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Abstract  

The Poisson regression model (PRM) is usually applied in the situations where the dependent variable is in the 

form of count data. The purpose of this study is to compare methods of estimation for the Poisson Regression 

Model's first-order autocorrelation (AR(1)). The Kibria and Lukman Estimator Method (KL), Generalized Least 

Square Estimator Method (GLS), the Liu Estimator Method (LE), and the Reduction Liu Estimator Method (RLE) 

were employed. Monte Carlo simulations are used to compare these methods. The data generated follows Poisson 

Regression Model, however because of sample size and autocorrelation levels among other things, to create first-

order autocorrelation among random errors. The Mean square  Error (MSE) criterion was used for comparison. The 

methods are also evaluated on actual data, Moreover, the findings demonstrated that the KL approach is superior 

to the other estimation techniques in terms of its performance. 

 

Key Words: Poisson Regression Model  ،Autocorrelation Problem, KL Estimator, GLS Estimator, RLE Estimator, 

LE Estimator. 

 

1. Introduction 

The Poisson distribution is considered one of the important discrete probability distributions in many statistical 

applications, and it is sometimes called the distribution of rare events such as ship collisions, plane crashes and other 

examples that are classified as rare. The Poisson distribution represents an approximate case of the binomial 

distribution, as shown by the French mathematician and physicist (Simeon Poisson), and after whom the distribution 

is named (Nouri and Abdul Latif (2019)). 

 

Alkhateeb and Algamal (2020) proposed a Jackknifed Liu-type Poisson estimator (JPLTE) in the Poisson regression 

model with the presence of multicollinearity problem. and the researchers compared the proposed estimator with the 

maximum likelihood estimator (MLE), the Liu estimator LE, and the Liu-type estimator (LTE). Through studying the 

simulation and applying it to a set of real data, the researchers concluded that the JPLTE estimator outperforms both 

the LE estimator and the (MLE) estimator in terms of predictive performance. In 2021, Amin et al propose a new 

adjusted Poisson Liu estimator (APLE) for the Poisson regression model PRM with the multicollinearity problem. 

The researchers compared the proposed estimator with the maximum likelihood estimator (MLE), Liu estimator LE, 

and ridge regression estimator (RR). From the findings of simulation study and two empirical applications, the 

researchers concluded that the proposed estimator is superior based on the mean square error criterion.  In the same 

year, (Lukman et al) proposed the KL estimator with some biasing parameters to estimate the regression coefficients 

for the PRM when there is multicollinearity problem. Two methods were also proposed to estimate the estimator 

parameter (C). The estimator was compared with the maximum likelihood estimator (LM), the ridge regression 

estimator (RR) and the Liu estimator LE. Using the simulation method and application to aircraft damage data, the 

researchers reached the superiority of the proposed estimator based on the mean square error criterion. In the year 

(2022), (Açar) compared the (Kibria-LukmanKL) estimator with the (Liu) estimator, the (Ridge) estimator, and the 

GLS estimator in the presence AR(2) in the linear regression model. The researcher concluded, through a simulation 

study and application on two real examples, that the KL estimator is superior based on the mean square error criterion. 

In the same year, (Lukman et al) proposed a modified ridge-type estimator to address the problem of multicollinearity 

in PRM. The proposed estimator was compared with Liu's LE estimator, the ridge slope estimator (RR) and the 

maximum likelihood estimator LE. The researchers concluded, using the simulation method and application to aircraft 
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damage data, that the proposed estimator is superior based on the MSE criterion. Ibrahim and Alheety (2023)  proposed 

the Almost Unbiased Kibria-Lukman estimator in the Poisson regression model with multicollinearity problem. The 

researchers compared the proposed estimator with the Kibria-Lukman estimator and ridge regression estimator. and 

The bias and variance matrices of the proposed estimator are derived and compared to other estimators.  At the end a 

real data set has been used to investigate the performance of the proposed estimator, the researchers concluded that 

the new estimator is most effective.  In 2024, Abdelwahab et al proposed a Modified Two-Parameter Liu Estimator 

(MTPLE) for addressing the multicollinearity problem in the Poisson regression model PRM. The proposed estimator 

was compared with the Adjusted Liu Estimator (ALE), Liu estimator, Ridge Regression Estimator (RRE), and 

maximum likelihood estimator (MLE). Through simulation study and two empirical applications, the researchers 

concluded that the proposed estimator is superior based on the mean square error criterion. 

 

Assuming that 𝑌𝑖  represents a discrete random variable that represents the number of times a certain event occurs 

during a certain time period, then(𝑌𝑖) follows a Poisson distribution with a parameter of (𝜇), and the probability 

density function for this distribution is 

𝑓(𝑦𝑖) = {

𝑒−𝜇𝑖𝜇𝑖
𝑦𝑖

𝑦𝑖!
                   𝑌𝑖 = 0,1,2, …  , 𝑖 = 1,2, … , 𝑛

0                                   𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

                                       (1) 

where( 𝜇) represents the distribution parameter and has a positive value (𝜇 > 0), for more details see Rashad and 

Algamal (2019) and Lukman et al. (2021).  

