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Abstract 

 

Probability distributions and their families play an effective role in statistical modeling and statistical analysis. 

Recently, researchers have been increasingly interested in generating new families with high flexibility and low 

number of milestones.  We propose and study a new family of continuous distributions. Relevant properties are 

presented. Many bivariate versions of the new family are derived under the Farlie-Gumbel-Morgenstern copula, 

modified Farlie-Gumbel-Morgenstern copula, Clayton copula, entropy copula and Ali-Mikhail-Haq copula. We 

present two characterizations of the new family. Different estimation methods such as the maximum likelihood 

estimation, maximum product spacing estimation, least squares estimation, weighted least squares estimation, 

Anderson-Darling estimation and the Cramer-von Mises estimation methods are considered. Simulation studies for 

comparing estimation methods are performed based on the baseline Lindley model. Two real data sets are analyzed 

for comparing the competitive models. 
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1.Introduction 

In the last few decades, there have been an increased interest in defining and studing new families of univariate 

continuous distributions by adding one (or more) shape parameter(s) to certain baseline model. The use of the new 

generators of continuous distributions from classic ones has become very common in recent years. The procedure of 

expanding a class of distributions by adding new shape parameter(s) is well-known in the statistical literature. In many 

applied sciences such as medicine, engineering and finance, among others, modeling and analyzing lifetime data are 

crucial. Several lifetime distributions have been adopted to model different types of survival data. The quality of the 

procedures used in a statistical analysis depends heavily on the generated distribution. Further, the statistical modeling 

of the phenomenon, the applications or the validity of data is impossible without choosing the proper probability 

distribution (the mathematical form of the model). Thus, considerable effort has been devoted to explore new statistical 

methodologies. Also the computational and analytical facilities available in programming softwares like R, Maple and 

Mathematica can easily tackle the problems involved in computing special functions in the new extended families. 
These facilities encourage several statisticians to develop new extended models. However, there still remain many 

important problems involving real data, which do not follow any of the classical statistical models. The chief 

motivation in generalizing distributions for modeling lifetime data lies in the flexibility to model both monotonic and 
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non-monotonic failure rates even though the baseline failure rate may be monotonic. The role of the extra shape 

parameter(s) is to introduce skewness and to vary tail weights. Furthermore, various classes of distributions have been 

constructed by extending common families of lifetime distributions and analyze them with respect to different 

characteristics. The art of proposing generalized families of distributions has attracted theoretical and applied 

statisticians due to their flexible properties. There are many new families of distributions, that become precious for 
applied statisticians, proposed in the last two decades. Many wellknown generators can be cited such as beta-G (B-G) 

family (Eugene et al. (2002)), transmuted exponentiated generalized-G (TEG-G) family (Yousof et al. (2015)), 

generalized odd generalized exponential-G (GOGE-G) family by Alizadeh et al. (2017), exponentiated generalized-G 

Poisson (EG-GP) family (Aryal and Yousof (2017)), transmuted Topp-Leone-G (TTL-G) family (Yousof et al. 

(2017a)), beta Weibull-G (BW-G) family (Yousof et al. (2017b)), Topp-Leone odd log-logistic-G family (Brito et al. 

(2017)) (TLOLL-G), Burr XII system of densities (Cordeiro et al. (2018)) (BXII-G), transmuted Weibull-G (TW-G) 

family (Alizadeh et al. (2018)), generalized odd Weibull generated-G (GOWG-G)family (Korkmaz et al. (2018a)), 

exponential Lindley odd log-logistic-G (ELOLL-G) family (Korkmaz et al. (2018b)), Marshall-Olkin generalized-G 

Poisson (MOG-GP) family (Korkmaz et al. (2018c)), the Odd Power Lindley Generator (OPLG) (Korkmaz et al. 

(2019)), odd Nadarajah-Haghighi-G (NH-G) family (Nascimento et al. (2019)), generalized transmuted Poisson-G 

(GTP-G) family (Yousof et al. (2018a)), MarshallOlkin generalized-G family (Yousof et al. (2018b)) (MOG-G), Burr-

Hatke-G family (Yousof et al. (2018c)) (BH-G), Type I general exponential class of distributions (TIGE-G) 
(Hamedani et al. (2017)), new extended-G (NE-G) family (Hamedani et al. (2018)), Type II general exponential class 

of distributions (TIIGE-G) (Hamedani et al. (2019)), Weibull generalized G (WG-G) family (Yousof et al. (2018d)), 

Weibull-G Poisson (W-GP) family (Yousof et al. (2020), The type II quasi Lambert G family of probability 

distributions (Hamedani et al. (2021)) and Weibull Topp-Leone generated-G (WTL-G) family (Karamikabir et al. 

(2020)). Many authors have used the T-X family of distributions (Alzaatreh et al. (2013)), however, in this paper we 

propose a new method for generating new G families. 

 

In mathematics and statistics, the "Lambert function", or the "omega function", is a multivalued function, namely the 

branches of the inverse relation of the function 𝑓(𝐋) = 𝐋(⋅)exp[𝐋(⋅)] where 𝐋(⋅) is any complex number and 

exp[𝐋(⋅)] is the exponential function. In this work and folowoing Hamedani et al. (2021), we define and study a new 
G family called the type II quasi Lambert (TIIQL) family depending on the concept of the Lambert function . The 

cumulative distribution function (CDF) of the TIIQL family can be expressed as 

 𝐹𝛼,𝛏(𝑥) = 𝐋𝛼,𝛏(𝑥)exp [𝐋𝛼,𝛏(𝑥)] |𝑥∈ℝ, (1) 

where 𝐋𝛼,𝛏(𝑥) = 1 − 𝐋𝛼,𝛏(𝑥), 𝛼 > 0 is a shape parameter and 𝐋𝛼,𝛏(𝑥) =
2−𝚷𝛏

𝛼(𝑥)

𝚷𝛏
𝛼(𝑥)

|𝛼>0,𝑥∈ℝ. The function 𝚷 𝛏(𝑥) is 

the CDF of any baseline model and 𝛏 refers to the parameter vector. For 𝛼 = 1, the TIIQL family reduces to the 

reduced TIIQL (RTIIQL) family. The corresponding probability density function (PDF) can be expressed as 

 𝑓𝛼,𝛏(𝑥) = 2𝛼
𝜋𝛏(𝑥)

𝚷𝛏
𝛼+1(𝑥)

[𝐋𝛼,𝛏(𝑥) − 1] exp [𝐋𝛼,𝛏(𝑥)] |𝛼>0 and 𝑥∈ℝ, (2) 

where 𝜋𝛏(𝑥) = 𝑑𝚷 𝛏(𝑥)/𝑑𝑥 is the PDF of the baseline model. Using the power series, the CDF in (1) can be written 

as 

 𝐹𝛼,𝛏(𝑥) = 𝐋𝛼,𝛏(𝑥) ∑∞
𝑗0=0

𝐋𝛼,𝛏
𝑗0 (𝑥)

𝚪(1+𝑗1)
. (3) 

If |
𝜗1

𝜗2
| < 1 and 𝜗3 > 0 is a real non-integer, the following power series holds  

 (1 −
𝜗1

𝜗2
)

𝜗3−1

= ∑∞
𝑗1=0

 𝚪(𝜗3)(−𝜗1/𝜗2)𝑗1

 𝚪(1+𝑗1)! 𝚪(𝜗3−𝑗1)
 .  (4) 

Applying (4) to (3) we have 

 𝐹𝛼,𝛏(𝑥) = ∑∞
𝑗0,𝑗1=0

(−1)𝑗121+𝑗1𝚪(1+𝑗0)

𝑗0!𝑗1! 𝚪(1+𝑗0+𝑗1)

[1−
1

2
𝚷𝛏

𝛼(𝑥)]
1+𝑗1

𝚷
𝛏
𝛼(1+𝑗1)

(𝑥)
. (5) 

Applying (4) again to the term [1 −
1

2
𝚷𝛏

𝛼(𝑥)]
1+𝑗1

, Equation (5) becomes  

 𝐹𝛼,𝛏(𝑥) = ∑
𝑗1,𝑗2=0

∞

𝑐𝑗1,𝑗2
   𝐻𝚫 (𝑥; 𝛏) |𝚫=𝛼𝑗2−𝛼(1+𝑗1), (6) 
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where 𝑐𝑗1,𝑗2
= ∑∞

𝑗0=0

(−1)𝑗1+𝑗221+𝑗1−𝑗2𝚪(1+𝑗0)𝚪(2+𝑗1)

𝑗0!𝑗1!𝑗2! 𝚪(1+𝑗0+𝑗1)𝚪(2+𝑗1−𝑗2)
 and 𝐻𝚫 (𝑥; 𝛏)  is the CDF of the exp-G family with power 

parameter 𝚫 > 0. Similarly, the PDF of the TIIQL family can also be expressed as a mixture of exp-G PDFs as  

 𝑓𝛼,𝛏(𝑥) = ∑
𝑗1,𝑗2=0

∞

𝑐𝑗1,𝑗2
   ℎ𝚫 (𝑥; 𝛏), (7) 

where 𝝅 𝚫 (𝑥; 𝛏) = 𝑑𝚷 𝚫 (𝑥; 𝛏) /𝑑𝑥 s the PDF of the exp-G family with power parameter 𝚫 > 0. 

