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Abstract

In this paper, by considering an M|M|1|oo queueing model, Bayesian estimation of traffic intensity and
measures of system performance are worked out under the squared error loss function (SELF) based on the
observed data on independent interarrival and service times. Further, minimum posterior risk associated with
Bayes estimators of traffic intensity and system performance measures are obtained under SELF. Numerical
illustration of the performance of the estimates is given through simulation study. It is shown that Bayes
estimators perform better than the maximum likelihood estimators under the influence of prior informations.
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1. Introduction

Queueing models are often used in the design and analysis of telecommunication systems, traffic systems,
service systems and so on. Since the arrival time and service time of entities in the queue are stochastic, it
will be of interest to carry out inferential procedures to study and analyze the behaviour of the parameters of
the queueing models by assuming suitable probability distributions. This can be done either through the fre-
quentist or Bayesian approach. In case where the probability distribution of either or both of the arrival and
service times are not known, non-parametric inferential procedures can be employed to analyze the queueing
model; see for example Schweer and Wichelhaus (2015). In this paper, we take a parametric approach by
assuming exponential distributions for arrival and service times. A detailed survey on different inferential
procedures and its applications to various queueing models can be found in Asanjarani et al. (2021). Among
many queueing models available in the literature, M|M|1|oo model has received more attention primarily
due to less model complexities. This model assumes only one service station and does not put a cap on
the queue size. The main purpose of this article is to apply certain statistical inference procedures for an
M|M]|1]oo queueing model with Poisson input and exponential service times from a Bayesian perspective. It
is often the case that information is available on the parameters of the interarrival or service time distribution
from prior experiments or from prior analysis of the interarrival or service time data. Bayesian approach
provides the methodology by incorporating prior information to the current data.
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Maximum likelihood estimator (MLE) for measures of system performance in the case of M|M|1 queueing
model is discussed in detail in Sharma and Kumar (1999), Yadavalli et al. (2004), Srinivas et al. (2011),
Mukherjee and Chowdhury (2005, 2010), Choudhury and Borthakur (2008), and Chowdhury and Mukherjee
(2011, 2013). All these authors have studied M|M|1 queueing models based on the number of customers
present on n iid M|M |1 queueing systems. Choudhury and Borthakur (2008) and Mukherjee and Chowdhury
(2005, 2010) have also studied Bayes estimation based on the number of customers present in the system.
However, in this paper, we consider an M|M|1 queueing model based on observed data on interarrival and
service times.

Throughout the paper, we consider the queues in which there are m interarrival times and n service times.
For the queueing system under consideration, we use appropriate prior distributions for the parameters
and evaluate the posterior distributions along with Bayes estimators and minimum posterior risks of the
estimators. The rest of the paper is organized as follows: In Section 2, we introduce the model and describe
the inferential aspects including Bayes estimators of the parameters and measures of system performance
under SELF. Numerical illustration based on simulation study is presented in Section 3. Conclusion of the
paper is given in Section 4.

2. M|M|l|cc queue
2.1. System description of M |M|1l|co queue and its performance measures

Assume that arrivals follow Poisson process with mean At. In other words, interarrival times are independent

and follow an exponential distribution with mean % ie.,

fA) =X MO0<t <oo;A>0 (1)
For service times, we assume exponential distribution with mean % The steady state distribution of the
number of entities present in the M|M|1jco queueing system is given by
A

e =(1-2) 2 r=0,1,2,...;0 < 2
pr=( uxu) f (2)

see Shortle et al. (2018). Let p = %, then (2) can be written as

pr=(1—=p)p",r=01,2,...;0<p<1 (3)

The number of entities in the system (Lg), number of entities in the queue (Lg) and the probability that
there are at least k entities in the queue denoted by (Q(k)) are given by

)\2 p2
Lo = = 5
T wu—N  1-p )

Q) =3 (1 -2y = Byr = pr (6)

— Boop H
Let x1,29,..., 2, be a random sample of size m, where x; is i-th observed interarrival time, i = 1,2,...,m.
Similarly, let y1, Y2, . . ., yn be a random sample of size n, where y; is j-th observed service time, j = 1,2,...,n.