 

Regression models are divided into two sections: linear regression models and non-linear regression models. The 

Poisson Regression Model PRM is considered one of the types of linear-logarithmic regression models. By taking the 

natural logarithm of the distribution formula, it is converted into a linear formula. Random errors in the model follow 

the Poisson distribution with a parameter of (𝜇), and then the dependent variable (𝑌𝑖) is distributed according to the 

same distribution. The Poisson Regression Model is considered the method through which the response variable is 

modeled when the values of that variable are in the form of counted data or in the form of rates. In addition to being 

the appropriate model for analyzing rare events, that is, it is the appropriate tool for analyzing rare events with data 

that have non-negative values. PRM can be expressed according to the following formula (see Winkelmann, 2008 and 

Davis et al, 2000) 

 

𝑌 = 𝑒𝑋𝛽+𝜀                                                                                                             (2) 

Where 𝑌  represents the vector of the dependent variable with degree (𝑛 × 1), 𝑋  represents the matrix of explanatory 

variables with degree 𝑛 × (𝑝 + 1), 𝛽 represents the vector of model parameters with degree (𝑝 + 1) × 1, 𝜀 represents 

the vector of random errors with degree (𝑛 × 1), n represents the sample size, and (𝑝) represents the number of 

explanatory variables. 

 

 Due to Kazem and Muslim, 2002, The ordinary least squares method depends on several basic assumptions, including 

the assumption of the absence of autocorrelation between random errors in the sample under investigation, or in other 

words 

 

𝐸(𝜀𝑖 𝜀𝑗) = 0             ∀ 𝑖 ≠ 𝑗             𝑖, 𝑗 = 1,2, … , 𝑛 

In the case where the phenomenon under study includes the existence of an autocorrelation between errors, the 

hypothesis becomes as follows:  

𝐸(𝜀𝑖 𝜀𝑗) ≠ 0          ∀  𝑖 ≠ 𝑗 

This means that the value of the random error in period 𝑖 is not independent from the value in period 𝑗. In the presence 

of the problem of autocorrelation, the application of the ordinary least squares (OLS) method will not be efficient has 

many effects on the characteristics of the estimated regression coefficients, as it loses its efficiency, the results of the 

(F, T) tests are less accurate and cannot be relied upon, the inaccuracy of confidence intervals, the value of the 

coefficient of determination is higher than its true value, the standard errors of the regression model coefficients are 

less than their true values, and thus the model predictions become inaccurate. Autocorrelation can be defined as the 

association of successive observations of the same variable in time series data or cross-sectional data, or the lack of 

independence of the value of the random variable ( 𝜀𝑖 )in a specific time from its value in a previous time. (Imran, 

2003) (Tali, 2022) (Anono and Osagie, 2021) 

The study of the Poisson regression model, in which random errors follow the Poisson distribution and are used in the 

analysis of rare events in terms of estimating parameters when that model suffers from various problems, has recently 
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begun to accept a wide space in modern statistical studies. Accordingly, this research addresses the Poisson regression 

model when there is a problem of first-order autocorrelation AR(1) between random errors. 

 

2. Methodology 

2.1 Liu Estimator Method  

Liu's method (1993) was proposed for the linear regression model in the presence of the multicollinearity problem, as 

this method addresses the problem of variance inflation of the estimated model parameters. In this research, this 

method was used in the presence of the first-order autocorrelation problem AR(1) in the Poisson regression model (for 

more details see (Alheety and Kibria,2009 and Amin et al, 2021, Naya et al, 2008). By taking the natural logarithm of 

the model formula given in Equation (2) to convert it to the linear formula, we get:   

log(𝑌) = log{𝑒𝑋𝛽+𝜀} 

𝑌∗ = 𝑋𝛽 + 𝜀                                                                                       (3) 

Where 𝑌∗ = log(𝑌), and if the error of the above model follows the first-order autocorrelation AR(1), that is 

𝜀𝑖 = 𝜌𝜀𝑖−1 + 𝑒𝑖                                                                                   (4) 

Where 𝜌 represents the autocorrelation parameter|𝜌| ≤ 1, and 𝑒𝑖 represents the first-order autoregressive error. 

Adopting the constraint set by (Liu), we get 

𝜀′𝜀 = (𝑑�̂�𝐺𝐿𝑆 − �̂�𝐿𝐸)
′

(𝑑�̂�𝐺𝐿𝑆 − �̂�𝐿𝐸)                                                        (5) 

Where (𝜀′𝜀 )represents the amount of increase in the mean square error if the vector of parameters estimated using 

the general least squares GLS method is replaced by the vector of parameters estimated using the Liu method, 

 (�̂�𝐿𝐸 , )represents the vector of parameters estimated using the LE method, (�̂�𝐺𝐿𝑆 )GLS represents the vector of 

parameters estimated using the General Least Squares GLS method, and d represents the bias parameter, which is a 

small positive quantity with a value of (0 < 𝑑 < 1). After the process of neutralizing the model and placing the 

constraint, the square of the errors for the model under study is taken with the addition of the constraint, and then the 

result is derived with respect to the ( �̂�𝐿𝐸  )vector as follows:- 

𝜀′Ω−1𝜀  = (𝑌∗ − 𝑋�̂�𝐿𝐸)
′Ω−1 (𝑌∗ − 𝑋�̂�𝐿𝐸) + (𝑑�̂�𝐺𝐿𝑆 − �̂�𝐿𝐸)

′(𝑑�̂�𝐺𝐿𝑆 − �̂�𝐿𝐸) 

