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Abstract  

This paper presents a novel two-parameter G family of distributions. Relevant statistical properties such as the 

ordinary moments, incomplete moments and moment generating function are derived.  Using common copulas, 

some new bivariate type G families are derived. Special attention is devoted to the standard exponential base line 

model. The density of the new exponential extension can be “asymmetric and right skewed shape” with no peak, 

“asymmetric right skewed shape” with one peak, “symmetric shape” and “asymmetric left skewed shape” with one 

peak. The hazard rate of the new exponential distribution can be “increasing”, “U-shape”, “decreasing” and “J-

shape”. The usefulness and flexibility of the new family is illustrated by means of two applications to real data sets. 

The new family is compared with many common G families in modeling relief times and survival times data sets. 
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1. Introduction and motivation 

Statistical literature contains various G families of distributions which were generated either by compounding common 

existing G families or by adding one (or more) parameters to the existing G families. These novel families were 

employed for modeling real data in many applied studies such as engineering, insurance, demography, medicine, 

econometrics, biology, environmental sciences and forecasting approaches see, for example, see Yousof et al. (2015) 

(transmuted generalized exponentiated family), Merovci et al. (2017) (exponentiated transmuted family), Brito et al. 

(2017) (Topp Leone odd log-logistic family), Hamedani et al. (2017) (type I general exponential family), Yousof et 

al. (2017a) (Burr X family), Cordeiro et al. (2018) (Burr XII family), Korkmaz et al. (2018a) (exponential-Lindley 

odd log-logistic family), Hamedani et al. (2018) (an extended G family), Yousof et al. (2018b) (Burr Hatke family), 

Hamedani et al. (2019) ( type II general exponential family), Nascimento et al. (2019) (odd Nadarajah-Haghighi 

family) and Karamikabir et al. (2020) (Weibull Topp Leone generated family), among others. In this paper we propose 

and study a new family of distributions using the zero truncated Poisson (ZTP) distribution with a strong physical 

motivation.  
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Suppose that a system has  𝑁 subsystems functioning independently at a given time where 𝑁 has ZTP distribution 

with parameter 𝜆 = 1. It is the conditional probability distribution of a Poisson-distributed random variable (RV), 

given that the value of the RV is not zero. The probability mass function (PMF) of 𝑁 is given by 

𝑃(𝑁 = 𝑛) = [𝑒𝑥𝑝( − 1)]/{𝑛! [−𝑒𝑥𝑝( − 1) + 1]}|(𝑛=1,2,...). 

 

Suppose that the failure time of each subsystem has the generalized Weibull generator (GW-G) defined by Cordeiro 
et al. (2017). The cumulative distribution function (CDF) of the GW-G is given as  

 

𝐇𝑎,𝑏,𝓥(𝓏) = {1 − 𝑒𝑥𝑝[−𝓦𝑏,𝓥(𝓏)]}
𝑎
|𝓏∈𝓡.  

(1) 

where the function 𝓦𝑏,𝓥(𝓏) = [𝐇𝓥(𝓏)/𝐇𝓥(𝓏)]
𝑏
|𝓏∈𝓡 refers to the odd ration function (ORF), 𝐇𝓥(𝓏) refers to the 

base line CDF with parameters vector 𝓥, 𝐇𝓥(𝓏) = 1 −𝐇𝓥(𝓏) refers to the base line model survival function (SF), 

𝓱𝓥(𝓏) = 𝑑𝐇𝓥(𝓏)/𝑑𝓏 is the base line probability density function (PDF) and 𝑎, 𝑏 > 0 is a shape parameters.  

 

Staying in (1) and for 𝑏 = 2, the GW-G reduces to generalized Rayleigh G (ER-G) (Yousof et al. (2017a)) which is 

also called the Burr X (BX-G). Let 𝑌𝒾 denote the failure time of the ith subsystem and let  

𝑍 = 𝑚𝒾𝑛{𝑌1, 𝑌2, ⋯ , 𝑌𝑁}. 
Then the conditional CDF of 𝑍 given 𝑁 is 

𝐹(𝓏) = 1 − Pr(𝑍 > 𝓏|𝑁) = 1 − [1 − 𝐇𝑎,𝑏,𝓥(𝓏)]
𝑁
. 

 

(2) 

Therefore, the unconditional CDF of the QPGW-G density function can be expressed as described in Ramos et al. 

(2015), Aryal and Yousof (2017), Yousof et al. (2018a) and Yousof et al. (2020), among others.  