Alsolet u= 3" x; and v = 2?21 ;. Since maximum likelihood estimators of A and p, subject to A < u

% =" and i = % = 2, where 7 and y are the sample means of observed interarrival times

and service times respectively, the MLE of p is given by p = min(1, %) = min(1, ). In the subsequent
sections, Bayes estimators of traffic intensity and measures of system performance are derived under SELF.

are given by A=
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2.2. Bayes estimation

In this section, we derive Bayes estimators of A, u, p,Lg, Lg and Q(k) under SELF. Reparametrizing the
parameters (A, z2) into (p, 1), the joint density of & = (1,2, ..., 2m) and §= (y1,¥2, ..., yn) is given by

F(&,7lp, p) oc e HPut) pmymEn o < < o000 < p< 1 (7)

For the prior on (p, 1), we assume that p and p are independent, p is distributed as Beta(a,b) of first kind
and p is distributed as Gamma(d,w). i.e.,

m(p, pla,b,6,w) oc p 11— p)* e M0 < p < 1,a,b,0,w > 0,0 < p < 00 (8)

From (7) and (8), the joint pdf of (&, ¥, p, 1) is obtained as
F(&, 7, p, ) oc e” OFputvduy (mante) =1 ,(mta) =11 — p)b=1 0 <y <000 < p <1 (9)
Hence the posterior density of (p, 1) is given by

f(f7 g7 p7 M)
f(&,9)
_ e—(6+pu+v)uu(m+n+w)—lp(m+a)—1(1 _ p)b—l
fol p(era)fl(l _ p)bfldp fOOO 6—(6+pu+v)p‘lul(m+n+w)fld’u
—(§+putv)p,,(m+ntw)—1 (m+a)—1 1 — p)b-1
_e p P (1-p) (10)

1 p(mta)—1(1_p)b—1
I(m+n+w) [ de

7(p, p|Z, 1) =

Integrating (10) with respect to p over (0, 00), the posterior density of p is obtained as follows:

p((nL+a)71()1_+p)ifl

- N 0+puv)mtntw

m(p|Z, ) = T plmta)—1(1_p)o—1 (11)
Jo Tyt

Using the notation

)

1 k-1 ko—1
P (1= p)
k1, ko, k: 6) =
Q( 1, 2, 3"&,'[}, ) ‘/0 (6 pu ’U)k3

we have (mtba)—1 -
S 1 Pt (1= p)°”

yY) = ,0<p<1. 12

7T(p|$ y) q(m—l—a,b,m—l—n—i—w) (pu+v+5)m+n+w P ( )

The function ¢() defined above can be evaluated using numerical integration as described in Section 3. Now,
the conditional posterior density of x given p is given by

- o T, plT G)
m(ulp, Z,9) = W

_ (pu +v+ 5>m+n+w e—(5+pu+v)u
I'(m+n+w)

pmrr )=l o < < 0o (13)
It is clear that the conditional distribution of p given p is Gamma with parameters (pu + v+ 0, m +n + w).
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2.2.1. Bayes estimator of A\ under SELF

Given the data (¥, ), the Bayes estimator of A\ under SELF denoted as \p is obtained as

A7, 9]
lpp|Z, 9]
[E(pulp, T, 9) |, 9]
[PE(ulp, Z,9)|Z, 9]

tijtijbjtlj

From (13),

E(ulo,,§) = / i (plp, &, §)du

_ (pu+wv4o)mirte
 T'(m+n+w)
_ (m+n+w)

~ (putv+9)

o
/ Me—(5+pu+v)plu(m+n+w)—ld'u
0

Hence, from (12), we get,

~

)\B:E[p(m—kn—i—w) i

z,
(pu+v+6)| 4

1

p -
= (m+n+ —L (|, §)d
(m+n w)/o (pu+v+5)7r(plxy)p
gm+a+1,bbm+n+w+1)