 

2. Properties 

2.1 Moments 

Let 𝑌𝚫  be a r.v. with density ℎ𝚫(𝑥; 𝛏). The 𝑟th ordinary moment of 𝑋, say 𝜇𝑟
′ , follows from (7) as  

 𝜇𝑟
′ = 𝐄(𝑋𝑟) = ∑

𝑗1,𝑗2=0

∞

𝑐𝑗1,𝑗2
𝐄(𝑌𝚫

𝑟), (8) 

where 𝐄(𝑌𝜗
𝑟) = 𝜗  ∫

∞

−∞
𝑥𝑟𝜋𝛏(𝑥) 𝚷𝛏(𝑥)𝜗−1  𝑑𝑥,can be evaluated numerically in terms of the baseline qf 𝑄𝚷(𝑢) =

𝚷 −1(𝑢) as 𝐄(𝑌𝜗
𝑟) = 𝜗 ∫

1

0
    𝜈𝜗−1[𝑄𝚷(𝑢)]𝑟𝑑𝑢. Setting 𝑟 = 1 in (8) gives the mean of 𝑋. 

2.2 Incomplete moments 

The rth incomplete moment of 𝑋 is defined by 𝑚𝑟,𝑋(𝑦) = ∫
𝑦

−∞
𝑥𝑟 𝑓𝛼,𝛏(𝑥)𝑑𝑥. We can write from (7)  

 𝑚𝑟,𝑋(𝑦) = ∑
𝑗1,𝑗2=0

∞

𝑐𝑗1,𝑗2
𝑚𝑟,𝚫(𝑦), (9) 

where  

 𝑚𝑟,𝛼(𝑦) = ∫
𝚷(𝑦)

0
𝜈𝛼−1  [𝑄𝚷(𝑢)]𝑟𝑑𝜈. (10) 

where 𝑄𝚷(𝑢) refers to the quantile function of the the TIIQL family. The integral 𝑚𝑟,𝛼(𝑦)  can be determined 

analytically for special models with closed-form expressions for 𝑄𝚷(𝑢) or computed at least numerically for most 

baseline distributions. Two important applications of the first incomplete moment are related to the mean deviations 

about the mean and median and to the Bonferroni and Lorenz curves. 
2.3 Moment generating functions 

The moment generating function (MGF) of 𝑋, say 𝑀(𝑡) = 𝑬(exp(𝑡 𝑋)), is obtained from (7) as  

 𝑀(𝑡) = ∑
𝑗1,𝑗2=0

∞

𝑐𝑗1,𝑗2
𝑀𝚫(𝑡), (11) 

where 𝑀𝜗(𝑡) is the generating function of 𝑌𝜗 given by  

 𝑀𝜗(𝑡) = 𝜗 ∫
∞

−∞
 exp(𝑡 𝑥)𝜋𝛏(𝑥) [𝚷𝛏(𝑥)]

𝜗−1

𝑑𝑥 = 𝜗 ∫
1

0
exp[𝑡 𝑄𝚷(𝑢; 𝛼 )] 𝑢𝜗−1𝑑𝜈. (12) 

The last two integrals can be computed numerically for most parent distributions. 

 
3. Bivariate versions via copula 

In probability theory, a copula is a multivariate CDF for which the marginal probability distribution of each variable 

is uniform on the interval [0,1]. copulas are used to describe the dependence between random variables. In this 

Section, we derive some new bivariate TIIQL (Biv-TIIQL) type distributions using Farlie Gumbel Morgenstern 

(FGM) copula (see Morgenstern (1956), and Kotz (1977)), modified FGM copula (see Rodriguez-Lallena and Ubeda-

Flores (2004)), Clayton copula, Renyi’s entropy (Pougaza and Djafari (2011)) and Ali–Mikhail–Haq copula (Ali et 

al. (1987)). The Multivariate TIIQL (M-TIIQL) type is also presented. However, future works may be allocated to the 

study of these new models (see Elgohari and Yousof (2021a,b and 2021), Elgohari et al. (2021), Shehata and Yousof 

(2021a,b), Shehata et al. (2022)). First, we consider the joint CDF of the FGM family, where  

 𝐇𝜗(𝜐, 𝜈) = 𝜐𝜈(1 + 𝜗𝜐•𝜈•)|𝜐•=1−𝜐,𝜈•=1−𝜈 , 

and the marginal function 𝜐 = 𝐹1 , 𝜈 = 𝐹2 , 𝜗 ∈ (−1,1)  is a dependence parameter and for every 𝜐, 𝜈 ∈ (0,1) , 

𝐇(𝜐, 0) = 𝐇(0, 𝜈) = 0  which is "grounded minimum" and 𝐇(𝜐, 1) = 𝜐  and 𝐇(1, 𝜈) = 𝜈  which is "grounded 

maximum", where 

𝐇(𝜐1 , 𝜈1) + 𝐇(𝜐2, 𝜈2) − 𝐇(𝜐1 , 𝜈2) − 𝐇(𝜐2 , 𝜈1) ≥ 0. 

 

3.1 Via FGM copula 

A copula is continuous in 𝜐 and 𝜈; actually, it satisfies the stronger Lipschitz condition, where 



Pak.j.stat.oper.res.  Vol.18  No. 4 2022 pp 963-983  DOI: http://dx.doi.org/10.18187/pjsor.v18i4.3907 

 

 
The Type II Quasi Lambert G Family of Probability Distributions 966 

 

 |𝐇(𝜐2 , 𝜈2) − 𝐇(𝜐1, 𝜈1)| ≤ |𝜐2 − 𝜐1| + |𝜈2 − 𝜈1|. 
For 0 ≤ 𝜐1 ≤ 𝜐2 ≤ 1 and 0 ≤ 𝜈1 ≤ 𝜈2 ≤ 1, we have  

 Pr(𝜐1 ≤ 𝜐 ≤ 𝜐2 , 𝜈1 ≤ 𝜈 ≤ 𝜈2) = 𝐇(𝜐1 , 𝜈1) + 𝐇(𝜐2 , 𝜈2) − 𝐇(𝜐1, 𝜈2) − 𝐇(𝜐2 , 𝜈1) ≥ 0. 
Then, setting 

𝜐• = 1 − 𝐹 𝛼1,𝛏
(𝑥1)|[𝜐•=(1−𝜐)∈(0,1)] and 𝜈• = 1 − 𝐹 𝛼2,𝛏

(𝑥2)|[𝜈•=(1−𝜈)∈(0,1)], 

we can easily obtain the joint CDF of the TIIQL using the FGM family (∀ 𝚿𝑖 = (𝛼𝑖 , 𝛏)|𝛼𝑖>0,𝑖=1,2.)  

𝐇𝜗(𝜐, 𝜈) = 𝐋𝛼1,𝛏(𝜐)𝐋𝛼2,𝛏(𝜈)exp [𝐋𝛼1,𝛏(𝜐) + 𝐋𝛼2,𝛏(𝜈)] [1 + 𝜗 (
{1 − 𝐋𝛼1,𝛏(𝜐)exp [𝐋𝛼1,𝛏(𝜐)]}

× {1 − 𝐋𝛼2,𝛏(𝜈)exp [𝐋𝛼2,𝛏(𝜈)]}
)]. 

The joint PDF can then be derived from 𝑐𝜗(𝜐, 𝜈) = 1 + 𝜗𝜐•𝜈•|(𝜐•=1−2𝜐and  𝜈•=1−2𝜈) or from 𝑐𝜗(𝜐, 𝜈) = 𝑓(𝑥1, 𝑥2) =

𝐇(𝐹1, 𝐹2)𝑓1𝑓2 . 
 

3.2 Via modified FGM copula 

The modified FGM copula is defined as 

𝐇𝜗(𝜐, 𝜈) = 𝜐𝜈[1 + 𝜗𝐷(𝜐)𝐶(𝜈)]|𝜗∈(−1,1) or 𝐇𝜗(𝜐, 𝜈) = 𝜐𝜈 + 𝜗𝐷̃𝜐𝐶̃𝜈|𝜗∈(−1,1), 

where 𝐷̃𝜐 = 𝜐𝐷(𝜐), and 𝐶̃𝜈 = 𝜈𝐶(𝜈)  and 𝐷(𝜐) and 𝐶(𝜈)  are two continuous functions on (0,1) with 𝐷(0) =
𝐷(1) = 𝐶(0) = 𝐶(1) = 0. Let  

 𝑐1(𝐷̃𝜐) = inf {𝐷̃𝜐:
𝜕

𝜕𝜐
𝐷̃𝜐} |𝛇1,𝜐

< 0, 𝑐2(𝐷̃𝜐) = sup {𝐷̃𝜐 :
𝜕

𝜕𝜐
𝐷̃𝜐} |𝛇1,𝜐

< 0, 

 

 𝑑1(𝐶̃𝜈) = inf {𝐶̃𝜈:
𝜕

𝜕𝜈
𝐶̃𝜈} |𝛇2,𝜈

> 0, 𝑑2(𝐶̃𝜈) = sup {𝐶̃𝜈 :
𝜕

𝜕𝜈
𝐶̃𝜈} |𝛇2,𝜈

> 0. 