Which can expressed as 

𝑌∗′Ω−1𝑌∗ − 2�̂�𝐿𝐸𝑋
′Ω−1𝑌∗ + �̂�𝐿𝐸

′ 𝑋′Ω−1𝑋�̂�𝐿𝐸 + 𝑑
′�̂�𝐺𝐿𝑆
′ �̂�𝐺𝐿𝑆𝑑 − 2𝑑�̂�𝐺𝐿𝑆�̂�𝐿𝐸 + �̂�𝐿𝐸

′ �̂�𝐿𝐸           (6) 

Where (Ω−1 )represents the correlation matrix of degree 𝑛 × 𝑛 and it is as follows:  

𝜕𝜀′Ω−1𝜀

𝜕�̂�𝐿𝐸
= −2𝑋′Ω−1𝑌∗ + 2𝑋′Ω−1𝑋�̂�𝐿𝐸 − 2𝑑�̂�𝐺𝐿𝑆 + 2�̂�𝐿𝐸                                          (7) 

By equating the above equation to zero, we obtain the (Liu) estimators of the  parameters 

�̂�𝐿𝐸 = (𝑋
′Ω−1𝑋 + 𝐼)−1 (𝑋′Ω−1𝑌∗ + 𝑑�̂�𝐺𝐿𝑆)                                                               (8) 

�̂�𝐺𝐿𝑆 = (𝑋
′Ω−1𝑋)−1𝑋′Ω−1𝑌∗                                                                                           (9) 

𝑋′Ω−1𝑌∗ = (𝑋′Ω−1𝑋)�̂�𝐺𝐿𝑆                                                                                             (10) 

By substituting equation (10) in equation (8), we obtain another form for the (Liu) estimators of the  parameters as 

follows: (Ahmed et al, 2020) (Alkhateeb and Algamal, 2020) (AÇAR, 2022) (Mansson et al, 2012) 

�̂�𝐿𝐸 = (𝑋
′Ω−1𝑋 + 𝐼)−1(𝑋′Ω−1𝑋 + 𝑑𝐼)�̂�𝐺𝐿𝑆                                                              (11) 

Liu estimators are biased when (𝑑 > 0) and the bias is: (Amin et al, 2021) 

𝐵𝑖𝑎𝑠 (�̂�𝐿𝐸) = 𝐸 (�̂�𝐿𝐸) − 𝛽  = (𝑑 − 1)(𝑋
′Ω−1𝑋 + 𝐼)−1𝛽                                                   (12) 

The covariance matrix of Liu's estimators is as follows: (Abdelwahab et al, 2024) 

𝐶𝑜𝑣 (�̂�𝐿𝐸) = 𝜎
2(𝑋′Ω−1𝑋 + 𝐼)−1(𝑋′Ω−1𝑋 + 𝑑𝐼)(𝑋′Ω−1𝑋)−1(𝑋′Ω−1𝑋 + 𝑑𝐼)(𝑋′Ω−1𝑋 + 𝐼)−1    (13) 

Due to Algamal (2018), the mean square error MSE of the estimated Poisson regression model parameters using the 

Liu estimator is as follows:  

𝑀𝑆𝐸 (�̂�𝐿𝐸) = 𝐸(�̂�𝐿𝐸 − 𝛽)
′ (�̂�𝐿𝐸 − 𝛽)  

= 𝜎2∑
(𝜆𝑗 + 𝑑)

2 

𝜆𝑗(𝜆𝑗 + 1)
2

𝑝

𝑗=1

+ (𝑑 − 1)2   ∑
𝛼𝑗
2

(𝜆𝑗 + 1)
2

𝑝

𝑗=1

                                (14) 

2.1.1 Calculating Liu Parameter  
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The Liu estimator (Perveen and Suhail (2023) and Mansson et al. (2011) is biased due to adding the value of 𝑑, and 

this value ranges between (0 < 𝑑 < 1), and to find the proposed estimators for 𝑑, the optimal value for it must be 

found, by deriving formula (14) for (d) as follows 

𝜕𝑀𝑆𝐸(�̂�𝐿𝐸)

𝜕𝑑
= 2∑

𝜆𝑗 + 𝑑

𝜆𝑗(𝜆𝑗 + 1)
2
+ 2(𝑑 − 1)∑

𝛼𝑗
2

(𝜆𝑗 + 1)
2
                             (15)

𝑝

𝑗=1

𝑝

𝑗=1

 

By setting the derivative value above equal to zero, we get: 

𝜕

𝜕𝑑
𝑀𝑆𝐸(�̂�𝐿𝐸) = 2∑

𝜆𝑗 + �̂�

𝜆𝑗(𝜆𝑗 + 1)
2

𝑝

𝑗=1

+ 2(�̂� − 1)∑
𝛼𝑗
2

(𝜆𝑗 + 1)
2

𝑝

𝑗=1

= 0                                (16) 

By performing some algebraic operations, we get: 

�̂� =
𝛼𝑗
2 − 1

1
𝜆𝑗
+ 𝛼𝑗

2
                                                                                     (17) 

The above value represents the optimal value for 𝑑, and this value is negative if the value of (𝛼𝑗
2) is less than one, and 

is positive if the value of 𝛼𝑗
2  is greater than one, see Alkhateeb and Algamal (2020) and Mansson et al. (2012). The 

estimation of the value of the bias parameter (d) is not limited to a specific rule, as a single value for this parameter 

can be found using several formulas. In this research, the following formula was used: (Qasim et al, 2020) 

𝐷13 = 𝑚𝑎𝑥

(

 
 
0,𝑚𝑖𝑛(

�̂�𝑗
2 − 1

max (
1
𝜆𝑗
) + max (�̂�𝑗

2)
)

)

 
 
                                                     (18) 

The LE estimator of the Poisson regression model parameters is found by substituting the above formula into (11). 

