSi

Pj P1 P2 P3 P4 Supply

S1 M 14 12 17

250

S2 11 10 6 10

350

S3 12 8 15 7

400

Demand 180 320 120 380

associated adjacency matrix (for the APLCP) to this objective.

Table 5: Represents Adjacency Matrix associated with the model objective equation (4)

S1 S2 S3 P1 P2 P3 P4

S1 0 ∞ ∞ M 14 12 17
S2 ∞ 0 ∞ 11 10 6 10
S3 ∞ ∞ 0 12 8 15 7
P1 M 11 12 0 ∞ ∞ ∞
P2 14 10 8 ∞ 0 ∞ ∞
P3 12 6 15 ∞ ∞ 0 ∞
P4 17 10 7 ∞ ∞ ∞ 0

Table 6 shows the transportation costs (including the modified penalty cost M?
11 = 29) for each route which are

calculated from equation (1).

Table 6: Represents Shipping costs calculated from the first phase of Two-Phase Algorithm

S1 S2 S3 P1 P2 P3 P4

S1 0 18 22 29 14 12 17
S2 18 0 17 11 10 6 10
S3 22 17 0 12 8 15 7
P1 29 11 12 0 20 17 19
P2 14 10 8 20 0 16 15
P3 12 6 15 17 16 0 16
P4 17 10 7 19 15 16 0

According to the second phase of the Two-Phase algorithm, Table 7 shows the optimal solution to the prohibited
problem and the objective value is 9520. The forbidden route S1P1 is excluded from this solution, since (from Table
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7) shipments are banned from S1 to P1.

Table 7: Represents Optimal solution due to interdiction on S1P1.

From ( Si) To (Pj) Shipment (Xij) Cost per unit (Cij) Shipment cost
S1 P2 250 14 1350
S2 P1 180 11 1980
S2 P2 50 10 500
S2 P3 120 6 720
S3 P2 20 8 160
S3 P4 380 7 2660
Optimal value (Z): 9520

The model equation (3) is solved using the same procedure with interdiction at different times, recorded in Table (8)
where each route corresponds with a penalty cost (M?) and objective value, respectively below them from left to right.
Each objective values were obtained using the Two-Phase algorithm.

Table 8: Represents Optimal value to the same problem in equation (3) with interdiction at different times.

Time: 1 2 3 4 5 6 7 8 9 10 11

Prohibited route: S1P2 S1P3 S1P4 S2P1 S2P2 S2P3 S2P4 S3P1 S3P2 S3P3 S3P4

Modified Penalty
(
M?
ij

)
: 27 28 28 25 27 26 32 23 28 25 28

Optimal value (Z) : 8580 8440 8440 8440 8670 8980 8440 8440 8620 8440 9870

4.2.2. Solution due to interdiction along two routes

Considering interdiction along S1P2 and S2P3 in model equation (3), the objective function becomes:

Min. Z = 9x
11
+ M x

12
+ 12x

13
+ 17x

14
+ 11x

21
+ 10x

22
+ M x

23
+ 10x

21
+ x

31
+ 8x

32
+ 15x

33
+ 7x

34
(5)

subject to the model constraints in equation (3), and Table 9 forms the adjacency matrix (representing the APLCP) for
the problem.

Table 9: Represents Adjacency matrix associated with the model equation (5)

S1 S2 S3 P1 P2 P3 P4

S1 0 ∞ ∞ 9 M 12 17
S2 ∞ 0 ∞ 11 10 M 10
S3 ∞ ∞ 0 12 8 15 7
P1 9 11 12 0 ∞ ∞ ∞
P2 M 10 8 ∞ 0 ∞ ∞
P3 12 M 15 ∞ ∞ 0 ∞
P4 17 10 7 ∞ ∞ ∞ 0

According to the Two-Phase algorithm, Table 10 gives the transportation costs for each route (with M?
12 = 29 and

M?
32 = 32) , and Table 11 shows the optimal solution to the prohibited problem and the objective value is 8980.
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Table 10: Represents Shipping costs calculated from the first phase of the Two-Phase Algorithm.