Then, 1 ≤ min{𝑐1(𝐷̃𝜐)𝑐2(𝐷̃𝜐), 𝑑1(𝐶̃𝜈)𝑑2(𝐶̃𝜈)} < ∞, whereb 𝜐
𝜕

𝜕𝜐
𝐷(𝜐) =

𝜕

𝜕𝜐
𝐷̃𝜐 − 𝐷(𝜐), 

 

 𝛇1,𝜐 = {𝜐: 𝜐 ∈ (0,1)| 𝜕

𝜕𝜐
𝐷̃𝜐    exists

} , 𝛇2,𝜈 = {𝜈: 𝜈 ∈ (0,1)| 𝜕

𝜕𝜈
𝐶̃𝜈    exists

}. 

3.2.1  Type-I 

Consider the following functional form for both 𝐷(𝜐) and 𝐶(𝜈). Then, the Biv-TIIQL-FGM (Type-I) can be derived 

from  

𝐇𝜗(𝜐, 𝜈) = 𝐋𝛼1,𝛏(𝜐)𝐋𝛼2,𝛏(𝜈)exp [𝐋𝛼1,𝛏(𝜐) + 𝐋𝛼2,𝛏(𝜈)]

+ 𝜗 (
𝐋𝛼1,𝛏(𝜐)exp [𝐋𝛼1,𝛏(𝜐)] {1 − 𝐋𝛼1,𝛏(𝜐)exp [𝐋𝛼1,𝛏(𝜐)]}

× 𝐋𝛼2,𝛏(𝜈)exp [𝐋𝛼2,𝛏(𝜈)] {1 − 𝐋𝛼2,𝛏(𝜈)exp [𝐋𝛼2 ,𝛏(𝜈)]}
) |𝜗∈(−1,1). 

3.2.2  Type-II 

Let 𝐷(𝜐)  and 𝐶(𝜈)  be two functional form satisfying all the conditions stated earlier where 𝐷(𝜐)•|(𝜗1>0) =

𝜐𝜗1(1 − 𝜐)1−𝜗1  and 𝐶(𝜈)•|(𝜗2>0) = 𝜈𝜗2(1 − 𝜈)1−𝜗2 .  Then, the corresponding Biv-TIIQL-FGM (Type-II) can be 

derived from 𝐇𝜗,𝜗1 ,𝜗2
(𝜐, 𝜈) = 𝜐𝜈[1 + 𝜗𝐷(𝜐)•𝐶(𝜈)•]. Thus 

 𝐇𝜗,𝜗1 ,𝜗2
(𝜐, 𝜈) = 𝐋𝛼1,𝛏(𝜐)𝐋𝛼2,𝛏(𝜈)exp [𝐋𝛼1 ,𝛏(𝜐) + 𝐋𝛼2 ,𝛏(𝜈)] 

×

[
 
 
 
 
 
 
 

1 + 𝜗

(

 
 
 
 
 

{𝐋𝛼1,𝛏(𝜐)exp [𝐋𝛼1,𝛏(𝜐)]}
𝜗1

× {𝐋𝛼2,𝛏(𝜈)exp [𝐋𝛼2,𝛏(𝜈)]}
𝜗2

× (1 − 𝐋𝛼1,𝛏(𝜐)exp [𝐋𝛼1,𝛏(𝜐)])
1−𝜗1

× (1 − 𝐋𝛼2,𝛏(𝜐)exp [𝐋𝛼2,𝛏(𝜈)])
1−𝜗2

)

 
 
 
 
 

]
 
 
 
 
 
 
 

 

3.2.3  Type-III 

Let 𝐷•(𝜐) = 𝜐[log(1 + 𝜐•)] and 𝐶•(𝜈) = 𝜈[log(1 + 𝜈•)] for all 𝐷(𝜐) and 𝐶(𝜈) which satisfy all the conditions 

stated earlier. In this case, one can also derive a closed form expression for the associated CDF of the Biv-TIIQL-

FGM (Type-III) from 𝐇𝜗(𝜐, 𝜈) = 𝜐𝜈 (1 + 𝜗𝐷•(𝜐)𝐶•(𝜈)). Then 
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𝐇𝜗(𝜐, 𝜈) = 𝐋𝛼1,𝛏(𝜐)𝐋𝛼2,𝛏(𝜈)exp [𝐋𝛼1,𝛏(𝜐) + 𝐋𝛼2,𝛏(𝜈)]

[
 
 
 
 

1 + 𝜗

(

 
 

𝐋𝛼1,𝛏(𝜐)exp [𝐋𝛼1,𝛏(𝜐)] 𝐋𝛼2,𝛏(𝜈)exp [𝐋𝛼2,𝛏(𝜈)]

× [log (2 − 𝐋𝛼1,𝛏(𝜐)exp [𝐋𝛼1,𝛏(𝜐)])]

× [log (2 − 𝐋𝛼2,𝛏(𝜈)exp [𝐋𝛼2,𝛏(𝜈)])] )

 
 

]
 
 
 
 

. 

3.3 Via Clayton copula 

The Clayton copula can be considered as 𝐇(𝜈1, 𝜈2) = [(1/𝜈1)
𝜗 + (1/𝜈2)

𝜗 − 1]
−𝜗−1

|𝜗∈(0,∞). Setting 𝜈1 = 𝐹𝛼1 ,𝛏(𝜐) 

and  𝜈2 = 𝐹𝛼2,𝛏(𝑥), the Biv-TIIQL type can be derived from 𝐇(𝜈1 , 𝜈2) = 𝐇(𝐹𝛼1,𝛏(𝜈1), 𝐹𝛼1 ,𝛏(𝜈2)). Then 

 𝐇(𝜈1 , 𝜈2) = {
𝐋𝛼1,𝛏

−𝜗 (𝜈1)exp [−𝜗𝐋𝛼1,𝛏(𝜈1)]

+𝐋𝛼2,𝛏
−𝜗 (𝜈2)exp [−𝜗𝐋𝛼2,𝛏(𝜈2)] − 1

}

−𝜗−1

|𝜗∈(0,∞) 

Similarly, the M-TIIQL can be derived from 𝐇(𝜈𝑘) = (∑𝑑
𝑘=1 𝜈𝑘

−𝜗 + 1 − 𝑑)
−𝜗−1

. 
 

3.4 Via Renyi’s entropy copula 

Using the theorem of Pougaza and Djafari (2011) where 

𝐇(𝜐, 𝜈) = 𝑥2𝜐 + 𝑥1𝜈 − 𝑥1𝑥2, 

the associated Biv-TIIQL can be derived from 

 𝐇(𝜐, 𝜈) = 𝑥2𝐋𝛼1,𝛏(𝑥1)exp [𝐋𝛼1,𝛏(𝑥1)] + 𝑥1𝐋𝛼2,𝛏(𝑥2)exp [𝐋𝛼2 ,𝛏(𝑥2)] − 𝑥1𝑥2. 

3.5 Via Ali–Mikhail–Haq copula 

Under the stronger Lipschitz condition, the Archimedean Ali–Mikhail–Haq copula can expressed as 

 𝐇(𝜐, 𝜈) = 𝜐𝜈[1 − 𝜗𝜐•𝑣•]−1|𝛕∈(−1,1), 

then for any 𝜐• = 1 − 𝐹 𝛼1,𝛏
(ℎ1)|[𝜐•=(1−𝜐)∈(0,1)] and 𝜈• = 1 − 𝐹 𝛼2,𝛏

(ℎ2)|[𝜈•=(1−𝜈)∈(0,1)] we have 

 𝐇(ℎ1, ℎ2) =
𝐋𝛼1,𝛏(ℎ1)𝐋𝛼2,𝛏(ℎ2)exp[𝐋𝛼1,𝛏(ℎ1)+𝐋𝛼2,𝛏(ℎ2)]

1−𝜗{1−𝐋𝛼1,𝛏(ℎ1)exp[𝐋𝛼1,𝛏(ℎ1)]}{1−𝐋𝛼2,𝛏(ℎ2)exp[𝐋𝛼2,𝛏(ℎ2)]}
 

 

4. Characterizations of the TIIQL Distribution 

To understand the behavior of the data obtained through a given process, we need to be able to describe this behavior 

via its approximate probability law. This, however, requires to establish conditions which govern the required 

probability law. In other words we need to have certain conditions under which we may be able to recover the 

probability law of the data. So, characterization of a distribution is important in applied sciences, where an investigator 
is vitally interested to find out if their model follows the selected distribution. Therefore, the investigator relies on 

conditions under which their model would follow a specified distribution. A probability distribution can be 

characterized in different directions one of which is based on the truncated moments. This type of characterization 

initiated by Galambos and Kotz (1978) and followed by other authors such as Kotz and Shanbhag (1980), Glanzel et 

al. (1984), Glannzel (1987), Glanzel and Hamedani (2001) and Kim and Jeon (2013), to name a few. For example, 

Kim and Jeon (2013) proposed a credibility theory based on the truncation of the loss data to estimate conditional 

mean loss for a given risk function. It should also be mentioned that characterization results are mathematically 

challenging and elegant. In this section, we present two characterizations of the TIIQL distribution based on: (𝑖) 

conditional expectation (truncated moment) of certain function of a random variable and (𝑖𝑖) the reversed hazard 

function. 
 