 

2.2 Reduced Liu Estimator Method                                     

Based on the constraint adopted by Liu and defined in formula (5), but the explanatory variables will be replaced by 

the following abbreviated form 

𝑍 = 𝑋𝑇𝑟                                                                                                          (19) 
Where 𝑍 represents a new vector of reduced variables, T represents an orthogonal matrix and    𝑇𝑟 = (𝑇1, 𝑇2, 𝑇3,⋯ , 𝑇𝑟) 

𝑍′Ω−1𝑍 = 𝑇𝑟
′𝑋′Ω−1𝑋𝑇𝑟 = ∆𝑟= 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, 𝜆3, ⋯ , 𝜆𝑟) 

And ∆𝑟 represents a diagonal matrix of the eigenvalues of the matrix(𝑋′Ω−1𝑋), and the characteristic roots (𝜆𝑖) of the 

matrix( 𝑋′Ω−1𝑋 ) are arranged as 

𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ ⋯ ≥ 𝜆𝑝 > 0 

Therefore, the constraint that Liu put for the new reduced variables is as follows : 

𝜀′𝜀 = (𝑑𝑇𝑟�̂�𝐺𝐿𝑆 − �̂�𝑅𝐿𝐸)
′

(𝑑𝑇𝑟�̂�𝐺𝐿𝑆 − �̂�𝑅𝐿𝐸)                                                            (20) 

After the model neutralization process and placing the constraint, the square of the errors of the  is taken with the 

addition of the constraint and then the model is derived with respect to the vector of parameters estimated according 

to the RLE method as follows  

𝜀′Ω−1𝜀 = (𝑌∗ − 𝑍�̂�𝑅𝐿𝐸)
′

Ω−1 (𝑌∗ − 𝑍�̂�𝑅𝐿𝐸) + (𝑑𝑇𝑟�̂�𝐺𝑙𝑆 − �̂�𝑅𝐿𝐸)
′

(𝑑𝑇𝑟�̂�𝐺𝑙𝑆 − �̂�𝑅𝐿𝐸) 

and 

𝜀′Ω−1𝜀 = 𝑌∗′Ω−1𝑌∗ − 2�̂�𝑅𝐿𝐸𝑍
′Ω−1𝑌∗ + �̂�𝑅𝐿𝐸

′ 𝑍′Ω−1𝑍�̂�𝑅𝐿𝐸 + 𝑑𝑑
′�̂�𝐺𝐿𝑆
′ 𝑇𝑟

′𝑇𝑟�̂�𝐺𝑙𝑠 − 2𝑑�̂�𝑅𝐿𝐸
′ 𝑇𝑟�̂�𝐺𝑙𝑆 + �̂�𝑅𝐿𝐸

′ �̂�𝑅𝐿𝐸   (21) 

By deriving the above equation with respect to the parameter vector (�̂�𝑅𝐿𝐸) we get: 

𝜕

𝜕�̂�𝑅𝐿𝐸
𝜀′Ω−1𝜀 = −2𝑍′Ω−1𝑌∗ + 2𝑍′Ω−1𝑍�̂�𝑅𝐿𝐸 − 2𝑑𝑇𝑟�̂�𝐺𝑙𝑠 + 2�̂�𝑅𝐿𝐸                                  (22) 

By equating the above equation to zero, we obtain the RLE estimators of the PRM parameter as follows: 

�̂�𝑅𝐿𝐸 = (𝑍
′Ω−1𝑍 + 𝐼)−1 (𝑍′Ω−1𝑌∗ + 𝑑𝑇𝑟�̂�𝐺𝑙𝑠)                                                        (23) 

𝑍′Ω−1𝑌∗ = (𝑍′Ω−1𝑍)𝑇𝑟�̂�𝐺𝑙𝑠                                                                                           (24) 

By substituting equation (24) in equation (23), we obtain another form for the RLE estimators of the  parameters, as 

follows 

�̂�𝑅𝐿𝐸 = (𝑍
′Ω−1𝑍 + 𝐼)−1(𝑍′Ω−1𝑍 + 𝑑𝐼)𝑇𝑟�̂�𝐺𝑙𝑠                                                           (25) 
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Where ( �̂�𝑅𝐿𝐸 ) represents the vector of parameters estimated according to the RLE method. RLE estimators are biased 

when (𝑑 > 0) and the bias is: 

𝐵𝑖𝑎𝑠 (�̂�𝑅𝐿𝐸) = 𝐸 (�̂�𝑅𝐿𝐸) − 𝛽 = 𝑈𝛽 − 𝛽=(𝑈 − 𝐼)𝛽                                                                 (26) 

Where: 

𝑈 = (𝑍′Ω−1𝑍 + 𝐼)−1(𝑍′Ω−1𝑍 + 𝑑𝐼)𝑇𝑟                                                                        (27) 
The covariance matrix of the RLE is as follows: 