=(m+n+w) glm+a,b,m+n+w)

2.2.2. Bayes estimator of ; under SELF

The Bayes estimator of u under SELF denoted by fip is obtained as

ZE[NL’EM

= E[E(ulp, Z,7)]
(m+n+w)
(pu—l—v—i—é]
Lim4n+w) oL

/0 (pu+v+9) (Pl g)dp
gim+a,bom+n+w+1)

) glm+a,bm+n+w)

:E[

=(m+n+w

2.2.3. Bayes estimator of p under SELF

Bayes estimator of p under SELF denoted by pp is given by

=}
S|
-
=y

m+a+1,bym+n+w)
glm+a,by,m+n+w)

oS!
| Il I
25—
)
8
<
~—
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2.3. Bayes estimators of measures of system performance

In this section, Bayes estimators of different queueing performance measures are derived in the steady state.
More specifically, we estimate measures of system performance namely, the expected number of entities in the
system, average queue length, mean sojourn time and the probability of minimum queue size by observing
the arrival and service times of entities.

2.3.1. Bayes estimator of Lg under SELF
Bayes estimator of Lg under SELF denoted by Lgp is obtained as
LASB = E[LS|fag]

= Bl

Yoy
= m(p|Z, §)dp
/o (1-p)
glm+a+1,0—1,m+n+w)

= 18
glm+a,b,m+n+w) (18)
2.3.2. Bayes estimator of Lo under SELF
Bayes estimator of average queue length Ly under SELF denoted by LAQ p 1s given by
Loy = ElLq|Z, 4]
2
=F|—7|%y
a7
= [ ol e
o 1=p)
:q(m+a+2,b—l,m+n+w) (19)

gm+a,bm+n+w)

2.3.3. Bayes estimator of (k) under SELF

~

Bayes estimator of probability of minimum queue size (k) under SELF denoted by Q(k) is obtained as

Qk) 5 = EIQ(K)|Z, 7]
= E[p"|Z,7]
gim+a+k,bym+n+w)

= 20
gim+a,b,m+n+w) (20)

2.4. Minimum posterior risks of the parameters and system performance measures

In this section, we derive the minimum posterior risks of the parameters A, p and p and system performance
measures Lg, Lg and Q(k).

2.4.1. Minimum posterior risk of A

By definition,

Var(A|Z,9) = E[(A = E(\))?|Z, §]
= E[N|Z, 4] — A3 (21)
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Now, consider

ENZ, ) = E[p*p®|Z, 7]
= E[p*E(1W*|p. Z,9)|Z, ]

Also,
E(i°|p, &, §) =/ 27 (plp, 2, i) dps
0
_ (pu + v+ 5)m+n+w /00 67(6+pu+v)/1lpl(m+n+w+2)71dyl
I'(m+n+w) 0
_(mAn+w+1)(m+n+w)
(putv+0)?
Therefore,
2

It can be shown that

[ 02 @ _,]_q(m+a+2,b,m+n—|—w—|—2)
(pu+v+6)2"777 q(m+a,b,m +n+ w)
Hence,
+a+2,b,m+n+w+2)
E 2E 2 - =\ | = — 1 Q(m » Y
B, 2,75 = (ot -+ o+ )t o+ ) TS L
Thus,

gm+a+2,bbm+n+w+2)
glm+a,b,m+n+w)

ENZ g =m+n+w+1)(m+n+w)
Using (22) and (15) in (21) and simplifying it, we get

(m+n+w)
[a(m + a,b,m +n + w)]?
gim+a,bbm+n+w)—(m+n+w)gm+a+1,b;m+n+w+ 1)

Var(NZ,9) = [(m+n+w+)glm+a+2,bbm+n+w+2)