 

The proposed family is most conveniently specified in terms of the ZTP generator applied to the generalized Weibull-

G class. By inserting (1) in equation (2), the CDF of the quasi-Poisson generalized Weibull-G (QPGW-G) family is 

given by  

𝐹𝝫(𝓏) =
1

1 − 𝑒𝑥𝑝(−1)
[1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏,𝓥(𝓏)]}

𝑎
)]|𝑍∈𝓡, 

 
(3) 

where 𝝫= (𝑎, 𝑏, 𝓥) is the parameter vector of the QPGW-G family.  

 

The following special cases can be considered: 

i. For 𝑏 = 1, the QPGW-G family reduces to the quasi-Poisson generalized exponential-G family.  

ii. For 𝑏 = 2, the QPGW-G family reduces to quasi-Poisson generalized Rayleigh-G family.  

iii. For 𝑎 = 1, the QPGW-G family reduces to the quasi-Poisson Weibull-G family (Yousof et al. (2020)).  

iv. For 𝑎 = 𝑏 = 1, the QPGW-G family reduces to quasi-Poisson exponential-G family.  

v. For 𝑏 = 2 and 𝑎 = 1, the QPGW-G family reduces to the reduced quasi-Poisson exponential-G family 

(Yousof et al. (2020)).  

 

The PDF of the QPGW-G family can then be expressed as 

𝑓𝝫(𝓏) = 𝑎𝑏
𝓱𝓥(𝓏)𝐇𝓥(𝓏)

𝑏−1 𝑒𝑥𝑝[−𝓦𝑏,𝓥(𝓏)] 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏,𝓥(𝓏)]}
𝑎
)

[1 − 𝑒𝑥𝑝(−1)]𝐇
𝓥
(𝓏)𝑏+1{1 − 𝑒𝑥𝑝[−𝓦𝑏,𝓥(𝓏)]}

1−𝑎 |𝓏∈𝓡. 
 

(4) 

 

A RV 𝑍 having PDF (4) is denoted by 𝑍 ∼QPGW-G (𝝫). Many related G families can be mentioned such as 

exponentiated generalized Poisson family (Aryal and Yousof (2017)), Marshall-Olkin generalized Poisson family 

(Korkmaz et al. (2018b)), Weibull Poisson family (Yousof et al. (2020)), Poisson Topp Leone family (Merovci et al. 

(2020)) and Poisson generalized exponential family (El-Morshedy et al. (2021)).  

 

On the other hand, many common copulas are employed for deriving new bivariate type QPGW-G families such as 
“Farlie-Gumbel-Morgenstern (FGM) copula”, “Clayton copula”, and “Renyi's entropy copula”. Fisher (1997) 

provided two major justifications as to why copulas are useful and of interest to statisticians. Firstly, as a way for 

studying scale-free measures of dependence.  
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Secondly, as a starting point for constructing new bivariate G families of distributions. Precisely, copulas are an 

important part of the study of dependence between two variables since they allow us to separate the effect of 

dependence from the effects of the marginal distributions. Further future articles could be allocated to study the new 

bivariate type G families.  
 

We are motivated to present the new family since it could be useful in modeling variable real-life data as illustrated 

below: 

i. The real data which have an " increasing failure rate " (see Figures 3 and 5 (bottom left panels)). 

ii. The real data which have some outliers (see Figures 3 and 5 (top right and top left panels)). 

iii. The real data sets which their Kernel density estimation are asymmetric and bimodal with right tail (see Figures 

3 and 5 (bottom right plots)). 

iv. The real data which their PDF can be “asymmetric and right skewed shape” with no peak, “asymmetric right 

skewed shape” with one peak, “symmetric shape” and “asymmetric left skewed shape” with one peak (see Figure 

1). 

v. The real-life datasets which their HRF can be “increasing”, “U-shape”, “decreasing” and “J-shape” (see Figure 

2). 
 

Additionally, in modeling the relief times data and the survival  times of the aircraft windshield data the novel family 

based on the quasi Poisson generalized Weibull- exponential model is better than many other common exponential 

extensions such as the Marshall-Olkin exponential, Moment exponential, the Burr-Hatke exponential, Generalized 

Marshall-Olkin exponential, the odd Lindley exponential, Beta exponential, Kumaraswamy Marshall-Olkin 

exponential, Marshall-Olkin Kumaraswamy exponential, the Burr X exponential, Kumaraswamy exponential and 

standard exponential model under the eight criteria called Anderson-Darling Criteria, Akaike Information Criteria, 

Cramér-Von Mises Criteria, Hannan-Quinn Information Criteria, Bayesian Information Criteria, Consistent Akaike 

Information Criteria, Kolmogorov-Smirnov (KS) statistic test and its corresponding P-value. 