𝐶𝑜𝑣 (�̂�𝑅𝐿𝐸) = 𝑈 𝑉𝑎𝑟 − 𝐶𝑜𝑣 (�̂�𝑅𝐿𝐸)𝑈
′ = 𝜎2𝑈(𝑍′Ω−1𝑍)−1𝑈′                                                                  (28) 

The mean square error of the PRM parameters estimated using the RLE estimator is as follows     

𝑀𝑆𝐸(𝛽𝑅𝐿𝐸) =∑
(𝜆𝑗 + 𝑑)

2 

𝜆𝑗(𝜆𝑗 + 1)
2

𝑝

𝑗=1

+ (𝑑 − 1)2   ∑
𝛼𝑗
2

(𝜆𝑗 + 1)
2

𝑝

𝑗=1

                                     (29) 

3.2 Kibria and Lukman Estimator Method KL 

The (Kibria and Lukman) method was proposed in (2020) by (Kibria and Lukman) to address the problem of 

multicollinearity in the linear regression model. In (2021) (Zubair and Adenomon) proposed a new combined estimator 

that addresses the problem of autocorrelation in the linear regression model by merging (The Two Stage Prais Winsten 

Estimator) with (Kibria and Lukman Estimator) and obtaining a new estimator which can address the problem of 

autocorrelation and multicollinearity together. In (2022) the researcher (AÇAR) used (Kibria-Lukman) estimator to 

address the problem of second-order autocorrelation in the general linear regression model and proved its superiority 

over the general least squares estimator. In (2023), (Ibrahim and Alheety) used the (Kibria and Lukman Estimator) to 

address the problem of multicollinearity in the Poisson regression model, but the KL estimator was not addressed in 

the presence of the first-order autocorrelation problem AR(1) in the Poisson regression model, and this is what will 

be addressed in this research as follows: (Zubair and Adenomon, 2021) . 

We multiply formula No. (3) by matrix (S) to purify data from the effect of autocorrelation, so we get (Anono and 

Osagie, 2021) (Ibrahim and Alheety, 2023) (AÇAR, 2022) 

𝑌∗ = 𝑋𝛽 + 𝜀                                                                                                         

𝑆𝑌∗ = 𝑆𝑋𝛽 + 𝑆𝜀                                                                                            (30) 

𝑦 = 𝑋∗𝛽 + 𝜀∗                                                                                             (31) 

where 

𝑦 = 𝑆𝑌∗   ,       

𝑋∗ = 𝑆𝑋    ,   𝜀∗ = 𝑆𝜀     

If the matrix (S) can be determined such that(𝑆Ω𝑆′ = 𝐼  , 𝑆′𝑆 = Ω−1) then the general least squares GLS estimates of 

the transformed variables(𝑆𝑌∗)  and (𝑆𝑋) ,defined in the above equation, have all the optimal properties of the GLS 

method and thus the usual conclusions can be valid.  

Where S is the non-singular error correlation matrix of degree (𝑛 × 𝑛) and it is as follows 

𝑆 =

(

 
 

√1 − 𝜌2 0 0 ⋯ 0 0

−𝜌 1 0 ⋯ 0 0
0 −𝜌 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 0 ⋯ −𝜌 1)

 
 

 

By taking the square of the errors for the model under study, we get:  

𝜀∗′𝜀∗ = (𝑌∗ − 𝑋𝛽)′𝑆′𝑆 (𝑌∗ − 𝑋𝛽) + 𝐶{(𝛽 + �̂�𝐺𝐿𝑆)
′ (𝛽 + �̂�𝐺𝐿𝑆) − 𝑅} 

= 𝑌∗′𝑆′𝑆𝑌∗ − 2𝛽′𝑋′𝑆′𝑆𝑌∗ + 𝛽′𝑋′𝑆′𝑆𝑋𝛽 + 𝐶𝛽2 + 2𝐶𝛽′�̂�𝐺𝐿𝑆 + 𝐶�̂�𝐺𝐿𝑆
2 + 𝐶𝑅, 

Which can be simplified as 

𝑌∗′Ω−1𝑌∗ − 2𝛽′𝑋′Ω−1𝑌∗ + 𝛽′𝑋′Ω−1𝑋𝛽  + 𝐶𝛽2 + 2𝐶𝛽′�̂�𝐺𝐿𝑆 + 𝐶�̂�𝐺𝐿𝑆
2 + 𝐶𝑅                (32) 

By deriving the above equation with respect to the parameter vector (𝛽′), we get 

𝜕𝜀∗
′
𝜀∗

𝜕𝛽′
= −2𝑋′Ω−1𝑌∗ + 2𝑋′Ω−1𝑋𝛽 + 2𝐶𝛽 + 2𝐶�̂�𝐺𝐿𝑆                                           (33) 

By equating the above derivative to zero, we get 

(𝑋′Ω−1𝑋 − 𝐶𝐼)�̂�𝐺𝐿𝑆 = (𝑋
′Ω−1𝑋 + 𝐶𝐼)𝛽                                                                    (34) 
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After finding the GLS estimator, the KL estimator can be obtained to address the problem of autocorrelation in the , 

which is as follows (Zubair and Adenomon, 2021) (Aladeitan et al, 2021) 

�̂�𝐾𝐿 = (𝑋
′Ω−1𝑋 + 𝐶𝐼)−1(𝑋′Ω−1𝑋 − 𝐶𝐼)�̂�𝐺𝐿𝑆    , 𝑘 > 0                                             (35) 