4.1  Characterizations based on two truncated moments 

This subsection deals with the characterizations of TIIQL distribution in terms of a simple relationship between two 

truncated moments. We will employ Theorem 1 of Glanzel (1987) given in the Appendix A.  As shown in Glanzel 

(1990), this characterization is stable in the sense of weak convergence. 

  

Proposition 4.1.1.  Let   𝑋: Ω → ℝ be a continuous random variable and let 𝑞1(𝑥) = exp [𝐋𝛼,𝛏(𝑥)] [1 − 𝚷𝛏
𝛼(𝑥)]

−1

 

and 𝑞2(𝑥) = 𝑞1(𝑥)𝚷𝛏
−2𝛼(𝑥) for 𝑥 ∈ ℝ. Then 𝑋  has PDF (2) if and only if the function 𝜂(𝑥) defined in Theorem 

1 is of the form 
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 𝜂(𝑥) =
1

2
{𝚷𝛏

−2𝛼(𝑥) + 1} ,    𝑥 ∈ ℝ. 

Proof.  If  𝑋  has PDF  (2), then 

 [1 − 𝐹𝛼,𝛏(𝑥)] 𝐸[𝑞1(𝑋)|𝑋 ≥ 𝑥] = 2 {𝚷𝛏
−2𝛼(𝑥) − 1} , 𝑥 ∈ ℝ, 

 

and 

 [1 − 𝐹𝛼,𝛏(𝑥)] 𝐸[𝑞2(𝑋)|𝑋 ≥ 𝑥] = {𝚷𝛏
−4𝛼(𝑥) − 1} ,    𝑥 ∈ ℝ, 

 

and hence 

 𝜂(𝑥) =
1

2
[𝚷𝛏

−2𝛼(𝑥) + 1] ,    𝑥 ∈ ℝ. 

We also have 

 𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥) =
1

2
𝑞1(𝑥) {1 − 𝚷𝛏

−2𝛼(𝑥)} < 0,    for  𝑥 ∈ ℝ. 

Conversely, if 𝜉 is of the above form, then 

 𝑠′(𝑥) =
𝜂′(𝑥)𝑞1(𝑥)

𝜂(𝑥)𝑞1(𝑥)−𝑞2(𝑥)
=

𝛼𝜋𝛏(𝑥)𝚷𝛏
−2𝛼−1(𝑥)

𝚷𝛏
−2𝛼(𝑥)−1

,    𝑥 ∈ ℝ, 

and 

 𝑠(𝑥) = −
1

2
log (𝚷𝛏

−2𝛼(𝑥) − 1). 

Now, according to Theorem 1, 𝑋 has density (2).  

Corollary 4.1.1.  Suppose 𝑋 is a continuous random variable. Let 𝑞1(𝑥) be as in Proposition 4.1.1. Then 𝑋  has 

density (2) if and only if there exist functions 𝑞2(𝑥) and 𝜂(𝑥) defined in Theorem 1 for which the following first 

order differential equation holds 

 
𝜂′(𝑥)𝑞1(𝑥)

𝜂(𝑥)𝑞1(𝑥)−𝑞2(𝑥)
=

𝛼𝜋𝛏(𝑥)𝚷𝛏
−2𝛼−1(𝑥)

𝚷𝛏
−2𝛼(𝑥)−1

,    𝑥 ∈ ℝ. 

Corollary 4.1.2. The differential equation in Corollary 4.1.1 has the following general solution 

 

 𝜂(𝑥) = {𝚷𝛏
−2𝛼(𝑥) − 1}

−1

[−∫ 𝛼𝜋𝛏(𝑥)𝚷𝛏
−2𝛼−1(𝑥)(𝑞1(𝑥))

−1
𝑞2(𝑥) + 𝐷], 

where 𝐷 is a constant. A set of functions satisfying the above differential equation is given in Proposition 4.1.1 with 

𝐷 =
1

2
. Clearly, there are other triplets (𝑞1(𝑥), 𝑞2, 𝜂(𝑥)) satisfying the conditions of Theorem 1. 

 

 

4.2 Characterization based on reverse hazard function 

The reverse hazard function, 𝑟𝐹, of a twice differentiable distribution function, 𝐹 , is defined as 

 𝑟𝐹(𝑥) =
𝑓𝛼,𝛏(𝑥)

𝐹𝛼,𝛏(𝑥)
,    𝑥 ∈ supportof𝐹. 

In this subsection we present a characterization of the TIIQL which is not of the above trivial form. 

  

Proposition 4.2.1.  Suppose 𝑋  is a continuous random variable.  Then,   𝑋 has density (2) if and only if its hazard 

function 𝑟𝐹(𝑥) satisfies the following first order differential equation 

 

 𝑟𝐹
′(𝑥) −

𝜋𝛏
′(𝑥)

𝜋𝛏(𝑥)
𝑟𝐹(𝑥) = 4𝛼𝜋𝛏(𝑥)

𝑑

𝑑𝑥
{

1−𝚷𝛏
𝛼(𝑥)

𝚷𝛏
𝛼(𝑥)[2−𝚷𝛏

𝛼(𝑥)]
} , 𝑥 ∈ ℝ. 

Proof.  Is straightforward and hence omitted. 

 

 

5. Two Special TIIQL-G distributions 

5.1  TIIQL-Lindley distribution 

Firstly, the Lindley (L) distribution (Lindley (1958)) has been taken as baseline distribution. It is well known that the 

L distribution has unimodal or decreasing PDF shapes as well as it has only increasing HRF shape. To extend the 

shape properties of the L distribution, we define the TIIQL-Lindley (TIIQL-L) distribution. Taking 
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𝐺(𝑥, 𝛽) = 1 − (1 +
𝛽𝑥

1+𝛽
) exp(−𝛽𝑥) and 𝑔(𝑥, 𝛽) =

𝛽2

1+𝛽
(1 + 𝑥)exp(−𝛽𝑥), 𝑥 > 0, 𝛽 > 0, 

for the CDF and PDF of the L distribution, The PDF and CDF of the new distribution are respectively given by  

𝑓𝛼,𝛽(𝑥) =
4𝛼𝛽2(1 + 𝑥)𝑒2−𝛽𝑥

(1 + 𝛽) [1 − (1 +
𝛽𝑥

1 + 𝛽
)exp(−𝛽𝑥)]

𝛼+1 

× {[1 − (1 +
𝛽𝑥

1 + 𝛽
) exp(−𝛽𝑥)]

−𝛼

− 1}exp {−2 [1 − (1 +
𝛽𝑥

1 + 𝛽
)exp(−𝛽𝑥)]

𝛼

}, 

and  

 𝐹𝛼,𝛽(𝑥) = (2 [1 − (1 +
𝛽𝑥

1+𝛽
) exp(−𝛽𝑥)]

−𝛼

− 1) exp {−2 [1 − (1 +
𝛽𝑥

1+𝛽
) exp(−𝛽𝑥)]

𝛼

}, 

where, 0 < 𝑥, 𝛼, 𝛽 > 0. We denote with TIIQL-L(𝛼, 𝛽). Plots of the TIIQL-L density and hazard functions for 
selected parameter values are displayed in Figure 1. These plots indicate that the L distribution gains excellent shape 

properties via the proposed family. For instance, the PDF of the TIIQL-L model have unimodal and decreasing shapes 

with skewed and high kurtosis. Further, the its HRF can be unimodal, increasing or decreasing. 

5.2  TIIQL-Weibull distribution 

Secondly, we consider the Weibull (W) distribution with CDF and PDF are 

𝐺(𝑥; 𝛽, 𝜃) = 1 − exp[−(𝜃𝑥)𝛽] and 𝑔(𝑥, 𝛽, 𝜃) = 𝛽𝜃𝛽𝑥𝛽−1exp[−(𝜃𝑥)𝛽], 𝑥 > 0, 𝛽, 𝛼 > 0, 

respectively. The W distribution has decreasing or unimodal PDF shapes as well as its HRF has the monotone shapes. 