2.4.2. Minimum posterior risk of p

The minimum posterior risk of the parameter u is given by
Var(mf, :'j) = E[N2|fam - ﬂQB
Now, E[u?|Z, 7] can be expressed as E[u?|Z,§] = E,[E(u?|p, Z,7)]. Consider

(m—i—n—l—w—l—l)(m—i—n—i—w)}

Ep[E(u®|p, 7,9)] = B[ (pu+ v +6)>

]
(pu+v+9)2
1
1
= 1 —
(m+n+w+ )(m—i—n—&—w)/o (pu—|—v+(5)27r
>q(m+a,b,m—|—n—|—w—|—2)
glm+a,b,m+n+w)

= (m+n+w+1)(m+n+w)E,|

(plZ, 7)dp

=(m+n+w+)(m+n+w
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Using (25) and (16) in (24) and simplifying it, we get

oL m-+n-—+w
Var(p|Z,9) = [q(m—l—(a ; m+n)+w)]2[(m+n+w+1)q(m+a,b,m+n+w)
gm+a,bym+n+w+2) - (m+n+w)gm+abm+n+w+1)? (26)

2.4.3. Minimum posterior risk of p

The minimum posterior risk of the traffic intensity parameter p is given by

Var(plt, §) = E[p*|7,9] - b

gim+a+2,b,m+n+w) glm+a+1,b,m+n+w)q2
glm+a,b,m+n+w) _[ glm+a,by,m+n+w) }
glm+a,bym+n+w)gm+a+2,bbm+n+w)—[gm+a+1,b,m+n+w)?

- [g(m + a,bym +n + w)]? (27)

2.4.4. Minimum posterior risks of system performance measures

By proceeding as explained in the previous sub sections, the expressions for minimum posterior risks of Lg,
L and Q(k) are derived as follows:

gm+a,bm+n+w)gm+a+2,b—2m+n+w)—[gm+a+1,b—1,m+n+w)?

Var(Ls|Z,7) =
ar(Ls|Z, 1) [g(m +a,b,m +n + w)]?

(28)

gim+a,bym+n+w)gm+a+4,b—2m+n+w)—[gm+a+2,b—1,m+n+w))?

Var(LolZ,7) =
ar(Lol%,9) [ T abm +nt )P

(29)

e gmtabm+nt+wgm+a+2k,bm+n+w)—[glm+a+kbm+n+w)?
Var(@)l.5) = & )il Ll = 30
[g(m + a,b,m +n + w)]

3. Numerical illustration and the choice of the prior

For the numerical illustration, we compare the proposed Bayes estimators with the maximum likelihood
(ML) estimators through simulation. All computations are carried out in R version 3.5.3. The function
Integrate() in R is used to evaluate the integral function ¢() given in Section 2.2. Bias and mean square
errors are computed and compared for the both estimators under different sets of parameters and different
sample sizes. We fix the service time parameter u = 4 but vary the interarrival time parameter A such that
0< p(= %) < 1. The hyperparameters of the distribution of p,w = 4,6 = 1, are chosen in such a way that
Bl =
and exp

€

= 4. The samples (z1, 2, ..., Tm) and (y1,y2, . . ., Yys) were simulated 10000 times from the exp(\)
u) distributions, respectively.

~—~
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Figure 1: Absolute mean bias and MSE of Bayes, ML estimator of p

Figure 1 shows the comparison of the Bayes estimator of p against the ML estimator of p for the sample sizes
m = 10,n = 15 in terms of the absolute mean bias and the mean square error (MSE). For this figure, the
hyperparameters of the distribution of A\,a = 1,b = 1, are chosen so that the prior of p is non-informative,
i.e. U[0,1]. The figure shows that the bias of the Bayes estimator is slightly worse than the bias of the ML
estimator as it is usually the case in Bayes estimation. However, the MSE of Bayes estmator is far superior
for higher values of p(> 0.35), and it is only slightly worse for the smaller values of p.