To obtain the KL estimator, the value of (C) must be estimated, and a new value for (C) will be proposed to improve 

the KL estimator, which is as follows 

𝐶𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 =
1

𝑚𝑒𝑛 (𝛼𝑗
2)
�̂�,                                                                                                   (36) 

where 

�̂� =
1

𝑛 − 𝑝
∑ (𝑌𝑖

∗ − 𝜇𝑖)
2                                                                                           (37)

𝑛

𝑖=1
 

𝛼𝑗
2 = 𝛾�̂�𝐺𝐿𝑆                                                                                                                         (38) 

Where (𝑚𝑒𝑛 (𝛼𝑗
2) represents the mean squared value of the proposed parameter, γ represents the Eigen vector of the 

matrix (𝑋′Ω−1𝑋). 

 

The KL estimator is a biased estimator unless (C = 0), and its properties can be explained as follows: (Kibria and 

Lukman, 2020) (Aladeitan et al, 2021) (Owolabi et al, 2022) (Oladapo et al, 2023) 

 Bias: 

Bias(�̂�𝐾𝐿) = [𝑊(𝐶) 𝑀(𝐶) − 𝐼] 𝛽,                                                                                (39) 

where 

𝑆 = (𝑋′Ω−1𝑋) 
𝑊(𝐶) = [𝐼 + 𝐶𝑆−1]−1 

𝑀(𝐶) = [𝐼 − 𝐶𝑆−1] 
The covariance matrix of the KL is as follows: 

Cov(�̂�𝐾𝐿) = 𝜎
2𝑊(𝐶)𝑀(𝐶)𝑆−1𝑀′(𝐶) 𝑊′(𝐶)                                                            (40) 

Mean square error: (Shewa and Ugwuowo, 2023) 

𝑀𝑆𝐸 (�̂�𝐾𝐿) = 𝜎
2𝑊(𝐶)𝑀(𝐶)𝑆−1𝑀′(𝐶) 𝑊′(𝐶) + [𝑊(𝐶)𝑀(𝐶) − 𝐼]𝛽𝛽′[𝑊(𝐶)𝑀(𝐶) − 𝐼]′            (41) 

𝑀𝑆𝐸 (�̂�𝐾𝐿) = 𝜎
2∑

(𝜆𝑗 − 𝐶)
2

𝜆𝑗(𝜆𝑗 + 𝐶)
2
+ 4𝐶2∑

𝛼𝑗
2

(𝜆𝑗 + 𝐶)
2

𝑝

𝑗=1

𝑝

𝑗=1

                                                      (42) 

3. Simulation Study 

The simulation method was used to generate random errors according to the Poisson distribution with distribution 

parameter ( 𝜇) in the Poisson regression model, but it includes the problem of first-order autocorrelation AR(1), 

according to the following model 

𝜀𝑖 = 𝜌𝜀𝑖−1 + 𝑒𝑖       ،       𝑖 = 1,2,⋯ , 𝑛      
that describes the dependence of an observation (i) on (i-1). Concerning calculating the values of the dependent 

variable (𝑌𝑖 )in the Poisson regression model, they will be calculated as follows 

𝑌𝑖 = 𝐸𝑋𝑃(𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + 𝛽3𝑋𝑖3 + 𝜀𝑖)                    𝑖 = 1,2,⋯ , 𝑛                (43) 
The values of the model parameters shown in formula (43) are as follows:  

𝛽0 = −0.286,   𝛽1 = −0.023,   𝛽2 = 0.011,    𝛽3 = 0.023 

Five levels of autocorrelation coefficient were also used, as follows 

𝜌 = 0.1 , 0.4 , 0.7 , 0.9  , 0.99 

we consider the Mean Square Error MSE criterion as a criterion for conducting the comparison between the methods, 

which is calculated as: 

𝑀𝑆𝐸(�̂�) =
1

2000
∑ (�̂� − 𝛽)′(�̂� − 𝛽)

2000

𝑖=1
                                                                (44) 

As for the sample size, five sample sizes will be used, which are (25, 50, 100, 150, 200) to study the comparison 

between the estimation methods used according to different sample sizes (large, medium, small), and with a repetition 

of 2000 times. To apply the simulation concept, the Monte-Carlo method was used in the simulation and varied factors 

were taken to show the comparison between the methods in different conditions. To compare the performance of the 

estimation methods used in this research, a simulation experiment was conducted using the statistical programming 

language (R), and several results were obtained, which are as follows:  
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Table 1: The results of comparing methods at a correlation (𝜌 = 0.1, 0.4). 
 𝜌 = 0.4  𝜌 = 0.1 

RLE KL LE GLS RLE KL LE GLS 𝜇 N 

0.03942814 0.04187486 0.05263845 0.14008706 0.02264004 0.01926391 0.02522395 0.02716442 1.50 

25 0.03748053 0.03294854 0.04898556 0.12434094 0.03896657 0.02981316 0.05064428 0.13733417 2.067 

0.03446225 0.02653790 0.04527569 0.12107959 0.03500578 0.04081594 0.04631001 0.12997512 3.50 

0.03174058 0.02289645 0.04157136 0.06896125 0.03287831 0.02404229 0.04346096 0.07567518 1.50 

50 0.03007654 0.02220074 0.03863950 0.06345897 0.03066190 0.02298014 0.03936728 0.06644880 2.067 