S1 S2 S3 P1 P2 P3 P4

S1 0 20 21 9 29 12 17
S2 20 0 17 11 10 32 10
S3 21 17 0 12 8 15 7
P1 9 11 12 0 20 21 19
P2 29 10 8 20 0 23 15
P3 12 32 15 21 23 0 22
P4 17 10 7 19 15 22 0

Table 11: Represents Optimal solution due to interdiction on S1P2 and S2P3.

From ( Si) To (Pj) Shipment (Xij) Cost per unit (Cij) Shipment cost
S1 P1 130 9 1170
S1 P3 120 12 1440
S2 P1 50 11 550
S2 P2 300 10 3000
S3 P2 20 8 160
S3 P4 380 7 2660

Optimal value (Z): 8980

4.2.3. Solution due to interdiction along four routes

As another example, suppose an interdiction on the routes: S1P1, S2P3, S3P2 and S3P4 in the model equation (3)
such that, its objective is defined as to:

Min. Z = M x
11
+14x

12
+12x

13
+17x

14
+11x

21
+10x

22
+ M x

23
+10x

21
+12x

31
+ M x

32
+15x

33
+ M x

34
(6)

subject to the model constraints in equation (3). Table 12 forms the adjacency matrix (representing the APLCP) for the
problem, Table 13 gives the transportation costs for each route (withM?

11 = 35, M?
23 = 36,M?

32 = 33 andM?
34 = 33)

, and Table 14 shows the optimal solution to the associated TP and the objective value is 14260.

Table 12: Represents Adjacency Matrix associated with the model objective equation (6).

S1 S2 S3 P1 P2 P3 P4

S1 0 ∞ ∞ M 14 12 17
S2 ∞ 0 ∞ 11 10 M 10
S3 ∞ ∞ 0 12 M 15 M

P1 M 11 12 0 ∞ ∞ ∞
P2 14 10 M ∞ 0 ∞ ∞
P3 12 M 15 ∞ ∞ 0 ∞
P4 17 10 M ∞ ∞ ∞ 0

A Two-Phase Method for Solving Transportation Models with Prohibited Routes. 756



Pak.j.stat.oper.res. Vol.18 No.3 2022 pp 749-758 DOI: http://dx.doi.org/10.18187/pjsor.v18i3.3911

Table 13: Represents Shipping costs calculated from the first phase of the Two-Phase Algorithm.

S1 S2 S3 P1 P2 P3 P4

S1 0 24 27 35 14 12 17
S2 24 0 23 11 10 36 10
S3 27 23 0 12 33 15 33

P1 35 11 12 0 21 27 21
P2 14 10 33 21 0 26 20
P3 12 36 15 27 26 0 29
P4 17 10 33 21 20 29 0

Table 14: Represents Optimal solution due to interdiction on S1P1, S2P3, S3P2 and S3P4.

From ( Si) To (Pj) Shipment (Xij) Cost per unit (Cij) Shipment cost
S1 P2 250 14 3500
S2 P4 350 10 3500
S3 P1 180 12 2160
S3 P2 70 33 2310
S3 P3 120 15 1800
S3 P4 30 33 990
Optimal value (Z): 14260

5. Conclusions

Recent studies showed that, the use of M (very large) has widely been accepted as shipping cost in prohibited TPs.
It has however been noticed that, this arbitrary usage is not a guarantee for good solutions. In this paper, the Two-
Phase Method has been presented to discover an actual penalty value (of M ) for this course. The method solves
as a hybrid of Floyd-Warshall algorithm (for shortest-route problems), and the transportation algorithms. Implying
from study results, the modified penalty cost (M? - known) associated with routes in transportation is very useful for
the management of supply-chain activities. Table 8 shows optimal value to the same problem in equation (3) with
interdiction at different times. The results from this Table 8 imply that, prohibited routes are potential candidates in
solutions and that, their presence in solution (as shown in Table 14) leads to some increase in the objective value.
Hence, the provision of known penalties for prohibited routes in transportation is useful rather than the arbitrary use of
large penalties. As another implication drawn from this study, the use of this known penalty costs (M?) minimizes the
risk of attaining unbounded solutions to the problem. This study therefore provides insights about prohibited routes
in transportation models and adds to the extant knowledge in the literature of network optimization, by modifying the
penalty cost associated with prohibited routes in transportation models for a good solution.
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