In Tables 1-6, besides p, we also compare the Bayes and ML estimators of the interarrival time parameter
A, the service time parameter p, the mean number of entities in the system Lg, and the mean number of
entities in the queue L for different sets of parameters. Note that the bias and the MSEs of ML estimators
of Lg and Lg are not presented in the tables because they are not computable due to the fact that the ML
estimator of p have value 1 for some simulated samples; see equations (4) and (5). Note that ML estimator
ﬁML =1 when r § g

We consider different sets of sample sizes (m,n) € {(10,15), (20, 30), (15, 10), (30,20)}. We vary the hyper-
parameters (a, b) of the distribution of p so that one set of (a,b) yields p(= %) close to E[p](= ﬁ), one
set yields p away from E|[p], and one set matches with the non-informative prior U0, 1]. The reason of doing
so was that, in practice, an expert opinion or empirical estimates of (a,b) may be based on the average of
the past history or past data but the actual p may or may not be close to E|p].

Tables 1-6 show that the absolute mean bias of the Bayes estimators Mg and jip are smaller compared to
those of the ML estimators when E[p] is closer to p, but larger when it is further away from p. The bias of
the ML estimator of p is slightly better than the bias of the Bayes estimator for all prior choices. In terms of
the mean square errors, when actual p is closer to zero, Bayes estimators of 5\3, g and pp perform better
under the prior when E[p] = p but not as good as when E[p] is further away from p. However, when the
actual p is near 0.5, then 5\3, fip and pp are better than the ML estimators under the prior when E[p] = 0.5
(non-informative prior) or when E[p] < 0.5. When the actual p > 0.5, Ag, fip and pp perform better under
both noninformative prior or when E[p] ~ p.

In summary, the simulation results show that when p is closer to zero, ML estimators are overall superior.
However whenever p is near 0.5 or higher, the Bayes estimators are superior under non-informative priors
or when E[p| = p. For the estimators of Lg and Lg, the ML estimators are not comparable, but the Bayes
estimators produce reasonably good results in terms of both bias and MSE under non-informative prior or
when the prior is such that E[p] is near 0.
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Table 1: Absolute mean bias of estimates of queue parameters under Bayes and ML for
A=05,p=4

0= 0.4; b= 4.0; ;% = 0.0909

(m,n) Ap AvML B Avr  PB PML Lsp Lgp

(10,15) 0.0470 0.0582 0.1962 0.2907 0.0162 0.0143 0.0325 0.0163
(20,30) 0.0250 0.0280 0.1112 0.1350 0.0095 0.0070 0.0173 0.0078
(15,10) 0.0295 0.0349 0.2320 0.4472 0.0141 0.0084 0.0275 0.0134
(30,20) 0.0150 0.0167 0.1602 0.2214 0.0081 0.0038 0.0149 0.0068

a:l;b:l;(a%fs_b)zﬂj

(10,15) 0.1128 0.0573 0.0528 0.2818 0.0460 0.0142 0.01025 0.0565
(20,30) 0.0529 0.0266 0.0163 0.1361 0.02198 0.0067 0.0364 0.0144
(15,10)  0.0695 0.0340 0.0948 0.4410 0.0410 0.0084 0.0833 0.0423
(30,20) 0.0333 0.0161 0.0265 0.2165 0.0203 0.0038 0.0332 0.0128

a =45 b=0.4; ;% = 0.9090
(10,15) 0.2972 0.0566 0.7722 0.2735 0.1544 0.0146 2.8381  2.6838
(20,30) 0.1356 0.0262 0.3818 0.1545 0.0621  0.0062 0.1110  0.0489
(15,10) 0.1877 0.0342 1.0724 0.4490 0.1552  0.0086 2.8702  2.7150
(30,20)