To extend its modeling ability, we propose the TIIQL-Weibull (TIIQL-W) distribution with following PDF and CDF 

 

𝑓𝛼,𝛽,𝜃(𝑥) =
4𝛼𝛽𝜃𝛽𝑥𝛽−1exp[−(𝜃𝑥)𝛽]

{1 − exp[−(𝜃𝑥)𝛽]}𝛼+1
(
1 − {1 − exp[−(𝜃𝑥)𝛽]}

𝛼

{1 − exp[−(𝜃𝑥)𝛽]}𝛼
)exp(

2{1 − exp[−(𝜃𝑥)𝛽]}
𝛼

− 2

(1 − exp[−(𝜃𝑥)𝛽])𝛼
) 

and  

 𝐹𝛼,𝛽,𝜃(𝑥) = (2{1 − exp[−(𝜃𝑥)𝛽]}
−𝛼

− 1)exp (
2{1−exp[−(𝜃𝑥)𝛽]}

𝛼
−2

(1−exp[−(𝜃𝑥)𝛽])
𝛼 ) 

respectively, where 0 < 𝑥, 𝛼, 𝛽, 𝜃 > 0. We denote with TIIQL-W(𝛼, 𝛽, 𝜃). For 𝛽 = 1 and 𝛽 = 2, we obtain the 
TIIQL-exponential and TIIQL-Rayleigh distributions respectively. Plots of the PDF and HRF of the TIIQL-W model 

for selected parameter values are displayed in Figure 2. These plots reveal that the proposed density can be unimodal, 

decreasing and skewed shapes. Also, the HRF can be monotonically increasing or decreasing, bathtub shaped and 

upside-down bathtub shaped depending basically on the parameter values.  

 

 

 
Figure  1: The possible pdf and hrf shapes of the TIIQL-L distribution 
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Figure  2: The mean, variance, skewness and kurtosis plots of the TIIQL-L distribution 

   

 

 

 

 
Figure  3: The possible pdf and hrf shapes of the TIIQL-W distribution 
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Figure  4: The mean, variance, skewness and kurtosis plots of the TIIQL-W distribution 

   

 

6. Different methods of the estimation of parameters 

This section is devoted to six estimations methods of the parameters of the TIIQL-G distribution. The details are given 

below. 

 

6.1 Maximum likelihood estimation 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from the TIIQL-G distribution with observed values 𝑥1, 𝑥2, … , 𝑥𝑛, and 𝚽 =
(𝛼, 𝛏) Then, the log-likelihood function is given by 

 

ℓ(𝚽) = 2𝑛log2 + 𝑛log𝛼 + ∑

𝑛

𝑖=1

log𝛑𝛏(𝑥𝑖)(𝑥𝑖) − (2𝛼 + 1)∑

𝑛

𝑖=1

log𝚷𝛏(𝑥𝑖) 

                           +∑𝑛
𝑖=1 log [1 − 𝚷𝛏

𝛼(𝑥𝑖)] + ∑𝑛
𝑖=1

2−𝚷𝛏
𝛼(𝑥𝑖)

𝚷𝛏
𝛼(𝑥𝑖)

, (13) 

Then, the ML estimates (MLEs) of 𝛼 and 𝛏, say 𝛼̂ and 𝛏, are obtained by maximizing ℓ(𝚽) with respect to 𝚽. 

Mathematically, this is equivalent to solving the following non-linear equation with respect to the parameters:  
𝜕

𝜕𝛼
ℓ(𝚽) = 0 and 

𝜕

𝜕𝛏
ℓ(𝚽) = 0. Hence, the numerical methods are needed to obtain the MLEs. Under mild regularity 

conditions, one can use the multivariate normal distribution with mean 𝜇 = (𝛼, 𝛏) and covariance matrix 𝐈−1, where 

𝐈 denotes the following (𝑝 + 1) × (𝑝 + 1) observed information matrix of real numbers to construct confidence 

intervals or likelihood ratio test on the parameters. The components of 𝐈 can be requested from the authors when it is 

needed. Then, approximate 100(1 − 𝜐)% confidence intervals for 𝛼 and 𝛏 can be determined by: 𝛼̂ ± 𝑧𝜐/2𝑠𝛼̂ and 



Pak.j.stat.oper.res.  Vol.18  No. 4 2022 pp 963-983  DOI: http://dx.doi.org/10.18187/pjsor.v18i4.3907 

 

 
The Type II Quasi Lambert G Family of Probability Distributions 972 

 

𝛏 ± 𝑧𝜐/2𝑠𝛏 where 𝑧𝜐/2 is the upper (𝜐/2)𝑡ℎ quantile of the standard normal distribution, 𝑠𝛼̂  is the first diagonal 

element of , where 𝐈−1 denotes the following and 𝑠𝛏 is its second diagonal element. 

 

6.2 Maximum product spacing estimation 

The maximum product spacing (MPS) method has been introduced by Cheng and Amin (1979). It is based on the idea 

that differences (spacings) between the values of the CDF at consecutive data points should be identically distributed. 

Let 𝑋(1), 𝑋(2), … , 𝑋(𝑛)  be the ordered statistics from the TIIQL-G distribution with sample size 𝑛 , and 

𝑥(1), 𝑥(2), … , 𝑥(𝑛) be the ordered observed values. Then, we define the MPS function by 

 

 𝑀𝑃𝑆(𝚽) =
1

𝑛+1
∑𝑛+1

𝑖=1 log[𝐹(𝑥(𝑖),𝚽) − 𝐹(𝑥(𝑖−1), 𝚽)], 

where 𝐹(𝑥, 𝚽) = 𝐹𝛼,𝛏(𝑥) . The MPS estimates (MPSEs), say 𝛼̂𝑀𝑃𝑆  and 𝛏𝑀𝑃𝑆 , can be obtained by minimizing 

𝑀𝑃𝑆(𝚽) with respect to 𝚽. They are also given as the simultaneous solution of the following non-linear equations:  

 
𝜕𝑀𝑃𝑆(𝚽)

𝜕𝛼
=

1

𝑛+1
∑𝑛+1

𝑖=1 [
𝐹𝛼

 ′(𝑥(𝑖),𝚽)−𝐹𝛼
 ′(𝑥(𝑖−1),𝚽)

𝐹(𝑥(𝑖),𝚽)−𝐹(𝑥(𝑖−1),𝚽)
] = 0 

and  

 
𝜕𝑀𝑃𝑆(𝚽)

𝜕𝛏
=

1

𝑛+1
∑𝑛+1

𝑖=1 [
𝐹𝛏

 ′(𝑥(𝑖),𝚽)−𝐹𝛏
 ′(𝑥(𝑖−1),𝚽)

𝐹(𝑥(𝑖),𝚽)−𝐹(𝑥(𝑖−1),𝚽)
] = 0, 

where 𝐹𝛼
 ′(𝑥, 𝚽) =

𝜕

𝜕𝛼
𝐹(𝑥,𝚽) and 𝐹𝛏

 ′(𝑥, 𝚽) =
𝜕

𝜕𝛏
𝐹(𝑥,𝚽). 

6.3 Least squares estimation 

The least square estimates (LSEs) 𝛼̂𝐿𝑆𝐸 and 𝛏𝐿𝑆𝐸 of 𝛼 and 𝛏, respectively, are obtained by minimizing the following 

function:  

 𝐿𝑆𝐸(𝚽) = ∑𝑛
𝑖=1 (𝐹(𝑥(𝑖),𝚽) − 𝐸[𝐹(𝑋(𝑖),𝚽)])

2
, (14) 

with respect to 𝚽, where 𝐸[𝐹(𝑋(𝑖),𝚽)] = 𝑖/(𝑛 + 1) for 𝑖 = 1,2,… , 𝑛. Then, 𝛼̂𝐿𝑆𝐸  and 𝛏𝐿𝑆𝐸  are solutions of the 

following equations:  

 
𝜕𝐿𝑆𝐸(𝚽)

𝜕𝛼
= 2∑𝑛

𝑖=1 𝐹𝛼
 ′(𝑥(𝑖), 𝚽)(𝐹(𝑥(𝑖),𝚽) −

𝑖

𝑛+1
) = 0, 

and  

 
𝜕𝐿𝑆𝐸(𝚽)

𝜕𝛏
= 2∑𝑛

𝑖=1 𝐹𝛏
 ′(𝑥(𝑖), 𝚽)(𝐹(𝑥(𝑖),𝚽) −

𝑖

𝑛+1
) = 0, 

respectively, where 𝐹𝛼
 ′(𝑥(𝑖),𝚽) and 𝐹𝛏

 ′(𝑥(𝑖),𝚽) are mentioned before. 

 

6.4 Weighted least squares estimation 

This estimation method is a generalization of the LSE method with a weighted function. The weighted least square 

estimates (WLSEs) 𝛼̂𝑊𝐿𝑆𝐸  and 𝛏𝑊𝐿𝑆𝐸  of 𝛼 and 𝛏, are obtained by minimizing the following function:  

 𝑊𝐿𝑆𝐸(𝚽) = ∑𝑛
𝑖=1

1

𝑉[𝐹(𝑋(𝑖),𝚽)]
{𝐹(𝑥(𝑖), 𝛼, 𝛽) − 𝐸[𝐹(𝑋(𝑖),𝚽)]}

2
, (15) 

where, 𝐸[𝐹(𝑋(𝑖),𝚽)] = 𝑖/(𝑛 + 1)  and 𝑉[𝐹(𝑋(𝑖),𝚽)] = 𝑖(𝑛 − 𝑖 + 1)/[(𝑛 + 2)(𝑛 + 1)2]  for 𝑖 = 1,2,… , 𝑛 . Then, 

𝛼̂𝑊𝐿𝑆𝐸  and 𝛏𝑊𝐿𝑆𝐸  are solutions of the following equations:  

 
𝜕𝑊𝐿𝑆𝐸(𝚽)=

𝜕𝛼
= ∑𝑛

𝑖=1
(𝑛+2)(𝑛+1)2

𝑖(𝑛−𝑖+1)

𝜕𝐿𝑆𝐸(𝚽)

𝜕𝛼
= 0 

and  

 
𝜕𝑊𝐿𝑆𝐸(𝚽)

𝜕𝛏
= ∑𝑛

𝑖=1
(𝑛+2)(𝑛+1)2

𝑖(𝑛−𝑖+1)

𝜕𝐿𝑆𝐸(𝚽)

𝜕𝛏
= 0. 