0.02800919 0.02145838 0.03511353 0.05710299 0.02829898 0.02150558 0.03619131 0.06120028 3.50 

0.02713958 0.02079236 0.03413921 0.06026827 0.02770095 0.02054886 0.03504482 0.04560545 1.50 

100 0.02584733 0.01936121 0.03186490 0.04043644 0.02642830 0.01985986 0.03209366 0.04064149 2.067 

0.02456332 0.01920434 0.02937245 0.03644270 0.02484749 0.01946030 0.02941142 0.03623049 3.50 

0.02541026 0.01889092 0.03121724 0.03645282 0.02600206 0.01971129 0.03212123 0.03798216 1.50 

150 0.02449481 0.01875672 0.02901476 0.03313406 0.02477589 0.01934959 0.02998266 0.03504585 2.067 

0.02335200 0.01889195 0.02678961 0.03012712 0.02360692 0.01934137 0.02738742 0.03149074 3.50 

0.02440896 0.01868319 0.02943667 0.03278470 0.02485760 0.01931253 0.03021542 0.03412662 1.50 

200 0.02367035 0.01872705 0.02778277 0.03062233 0.02407415 0.01917475 0.02860706 0.03192568 2.067 

0.02273987 0.01896084 0.02551329 0.02750096 0.02298021 0.01915722 0.02615709 0.02853530 3.50 

 

It is noted from Table (1) that the value of the mean square error standard begins to decrease with the increase in value 

(𝜇) and that the efficiency of the KL method increases with the increase in sample size. 

 

Table 2: The results of comparing methods at a correlation (𝜌 = 0.7, 0.9). 

 𝜌 = 0.9  𝜌 = 0.7 

RLE KL LE GLS RLE KL LE GLS 𝜇 N 

0.03477259 24.89581145 0.25770063 5.02875094 0.03808483 0.04624208 0.05213846 0.13371048 1.50 

25 0.03306281 78.92787921 0.14172048 76.66714246 0.03599439 0.63019828 0.04867551 0.24100992 2.067 

0.03149519 99.05438915 0.04452236 2.49674581 0.03371144 0.50622048 0.04450375 0.18136643 3.50 

0.02819380 0.59880169 0.03893448 0.08032774 0.02998731 0.26755205 0.03992266 0.06618041 1.50 

50 0.02712977 0.55952479 0.03569649 0.37395299 0.02857513 0.03562050 0.03749930 0.07209304 2.067 

0.02646101 0.06960764 0.03394633 0.12112470 0.02726250 0.04713790 0.03421446 0.06398656 3.50 

0.02454526 0.02070141 0.03096600 0.08505299 0.02570551 0.02660144 0.03259479 0.04626860 1.50 

100 0.02409900 0.02352819 0.02959023 0.06852444 0.02491916 0.02407489 0.03094968 0.05163655 2.067 

0.02350282 0.02418030 0.02775285 0.06178955 0.02404729 0.01910705 0.02833382 0.03504847 3.50 

0.02329264 0.02318199 0.02816251 0.04546152 0.02431147 0.01828127 0.02932382 0.03454936 1.50 

150 0.02291253 1.52680961 0.02678571 0.04062729 0.02370939 0.01903554 0.02814099 0.03424981 2.067 

0.02258643 0.02647705 0.02542606 0.04216260 0.02292522 0.02336733 0.02605941 0.03755953 3.50 

0.02274373 0.04299795 0.02699247 0.05974900 0.02359584 0.01814513 0.02812873 0.03325353 1.50 

200 0.02243759 0.02133675 0.02557283 0.05619583 0.02302053 0.01905859 0.02658364 0.03020236 2.067 

0.02209213 0.02450318 0.02420393 0.03629669 0.02239249 0.01892068 0.02512453 0.02896571 3.50 

 

According to Table (1), it is observed that the value of the mean square error standard starts to drop as the value (μ) 

increases. Additionally, it is observed that the efficiency of the KL method increases as the sample size increases. 

 

Table 3: The results of comparing methods at a correlation (𝜌 = 0.99). 
  𝜌 = 0.99 

RLE KL LE GLS 𝜇 N 

0.03314750 17.64682318 0.05701777 1.03534586 1.50 

25 0.02936058 17.50258779 0.05179190 0.86007673 2.067 

0.084325 9.405264 0.633542 0.896484 3.50 

0.02677095 4.92607040 0.11784287 2.40325485 1.50 

50 0.04263943 144.83518892 0.05343473 9.97989459 2.067 

0.02471862 5.38482914 0.03504626 4.35078152 3.50 

0.02299823 24.77068972 0.03565916 1.73366348 1.50 
100 

0.02196793 15.53549393 0.02828416 3.17623198 2.067 
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0.02183624 1.41264977 0.02719102 2.62472399 3.50 

0.02207040 0.22223820 0.02873258 1.08754918 1.50 

150 0.02179629 0.97130496 0.02584652 3.83523791 2.067 

0.02169379 0.67189448 0.02478391 1.86616407 3.50 

0.02184556 0.21266974 0.02591362 0.98348207 1.50 

200 0.02169571 7.41056321 0.02508047 3.18634388 2.067 

0.02170131 0.33258614 0.02466271 1.42616407 3.50 

 

that  It is noted from the table above that the best way to deal with the problem of first-degree autocorrelation in the 

Poisson regression model is RLE, and it is also noted that the efficiency of the KL method declines in the presence of 

high autocorrelation between random errors. 