0.0885 0.0169 0.5830 0.1953 0.0632  0.0046 0.1131  0.0498

Table 2: Mean Square Error of estimates of queue parameters under Bayes and ML for
A=05,p=4

a = 0.4; b= 4.0; ﬁ = 0.0909

(m,n) A AML iip fnr PB PML Lsp Loy

( ) 0.0341 0.0428 0.7483 1.4738 0.0028 0.0040 0.0076 0.0012
(20,30) 0.0147 0.0159 0.4573 0.6337 0.0014 0.0016 0.0030 0.0003
( ) 0.0200 0.0227 0.9146 2.6866 0.0021 0.0032 0.0052 0.0007
( ) 0.0093 0.0098 0.6220 1.0344 0.0012 0.0014 0.0025 0.0002

a=1;b=1;(a—ib)=0.5

( ) 0.0585 0.0415 0.6758 1.4959 0.0068 0.0039 0.0700 0.0405
( ) 0.0199 0.0162 0.4249 0.6238 0.0023 0.0016 0.0059 0.0008
(15,10) 0.0293 0.0227 0.7850 2.5744 0.0052 0.0033 0.0306 0.0127
( ) 0.0112 0.0097 0.5773 1.0449 0.0019 0.0014 0.0045 0.0005

a=4;b=0.4; = 0.9090

(aib)

(10,15) 0.1741 0.0427 1.0591 1.4421 0.0389 0.0042 80.6367 78.2085
(20,30) 0.0415 0.0162 0.5091 0.6515 0.0069 0.0016 0.0969  0.0730
(15,10) 0.0749 0.0241 1.6326 2.6991 0.0361 0.0034 51.8392 49.8167
(30,20) 0.0205 0.0099 0.7691 1.0141 0.0066 0.0015 0.0422  0.0210
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Table 3: Absolute mean bias of estimates of queue parameters under Bayes and ML for

DOI: http://dx.doi.org/10.18187/pjsor.v18i1.3904

A=2,u=4
0= 0.4; b= 4.0; ;% = 0.0909
(m,n) A AML iB Avr  PB PML Lspg Loy
(10,15) 0.2723 0.2250 0.5734 0.2776 0.1068 0.0438 0.2127 0.1059
(20730) 0.1631 0.0993 0.3608 0.1246 0.0654 0.0251 0.0983 0.0328
(15,10) 0.1739 0.1470 0.7805 0.4443 0.0960 0.0285 0.1854 0.0893
(30,20) 0.1039 0.0652 0.5218 0.2115 0.0615 0.0156 0.0914 0.0299
a=1b=1; ;% = 0.5
(10,15) 0.2278 0.2292 0.1006 0.2896 0.0714 0.0435 5.2666 5.1952
(20,30) 0.1557 0.1066 0.0436 0.1553 0.0561 0.0228 3.1586 3.1025
(15,10) 0.1673 0.1459 0.0770 0.4346 0.0715 0.0301 4.9098 4.8383
(30,20) 0.1074 0.0684 0.0295 0.2204 O. 0560 0.0152 2.8941 2.8381
=45 b= 0.4; ;% = 0.9090
(10,15)  0.7530 0.2249 0.5003 0.2921 0.3079 0.0429 100.3465 100.0385
(20,30) 0.5275 0.1022 0.4235 0.1313 0.2324 0.0246 60.1449 59.9125
(15,10) 0.5283 0.1405 0.7611 0.4413 0.3104 0.0273 98.9656 98.6552
(30720) 0.3594 0.0698 0.6132 0.2208 0.2343 0.0149 59.5554 59.3210

Table 4: Mean Square Error of estimates of queue parameters under Bayes and ML for