6.5 Anderson-Darling estimation 

The Anderson-Darling minimum distance estimates (ADEs) 𝛼̂𝐴𝐷  and 𝛏𝐴𝐷 of 𝛼 and 𝛏, respectively, are obtained by 

minimizing the following function:  

 𝐴𝐷(𝚽) = −𝑛 − ∑𝑛
𝑖=1

2𝑖−1

𝑛
[log𝐹(𝑥(𝑖),𝚽) + log{1 − 𝐹(𝑥(𝑛+1−𝑖),𝚽)}], (16) 
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with respect to 𝚽. Therefore, 𝛼̂𝐴𝐷  and 𝛏𝐴𝐷 can be obtained as the solutions of the following system of equations:  

 
𝜕𝐴𝐷(𝚽)

𝜕𝛼
= −∑𝑛

𝑖=1
2𝑖−1

𝑛
[
𝐹𝛼

′(𝑥(𝑖),𝚽)

𝐹(𝑥(𝑖)𝚽)
−

𝐹𝛼
′ (𝑥(𝑛+1−𝑖),𝚽)

1−𝐹(𝑥(𝑛+1−𝑖),𝚽)
] = 0 

and  

 
𝜕𝐴𝐷(𝚽)

𝜕𝛏
= −∑𝑛

𝑖=1
2𝑖−1

𝑛
[
𝐹𝚿

′ (𝑥(𝑖),𝚽)

𝐹(𝑥(𝑖),𝚽)
−

𝐹𝚿
′ (𝑥(𝑛+1−𝑖),𝚽)

1−𝐹(𝑥(𝑛+1−𝑖),𝚽)
] = 0. 

 

6.6 The Cramer-von Mises estimation 

The Cramer-von Mises minimum distance estimates (CVMEs) 𝛼̂𝐶𝑉𝑀  and 𝛏𝐶𝑉𝑀  of 𝛼  and 𝛏 , respectively, are 

obtained by minimizing the following function:  

 𝐶𝑉𝑀(𝚽) =
1

12𝑛
+ ∑𝑛

𝑖=1 [𝐹(𝑥(𝑖),𝚽) −
2𝑖−1

2𝑛
]
2

, (17) 

with respect to 𝚽. Therefore, the estimates 𝛼̂𝐶𝑉𝑀 and 𝛏𝐶𝑉𝑀 can be obtained as the solution of the following system 

of equations:  

 
𝜕𝐶𝑉𝑀(𝚽)

𝜕𝛼
= 2∑𝑛

𝑖=1 (𝐹(𝑥(𝑖),𝚽) −
2𝑖−1

2𝑛
)𝐹𝛼

′(𝑥(𝑖),𝚽) = 0 

and  

 
𝜕𝐶𝑉𝑀(𝚽)

𝜕𝛏
= 2∑𝑛

𝑖=1 (𝐹(𝑥(𝑖),𝚽) −
2𝑖−1

2𝑛
)𝐹𝛏

′(𝑥(𝑖),𝚽) = 0. 

Since all estimating equations contain non-linear functions, it is not possible to obtain explicit forms of all estimators 

directly. Therefore, they have to be solved via numerical methods such as the Newton-Raphson and quasi-Newton 

algorithms. In addition, the Equations (13), (14), (15), (16) and (17) can also be optimized directly by using the 

software such as R (constrOptim, optim and maxLik functions), S-Plus and Mathematica to numerically optimize the 

ℓ(𝚽), 𝑀𝑃𝑆(𝚽), LSE(𝚽), WLSE(𝚽), 𝐴𝐷(𝚽) and 𝐶𝑉𝑀(𝚽) functions. 

 

7. Simulation studies for the parameters estimations 

In this section, two graphical simulation studies have been pointed out to assess the performance of the above 

estimators of the special member of the new family with respect to varying sample size 𝑛. We take Lindley distribution 

(Lindley, 1958) as the baseline model. Hence, the CDF of the TIIQL-Lindley (TIIQL-L) distribution is given by  

𝑓𝛼,𝛽(𝑥) =
4𝛼𝛽2(1 + 𝑥)𝑒2−𝛽𝑥

(1 + 𝛽) [1 − (1 +
𝛽𝑥

1 + 𝛽
)exp(−𝛽𝑥)]

𝛼+1 

× {[1 − (1 +
𝛽𝑥

1 + 𝛽
)exp(−𝛽𝑥)]

−𝛼

− 1} 

× exp {−2[1 − (1 +
𝛽𝑥

1 + 𝛽
) exp(−𝛽𝑥)]

𝛼

}, 

where, 0 < 𝑥 , 𝛼, 𝛽 > 0 . We generate 𝑁 = 1000  samples of size 𝑛 = 20,25,… ,1000  from the TIIQL-L 

distribution based on the actual parameter values. For the case-I and case-II, the 𝛼 = 0.5, 𝛽 = 0.5 and 𝛼 = 2, 𝛽 =
2  pairs have been taken as actual parameters values respectively for simulation studies. The random numbers 

generation is obtained by the solution of the its CDF via uniroot function in R software as well as all the estimations 

based on the estimation methods have been obtained by using the constrOptim function in the same software. Further, 

we calculate the empirical mean, bias and mean square error (MSE) of the estimators for comparisons of the estimation 

methods. The bias and MSE are calculated by (for ℎ = 𝛼,𝛽)  

 𝐵𝑖𝑎𝑠ℎ(𝑛) =
1

𝑁
∑𝑁

𝑖=1 (ℎ𝑖 − ℎ̂𝑖), 

and  

 𝑀𝑆𝐸ℎ(𝑛) =
1

𝑁
∑𝑁

𝑖=1 (ℎ𝑖 − ℎ̂𝑖)
2
, 

respectively. It is hoped that while the estimated means are close to the true values, the MSEs and biases approach 0. 
Figures 5 and 6 show results of the simulation studies. 

For two cases, the amount of the biases and MSEs of the MPS and CVM methods are bigger than those of 

other methods. However, they approach each other when sample size increases. These Figures show that all the 

estimators are consistent since the MSE and biasedness decrease to zero with increasing sample size as expected. All 

estimators are asymptotically unbiased also. Therefore, all methods can be chosen as more reliable than another 



Pak.j.stat.oper.res.  Vol.18  No. 4 2022 pp 963-983  DOI: http://dx.doi.org/10.18187/pjsor.v18i4.3907 

 

 
The Type II Quasi Lambert G Family of Probability Distributions 974 

 

estimator of new distribution. Similar results can also be obtained for different parameter settings.  

 
Figure  5: The simulation results of the case-I for the 𝛼 (top) and 𝛽 (bottom) parameters 

   

 
Figure  6: The simulation results of the case-II for the 𝛼 (top) and 𝛽 (bottom) parameters 

    

In addition, based on the case-I and case-II simulation studies, the behaviors of the 95% confidence intervals of the 

MLEs. They are obtained via the empirical coverage length (CL) which is defined by  

 𝐶𝐿ℎ(𝑛) =
1

𝑁
∑𝑁

𝑖=1 3.9198𝑠ℎ̂𝑖
, 

where the 𝑠ℎ̂𝑖
= (𝑠𝛼̂𝑖

, 𝑠𝛽̂𝑖
) are the standard errors of the MLEs which are calculated by the observed information 

matrix. Figure 7 displays the simulation results for the CLs. As seen from this Figure, both cases, the CLs approach 
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0 value when the sample size increases. The simulation results verify the consistency property of MLEs.  

 
Figure  7: The empirical CLs of the case-I (left) and case-II (right) 

   

8. Modeling data for comparing competitive models 

In this section, two real data set are analyzed to prove the empirical importance and modeling ability of two special 

members of the TIIQL family. Based on the MLE method, we also compare these models with the well-known 

competitive models in the literature under the estimated log-likelihood values ℓ̂, Akaike Information Criteria (AIC), 

corrected Akaike information criterion (CAIC), Bayesian information criterion (BIC), Hannan-Quinn information 

criterion (HQIC) and Kolmogorov-Smirnov (𝐾𝑆) goodness of-fit statistics for all models. We note that the AIC, CAIC, 

BIC and HQIC are given by 𝐴𝐼𝐶 = −2ℓ̂ + 2𝑝, 𝐶𝐴𝐼𝐶 = −2ℓ̂ + 2𝑝𝑛(𝑛 − 𝑘 − 1)−1, 𝐵𝐼𝐶 = −2ℓ̂ +
𝑝log𝑛and𝐻𝑄𝐼𝐶 = −2ℓ̂ + 𝑝log(log𝑛), where 𝑝 is the number of the estimated model parameters and 𝑛 is the sample 

size. Generally, it can be chosen as the proper model which has the smaller values of the AIC, CAIC, BIC, HQIC and 

𝐾𝑆 statistics with larger values of ℓ̂. All computations are performed by the maxLike and goftest functions in the R 

software. The details are given below. 