4. Application 

The experiment was applied to a set of real data that represent Number of cases of repeating the IVF process until 

pregnancy is achieved as a dependent variable (Y), namely: Wife’s age, Husband’s age, Wife's weight as independent 

variables (𝑋1, 𝑋2, 𝑋3) respectively, where the data was initially tested according to the Durbin-Watson test to test 

whether the data suffers from the presence of autocorrelation or not, as follows. 

 

Table 4: Durbin-Watson test for real data. 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate Durbin-Watson 

1 .228a .052 .001 1.03882 2.821 

a. Predictors: (Constant), Wife's weight , Husband’s age, Wife’s age 

b. Dependent Variable: Number of repetitions until success 

 

After conducting the Durbin-Watson test for real data and proving that data suffers from the problem of negative 

autocorrelation, estimation methods were applied and several results were obtained, which are as follows: 

 

Table 5: The results of the parameter values and the MSE criterion values and  

R square criterion values of the methods for real data. 

parameters GLS LE KL RLE Sample size 

𝛽0 0.2405 0.1007 -0.2443 0.0005 

60 

𝛽1 -0.0492 -0.0503 -0.0617 -0.0078 

𝛽2 0.0082 0.01 -0.0296 -0.0191 

𝛽3 0.0509 0.0527 0.0842 0.0491 

MSE 1.0108 1.0100 1.0965 1.0329 

R squared 0.0484 0.0491 0.0323 0.0276 

It is noted from the above table that the best method used to address the problem of first-degree autocorrelation 

according to the criterion of the mean square error is the LE method. It is also noted that the RLE method outperforms 

the LE method according to R square criterion. 

 

5. Conclusions 

After applying the simulation experiment and practical application and the results presented, the researcher concluded 

that the best method to address the problem of first-order autocorrelation AR(1) in the Poisson regression model for 

different sample sizes, variances, and different values of the autocorrelation coefficient (ρ) is the KL method. The 

worst method used is the GLS method because it gave the largest values for the Mean Square Error MSE criterion. 

And for that we recommend using KL method to estimate the parameters of AR(1) model in the presence of first order 

autocorrelation. 
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Autocorrelation in Poisson regression models, often arising in time-series or spatial data, challenges the independence 

assumption and necessitates advanced strategies for accurate modeling. Future research should focus on incorporating 

temporal or spatial correlation through methods like generalized estimating equations (GEE), hierarchical models, or 

Bayesian frameworks to account for dependencies. Residual analysis and the development of diagnostic tools specific 

to Poisson regression can further aid in identifying and addressing autocorrelation. Additionally, employing copula-

based methods, generalized additive models (GAMs), or introducing smooth terms for time or spatial effects could 

mitigate autocorrelation impacts. Extending the current literature on statistical distributions and regression models to 

explicitly handle autocorrelation is a promising direction. For example, various statistical families such as Burr XII 

(Afify et al., 2018; Cordeiro et al., 2018; Yousof et al., 2018; Ibrahim et al., 2020), Lomax (Ibrahim & Yousof, 2020), 

Weibull (Aryal et al., 2017; Cordeiro et al., 2018; Rasekhi et al., 2022), and other flexible models (Altun et al., 2021, 

2022a; Korkmaz et al., 2022) have shown potential applications in regression modeling, though their adaptation to 

account for autocorrelation remains underexplored. Studies on odd log-logistic families (Alizadeh et al., 2021; 

Korkmaz et al., 2019) and extended distributions (Altun et al., 2018; Yousof et al., 2018, 2019) highlight the need for 

integrating autocorrelation handling into model design. Simulation studies evaluating robustness under autocorrelation 

(Cordeiro et al., 2020; Ibrahim et al., 2020) and refining model selection criteria for dependent data (Altun et al., 2018; 

Hamedani et al., 2018) could bridge this gap. Incorporating autocorrelation-specific adjustments into existing tools 

and advancing statistical software packages (Minkah et al., 2023; Yousof & Gad, 2017) will further enhance their 

applicability in big data and machine learning contexts, ensuring these solutions are both accessible and robust across 

real-life scenarios. Many future visions can be explored in insurance, economics, and risk analysis through various 

research contributions. These include works by Alizadeh et al. (2023, 2024, 2025), Al-Essa et al. (2023), Salem et al. 

(2023), Hamedani et al. (2023), and Bandar et al. (2023). Additionally, studies by Aljadani et al. (2024), Yousof et al. 

(2024a, 2024b), and Shehata et al. (2024) provide valuable insights. Contributions from Korkmaz et al. (2017), 

Alizadeh  et al. (2018), Rasekhi et al. (2020), Ahmed et al. (2024), Abiad et al. (2024), Khan et al. (2024), Abonongo  

et al. (2025) and Das et al. (2025) further enrich this field. These works collectively shape potential advancements in 

these domains. 

On the other hand, many regression models can be presented, and financial, actuarial, economic, and other applications 

can be provided, for more discrete distributions see Aboraya et al. (2020), Yousof et al. (2018; 020; 2021; 2024a,b), 

Eliwa et al. (2022), Chesneau et al. (2022), Emam et al. (2024), and Ibrahim et al. (2021; 2025). 
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