A=2,u=4
a = 0.4; b = 4.0 ﬁ = 0.0909
(m,n) Ap AML iB fnr PB PML Lsp Lgg
(10,15) 0.2422 0.6637 1.0663 1.4643 0.0179 0.0456 0.1391 0.0631
(20,30) 0.1395 0.2519 0.5631 0.6270 0.0106 0.0238 0.1265 0.0714
(15,10) 0.1864 0.3759 1.4864 2.6485 0.0157 0.0433 0.1333 0.0638
(30,20) 0.1055 0.1545 0.8433 1.0346 0. 0100 0.0226 0.1211 0.0683
a=1;b=1; 5% = 0.5
(10,15) 0.3924 0.6788 0.6333 1.4990 0.0224 0.0452 59.6182 57.5627
(20,30) 0.2260 0.2659 0.4039 0.6398 0.0185 0.0242 32.7678 31.4387
(15,10) 0.2791 0.3749 0.6830 2.6538 0.0210 0.0440 51.3451 49.4871
(30,20) 0.1478 0.1575 0.5300 1.0566 O. 0171 0.0226 25.8031 24.6629
0 =4;b=0.4; ;% = 0.9090
(10,15) 0.9469 0.6904 0.6525 1.5423 0.1065 0.0466 12294.75 12223.55
(20,30) 0.5161 0.2567 0.4707 0.6105 0.0719 0.0240 5833.374 5793.950
(15,10) 0.5623 0.3706 0.9162 2.6261 0.1052 0.0426 11517.82 11449.13
(30,20) 0.2896 0.1600 0.7116 1.0236 0.0705 0.0222 5370.813 5333.135
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Table 5: Absolute mean bias of estimates of queue parameters under Bayes and ML for
A=35,pu=4

0= 0.4; b= 4.0; ;% = 0.0909
(m,n) Ap AML iB finr PB PML Lsp Loy
(10,15) 1.0791 0.4184 0.9134 0.2956 0.3701 0.0526 5.7088 5.3386
(20730) 0.7862 0.1888 0.6991 0.1492 0.2875 0.0316 5.2104 4.9229
(15,10) 0.7855 0.2422 1.3092 0.4565 0.3462 0.0666 5.5850 5.2388
(30,20) 0.5476 0.1222 1.0193 0.2125 0.2723 0.0375 5.0980 4.8256
a=1b=1; ;% = 0.5

(10,15) 0.3197 0.3717 0.4113 0.2562 0.1379 0.0522 9.3156 9.4536
(20,30) 0.2073 0.1928 0.3111 0.1491 0.0984 0.0311 12.0354 12.1339
(15,10) 0.1859 0.2547 0.5738 0.4442 0.1282 0.0644 9.8269 9.9551
(30,20) 0.1229 0.1340 0.4231 0.2180 O. 0933 0.0380 12.3670 12.4604

a = 4; b = 0.4; = 0.9090

(]
(10,15)  0.1963 0.3917 0.1010 0.2952 0.0322 0.0544 156.5448 156.5125
(20,30) 0.1506 0.2078 0.0400 0.1294 0.0346 0.0265 156.0456 156.0110
(15,10) 0.1673 0.2507 0.0732 0.4340 0.0336 0.0666 156.8547 156.8211
(30,20)

0.1192 0.1207 0.0188 0.2103 0.0345 0.0385 154.7707 154.7362

Table 6: Mean Square Error of estimates of queue parameters under Bayes and ML for
A=35,p=4

@ =0.45 b = 4.0; ;%5 = 0.0909

(m,n) Ap AML iB fnr PB PML Lsp Lgg

(10,15) 1.3962 2.2029 1.6621 1.5030 0.1416 0.0406 32.7403 28.6038
(20,30) 0.7840 0.7880 0.9342 0.6235 0.0872 0.0262 27.4551 24.4726
(15,10) 0.8802 1.1108 2.7190 2.7731 0.1250 0.0459 31.3903 27.5855
(30,20) 0.4752 0.4767 1.6141 1.0198 0. 0790 0.0279  26.3611 23.5808

a=1;b=1; = 0.5

a+b
( ) 0.4899 1.9824 0.7934 1.4477 0. (5267) 0.0398 156.6287 157.8606
( ) 0.2926 0.7810 0.4745 0.6545 0.0167 0.0262 262.7639 263.4897
(15,10) 0.4364 1.1426 1.0177 2.6633 0.0239 0.0449 173.1569 174.3057
( ) 0.2541 0.4995 0.6126 1.0443 0. 0156 0.0282 279.3706 280.0019