 
8.1  Data Set-I: The times between successive failures 

The first data set is the times between successive failures (in thousands of hours) in events of secondary reactor pumps 

studied by Salman et al. (1999), Bebbington et al. (2007) and Lucena et al. (2015). The data are: 2.160, 0.746, 0.402, 

0.954, 0.491, 6.560, 4.992, 0.347,0.150, 0.358, 0.101, 1.359, 3.465, 1.060, 0.614, 1.921,4.082 ,0.199 ,0.605 ,0.273 

,0.070, 0.062, 5.320. We compare performance of the real data fitting of the the TIIQL-L distribution under the MLE 

method with well know unit distribution in the literature. These competitor distributions are: 

• Lindley (L) distribution:  

 𝑓𝛽(𝑥) =
𝛽2

1+𝛽
(1 + 𝑥)exp(−𝛽𝑥), 

where 0 < 𝑥 and 𝛽 > 0. 

• Kumaraswamy Lindley (Kw-L) distribution (Cakmakyapan and Ozel (2014)):  

𝑓𝛼,𝛽,𝜃(𝑥) =
𝛼𝜃𝛽2

1 + 𝛽
(1 + 𝑥)exp(−𝛽𝑥) [1 − (1 +

𝛽𝑥

1 + 𝛽
) exp(−𝛽𝑥)]

𝛼−1

{1 − [1 − (1 +
𝛽𝑥

1 + 𝛽
) exp(−𝛽𝑥)]

𝛼

}

𝜃−1

, 

where 0 < 𝑥 and 𝛼, 𝛽, 𝜃 > 0. 

• Beta Lindley (B-L) distribution (Merovci and Sharma (2014)):  

 𝑓𝛼,𝛽,𝜃(𝑥) =
𝛽2(1+𝛽+𝛽𝑥)𝜃−1(1+𝑥)𝑒−𝜃𝛽𝑥

B(𝛼,𝜃)(1+𝛽)𝜃
[1 − (1 +

𝛽𝑥

1+𝛽
) exp(−𝛽𝑥)]

𝛼−1

, 

where 0 < 𝑥 and 𝛼, 𝛽, 𝜃 > 0 and B(α, θ) is the beta function. 

• Odd log-logistic Lindley (OLL-L) distribution (Ozel et al. (2017)):  

 𝑓𝛼,𝛽(𝑥) =
𝛼𝛽2(1+𝛽+𝛽𝑥)𝜃−1(1+𝑥)exp(−𝛼𝛽𝑥)[1−(1+

𝛽𝑥

1+𝛽
)exp(−𝛽𝑥)]

𝛼−1

(1+𝛽)𝛼{[1−(1+
𝛽𝑥

1+𝛽
)exp(−𝛽𝑥)]

𝛼
+[(1+

𝛽𝑥

1+𝛽
)exp(−𝛽𝑥)]

𝛼
}
2 , 

where 0 < 𝑥 and 𝛼, 𝛽, 𝜃 > 0. 

• Lindley-Lindley (L-L) distribution (Cakmakyapan and Ozel (2017)):  
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 𝑓𝛼,𝛽(𝑥) =
𝛼2𝛽2(1+𝑥)exp(−𝛽𝑥)

(1+𝛼)(1+𝛽)
[(1 +

𝛽𝑥

1+𝛽
) exp(−𝛽𝑥)]

𝛼−1

{1 − log [(1 +
𝛽𝑥

1+𝛽
) exp(−𝛽𝑥)]}, 

where 0 < 𝑥 and 𝛼, 𝛽 > 0. The data analysis results are given by in Table 1. Table 1 indicates that the TIQL-L 

distribution has the lowest values of the K-S, AIC, CAIC, BIC and HQIC statistic with ℓ̂  and p-value among 

application models. It implies that the TIIQL-L model will be the best choice for the modeled data set.  

 

Table  1:  MLEs, standard errors of the estimates (in parentheses), ℓ̂ and goodness-of-fits statistics for the first 

data set (p value is given in [⋅]) 
 Model  𝛼̂ 𝛽̂ 𝜃 ℓ̂ 𝐴𝐼𝐶 𝐵𝐼𝐶 𝐶𝐴𝐼𝐶 𝐻𝑄𝐼𝐶 𝐾𝑆 

TIIQL-L  0.2102 0.2527  -31.7099 67.4198 9.6907 68.0198 67.9909 0.1115 

 (0.0365) (0.0860)       [0.9070] 

B-L  0.6388 1.2784 0.5256 -33.3950 72.7901 76.1966 74.0532 73.6468 0.1588 

 (0.1919) (1.6927) (0.7505)      [0.5550] 

Kw-L  0.6101 0.4545 1.6688 -33.4740 72.9479 76.3544 74.2111 73.8047 0.1502 

 (0.1453) (1.4025) (5.6460)      [0.6240] 

OLL-L  0.7091 1.0438  33.1707 70.3414 72.6124 70.9414 70.9125 0.1614 

 (0.1283) (0.2082)       [0.5338] 

L-L  1.9567 0.6937  36.9406 77.8811 80.1521 78.4811 78.4523 0.2857 

 (1.7112) (0.5147)       [0.0373] 

L   0.9575  -35.3054 72.6108 73.7463 72.8013 72.8963 0.2440 

  (0.1505)       [0.1085] 

 

   

Figure 8 displays the fitted PDFs and CDFs for all models. It is clear that the proposed TIQL-L model fits the data set 

graphically and its fitting is acceptable. Figure 9 shows that the probability-probability (PP) plot of the proposed model 

is closer to diagonal line than those of the other models. 

 
Figure  8: PP plots for the fitted models based on the first data set. 
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Figure  9: PP plots for the fitted models based on the first data set. 

   

 

8.2  Data Set-II: The survival times of patients suffering from acute Myelogeneous Leukaemia 

 

The second real data set gives the survival times, in weeks, of 33 patients suffering from acute Myelogeneous 

Leukaemia. These data have been analyzed by Feigl and Zelen (1965) and Mead (2014). The data are: 65, 156, 100, 
134, 16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43. Using Weibull 

(W) baseline model, we research the data modeling ability of the TIIQL-Weibull (TIIQL-W) distribution on this data 

set. Corresponding PDF of the TIIQL-W distribution is given by  

 𝑓𝛼,𝛽,𝜃(𝑥) =
4𝛼𝛽𝜃𝛽𝑥𝛽−1exp[−(𝜃𝑥)𝛽]

{1−exp[−(𝜃𝑥)𝛽]}
𝛼+1 (

1−{1−exp[−(𝜃𝑥)𝛽]}
𝛼

{1−exp[−(𝜃𝑥)𝛽]}
𝛼 ) exp (

2{1−exp[−(𝜃𝑥)𝛽]}
𝛼
−2

(1−exp[−(𝜃𝑥)𝛽])
𝛼 ), 

where 0 < 𝑥 and 𝛼, 𝛽, 𝜃 > 0. We compare performance of the real data fitting of the the TIQLW distribution under 

the MLE method with well know unit distribution in the literature. These competitor distributions are: 

• W distribution (Weibull (1951)):  

 𝑓𝛽,𝜃(𝑥) = 𝛽𝜃𝛽𝑥𝛽−1𝑒−(𝜃𝑥)𝛽 , 

where, 0 < 𝑥 and 𝛽, 𝜃 > 0. 

• Beta Weibull (B-W) distribution (Famoye et al. (2005)):  

 𝑓𝛼,𝛽,𝜃,𝛾(𝑥) = 𝛽𝜃𝛽 𝑥𝛽−1exp[−(𝜃𝑥)𝛽]

B(𝛼,𝛾)
{1 − exp[−(𝜃𝑥)𝛽]}

𝛼−1
exp[−𝛾(𝜃𝑥)𝛽], 

where, 0 < 𝑥 and 𝛼, 𝛽, 𝜃, 𝛾 > 0 and B(α, γ) is the beta function. 

• Odd log-logistic Weibull (OLL-W) distribution (Gleaton and Lynch (2006)):  

 𝑓𝛼,𝛽,𝜃(𝑥) = 𝛽𝜃𝛽 𝑥𝛽−1exp[−𝛼(𝜃𝑥)𝛽]{1−exp[−(𝜃𝑥)𝛽]}
𝛼−1

({1−exp[−(𝜃𝑥)𝛽]}
𝛼
+exp[−(𝜃𝑥)𝛽])

2 , 

where, 0 < 𝑥 and 𝛼, 𝛽, 𝜃 > 0. 

• Lindley-Weibull (L-W) distribution (Cakmakyapan and Ozel (2017)):  

 𝑓𝛼,𝛽,𝜃(𝑥) =
𝛼2𝛽𝜃𝛽𝑥𝛽−1

(1+𝛼)
[1 + (𝜃𝑥)𝛽]

𝛼
exp[−𝛼(𝜃𝑥)𝛽], 

where 0 < 𝑥 and 𝛼, 𝛽, 𝜃 > 0.  
 

We give the data analysis results belong to other competitor models in Table 2. Table 2 shows that the proposed model 

has the lowest values of the K-S, AIC, CAIC, BIC and HQIC statistic with ℓ̂ and p-value among application models. 

It implies that the TIIQL-W model will be the best choice for the modeled data set.  

 

Table  2:  MLEs, standard errors of the estimates (in parentheses), ℓ̂ and goodness-of-fits statistics for the second 

data set (p value is given in [⋅]) 
Model 𝛼̂ 𝛽̂ 𝜃 𝛾 ℓ̂ 𝐴𝐼𝐶 𝐵𝐼𝐶 𝐶𝐴𝐼𝐶 𝐻𝑄𝐼𝐶 𝐾𝑆 

TIQL-W 0.0160 14.1588 0.0037  -151.7055 309.4111 313.9007 310.2387 310.9217 0.1331 

 (0.0071) (6.0475) (0.0011)       [0.6025] 

L-W 5.6819 0.7687 0.0036  -153.5738 313.1476 317.6371 313.9752 314.6582 0.1366 

 (19.5711) (0.1154) (0.0174)       [0.5685] 
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OLL-W 0.5547 1.2882 0.0269  -152.9761 311.9521 316.4417 312.7797 313.4627 0.1373 

 (0.2564) (0.5188) (0.0068)       [0.5626] 

B-W 2.4526 0.4639 0.0286 2.1614 -153.5415 315.0831 321.0691 316.5116 317.0972 0.1372 

 (5.1603) (0.4960) (0.1757) (2.8410)      [0.5638] 

W  0.0282 0.7764  -153.5868 311.5737 314.1667 311.5737 312.1807 0.1367 
  (0.0067) (0.1075)       [0.5687] 

 

Figure 10 displays the fitted PDFs and CDFs for all models. It is clear that the fitting of the TIQL-W model is 

acceptable as well as the Figure 11 shows that the PP plot of the proposed model is remarkable.  

 
Figure  10: PP plots for the fitted models based on the second data set. 

    

 
Figure  11: PP plots for the fitted models based on the second data set. 

   
 

9. Conclusions 

A new family of continuous distributions called the type II quasi Lambert family is proposed and studied. Relevant 

statistical properties are presented and analyzed. Many bivariate versions of the type II quasi Lambert family are 

derived via different copulas such as Farlie-Gumbel Morgenstern copula, modified Farlie-Gumbel-Morgenstern 

copula, Clayton copula, Renyi’s entropy copula and Ali-Mikhail-Haq copula. We presented two characterizations of 

the type II quasi Lambert family based on the conditional expectation (truncated moment) of certain functions of a 

random variable and based on the reversed hazard function. Different estimation methods such as the maximum 

likelihood estimation, maximum product spacing estimation, least squares estimation, weighted least squares 

estimation, Anderson-Darling estimation and the Cramer-von Mises estimation methods are considered. Simulation 

studies for comparing the estimation are performed based on the baseline Lindley model. Two real data sets are 

analyzed for comparing competitive models. 



Pak.j.stat.oper.res.  Vol.18  No. 4 2022 pp 963-983  DOI: http://dx.doi.org/10.18187/pjsor.v18i4.3907 

 

 
The Type II Quasi Lambert G Family of Probability Distributions 979 

 

 

As future potential works, we can apply many new useful goodness-of-fit tests for right censoring distributional 

validity such as the Nikulin-Rao-Robson goodness-of-fit test, modified Nikulin-Rao-Robson goodness-of-fit test, 

Bagdonavicius-Nikulin goodness-of-fit test, modified Bagdonavicius-Nikulin goodness-of-fit test to the new family 

as performed by Ibrahim et al. (2019), Goual et al. (2019, 2020), Mansour et al. (2020a-f) and Ibrahim et al. (2022a,b), 
among others. Some new acceptance sampling plans based on the type II quasi Lambert family or based on some 

special members can be presented in separate article (see Ahmed and Yousof (2022) and Ahmed et al. (2022a,b)). 

Some useful reliability studies based on multicomponent stress-strength and the remained stress-strength concepts can 

be presented (Rasekhi et al. (2020) and Saber et al. (2022a,b), Saber and Yousof (2022)). Relevant applications in 

insurance and risk analysis are available in Mohamed et al. (2022a,b,c) and Hamed et al. (2022). Following Mohamed 

et al. (2022a,b,c), Salem et al. (2020), and Hamed et al. (2022), the new family can be employed for establishing some 

risk models for actuarial data. 
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 Appendix A  

Theorem 1.  Let (Ω, ℱ, 𝐏)  be a given probability space and let  𝐻 = [𝑎, 𝑏] be an interval for some  𝑑 < 𝑏  
(𝑎 = −∞,𝑏 = ∞  mightaswellbeallowed). Let 𝑋:Ω → 𝐻 be a continuous random variable with the distribution 

function 𝐹 and let 𝑞1(𝑥) and 𝑞2 be two real functions defined on 𝐻 such that 
 

𝐄[𝑞2(𝑋)|𝑋 ≥ 𝑥] = 𝐄[𝑞1(𝑋)|𝑋 ≥ 𝑥]𝜂(𝑥),    𝑥 ∈ 𝐻, 
is defined with some real function 𝜂. Assume that 𝑞1(𝑥), 𝑞1(𝑥) ∈ 𝐶1(𝐻), 𝜉 ∈ 𝐶2(𝐻) and 𝐹 is twice continuously 

differentiable and strictly monotone function on the set 𝐻. Finally, assume that the equation 𝜂𝑞1(𝑥) = 𝑞1(𝑥) has no 

real solution in the interior of 𝐻. Then 𝐹 is uniquely determined by the functions 𝑞1(𝑥), 𝑞1(𝑥) and 𝜂 , particularly 

 

𝐹(𝑥) = ∫
𝑥

𝑎

𝐶 |
𝜂′(𝑢)

𝜂(𝑢)𝑞1(𝑢) − 𝑞2(𝑢)
| exp(−𝑠(𝑢))𝑑𝑢, 

where the function  𝑠   is  a solution of the differential equation 𝑠′ =
𝜂′𝑞1(𝑥)

𝜂𝑞1(𝑥)−𝑞1(𝑥)
 and 𝐶  is the normalization 

constant, such that ∫
𝐻

𝑑𝐹 = 1. 

Note: The goal is to have the function 𝜂(𝑥) as simple as possible. 

We like to mention that this kind of characterization based on the ratio of truncated moments is stable in the sense of 

weak convergence (see, Glanzel, 1990), in particular, let us assume that there is a sequence {𝑋𝑛} of random variables 

with distribution functions {𝐹𝑛} such that the functions 𝑞1𝑛(𝑥), 𝑞2𝑛(𝑥) and 𝜂𝑛  (𝑛 ∈ ℕ) satisfy the conditions of 

Theorem 1 and let  𝑞1𝑛(𝑥) → 𝑞1(𝑥), 𝑞2𝑛(𝑥) → 𝑞1(𝑥)  for some continuously differentiable real functions  𝑞1(𝑥) 

and   𝑞1(𝑥).   Let, finally, 𝑋  be a random variable with distribution 𝐹.   Under the condition that 𝑞1𝑛(𝑋) and 

𝑞2𝑛(𝑋)  are uniformly integrable and the family  {𝐹𝑛} is relatively compact, the sequence 𝑋𝑛 converges to  𝑋  in 

distribution if and only if  𝜂𝑛(𝑥) converges to 𝜂(𝑥), where 
 

𝜂(𝑥) =
𝐸[𝑞2(𝑋)|𝑋 ≥ 𝑥]

𝐸[𝑞1(𝑋)|𝑋 ≥ 𝑥]
. 

 

This stability theorem makes sure that the convergence of distribution functions is reflected by corresponding 

convergence of the functions  𝑞1(𝑥) , 𝑞1(𝑥)  and  𝜂 , respectively.  It guarantees, for instance, the ’convergence’ 

of characterization of the Wald distribution to that of the Lavy-Smirnov distribution if  𝛼 → ∞. A further consequence 
of the stability property of Theorem 1 is the application of this theorem to special tasks in statistical practice such as 

the estimation of the parameters of discrete distributions.  For such purpose, the functions  𝑞1(𝑥),  𝑞1(𝑥) and, 

specially, 𝜂 should be as simple as possible.  Since the function triplet is not uniquely determined it is often possible 

to choose  𝜂 as a linear function. Therefore, it is worth analyzing some special cases which helps to find new 

characterizations reflecting the relationship between individual continuous univariate distributions and appropriate in 

other areas of statistics. In some cases, one can take 𝑞1(𝑥) ≡ 1,  which reduces the condition of Theorem 1 to  

𝐄[𝑞2(𝑋)|𝑋 ≥ 𝑥] = 𝜂(𝑥),   𝑥 ∈ 𝐻. We, however, believe that employing three functions 𝑞1(𝑥) , 𝑞1(𝑥)  and  𝜂 will 

enhance the domain of applicability of Theorem 1. 