a=4;b=0.4; = 0.9090

(a+b)
( ) 0.5065 2.0689 0.5339 1.5537 0.0027 0.0405 25807.57 25794.67
( ) 0.2808 0.8006 0.2932 0.6222 0.0035 0.0256 26507.51 26492.48
(15,10) 0.4761 1.1765 0.5010 2.5498 0.0026 0.0454 25881.82 25868.67
(30,20)

0.2586 0.4717 0.2946 1.0346 0.0033 0.0278 26030.22 26015.54
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In general, for Bayes estimation, our recommendation is to choose the prior (8) such that the prior on p is
non-informative, i.e., a = 1,b = 1, and to choose prior of i to be Gamma distribution with hyperparameters
w and § which can be based on expert opinion. w and § can also be estimated from the marginal likelihood
of (y1, 92, ---,Yn). Another choice is to estimate the hyperparameters of (8) using the marginal likelihood of
(z1,22,...,2m) and (y1,y2,...,Yn) as we illustrate below.

3.1. Estimation of hyperparameters

The hyperparameter vector 6= (a,b, 57w)/ can be estimated by maximizing the marginal likelihood. The
marginal likelihood is given by

= r

Lo a+b
L@z ) = ) 0

( / / —u(putv+4) m+a 1 b—1, m4n+tw—1
1-—
T (a)T(h) T() e (1=p)"" dpdp
(
(

b) 0 T(m+n+w) o0 »
a)l (b)F(w)/O (pu+ v + g)mtntw Fom(1 — p)Pdp.

The parameter vector § can be estimated by solving the system of equations = 0. However, the system
of equations will be highly non-linear due to the presence of gamma functions involved in the integration.
The issue of integration can be resolved by using EM algorithm, but the system of equations will still be
complex due to the gamma function.Thus, we propose, the method of moments estimator that involve a
tractable system of equations.

—
S
=+

’1

OLogL

Note that the method of moments estimators are not as efficient as the marginal ML estimators. The first
two moments of the distributions of X and Y are given by

1 1
B0 =B(3) = E(,,)
0 ' T(a+b) I'(a—1)I'(b) I'(w—1)
T T(@) D@IB) Tlatb—1) o=1

_ da+b—1)
“ - Da-1’
, 2
E(X ):E(pQuz)

_ 20%(a+b—1)(a+b—2)
“ % e 2 D2

o -#(1) - 5
20 =5(5) = =i

Now by replacing E(X), E(X?), E(Y) and E(Y?) in the above equations by its corresponding sample
moments mix, max, M1y and maoy and solving for a,b,w and J, we get the moment estimators. After
solving for a,b,w and &, we get the following expressions for the estimators of a,b,w and J.

(mzxmn/ - m2Ym1X)m1Y

a= 5 >— + 1,
Max M1y~ — M2y Mix
b — (m1x —miy)(maxmiy — maymix)
- Y
maxmiy? — maymix?
2
oo 2(may — myy?)
- 3
Moy — 2myy?
5= miymay

moy — 2myy?
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4. Conclusion

An attempt is made in this paper to study the Bayesian estimation of M|M|1l|oco queueing model when
sample observations are available on independent interarrival and service times of entities at some points of
times. Bayes estimators of traffic intensity and system performance measures have been derived assuming
squared error loss function. Bayes estimators, studied in the past, assume available observations on the
queue sizes which are sometimes not practical. We obtain Bayes estimators when observations are available
on arrival times and service times which are sometimes easy to document. These estimators show a superior
performance for the most part against the ML estimators. A part of deficiency in the ML estimators is due
to the constraint A < u. In this case, the ML estimates of Lg and Lg does not even exist if £ < g, whereas,
Bayes estimates can be obtained.
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