 

2. Copulas for the QPGW-G family 

In this Section, we derive some new bivariate QPGW-G (BQPGW-G) type model using the FGM copula  (Morgenstern 

(1956), Gumbel (1960), Gumbel (1960)) and Johnson and Kotz (1977)), “Clayton copula”, the “Ali-Mikhail-Haq” 

copula (Ali et al. (1978)) and “Renyi's entropy” (Pougaza and Djafari (2011)). The Multivariate QPGW-G (Mv-

QPGW-G) type is also presented. 

 

Recently, many new articles have been studied some copulas such as Ali et al. (2021a and b), Aboraya, M. (2021a), 

El-Morshedy et al. (2021).  However, future works may be allocated to study these new models. 

 

2.1 BQPGW-G type via FGM copula 

Consider the joint CDF of the FGM family where 

𝒞𝜍(𝒫,𝒬) = 𝒫𝒬(1 + 𝜍𝒫𝒬), 

where the continuous marginal function 𝒫 ∈ (0,1) and 𝒬 ∈ (0,1). The parameter 𝜍 ∈ [−1,1] is a dependence 
parameter.  

 

For every 𝒞𝜍(𝒫, 0) = 𝒞𝜍(0, 𝒬) = 0|(𝒫,𝒬∈(0,1)), which is "grounded minimum" and 𝒞𝜍(𝒫, 1) = 𝒫 and 𝒞𝜍(1, 𝒬) = 𝒬 

which is "grounded maximum". Then, setting 

𝒫 = 𝒫𝝫1 = 1 −
1

1 − 𝑒𝑥𝑝(−1)
[1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏1,𝓥

(𝓏1)]}
𝑎1
)]|𝝫1>0, 

and 

𝒬 = 𝒬
𝝫2
= 1 −

1

1 − 𝑒𝑥𝑝(−1)
[1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏2,𝓥

(𝓏2)]}
𝑎2
)]|𝝫2>0. 

Then, we have  

𝐹(𝓏1, 𝓏2) = 𝒞(𝐹𝝫1(𝓏1), 𝐹𝝫2(𝓏2)) =
1

[1 − 𝑒𝑥𝑝(−1)]2
[1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏1,𝓥

(𝓏1)]}
𝑎1
)] 

× [1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏2 ,𝓥
(𝓏2)]}

𝑎2
)] 
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×

[
 
 
 

1 + 𝜍

(

 
{1 −

1

1 − 𝑒𝑥𝑝(−1)
[1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏1,𝓥

(𝓏1)]}
𝑎1
)]}

{1 −
1

1 − 𝑒𝑥𝑝(−1)
[1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏2 ,𝓥

(𝓏2)]}
𝑎2
)]}
)

 

]
 
 
 

. 

The joint PDF (J-CDF) can be derived from 

𝑐𝜍(𝒫, 𝒬) = 1 + 𝜍𝒫
∗𝒬∗|(𝒫∗=1−2𝒫 and 𝒬∗=1−2𝒬). 

 

2.2 BQPGW-G type via Clayton copula 

The Clayton copula can be considered as  

𝒞(𝒫1, 𝒫2) = (𝒫1
−𝜍
+ 𝒫2

−𝜍
− 1)

−
1
𝜍|𝜍∈[0,∞]. 

Let us assume that 𝑋 ∼QPGW-G (𝑎1, 𝑏1) and 𝑌 ∼ QPGW-G  (𝑎2, 𝑏2). Then, setting  

𝒫1 = 𝒫(𝑥) =
1

1 − 𝑒𝑥𝑝(−1)
[1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏1,𝓥

(𝑥)]}
𝑎1
)]|𝝫1>0, 

and  

𝒫2 = 𝒫(𝓏) =
1

1 − 𝑒𝑥𝑝(−1)
[1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏2,𝓥

(𝓏)]}
𝑎2
)]|𝝫2>0, 

Then, the BQPGW-G type distribution can be derived as 

𝐹(𝑥, 𝓏) = 𝒞(𝐹𝝫1(𝑥), 𝐹𝝫2(𝓏)) =

[
 
 
 
 
 (

1

1 − 𝑒𝑥𝑝(−1)
[1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏1,𝓥

(𝑥)]}
𝑎1
)])

−𝜍

+(
1

1 − 𝑒𝑥𝑝(−1)
[1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏2 ,𝓥

(𝑦)]}
𝑎2
)])

−𝜍

−1 ]
 
 
 
 
 
−
1
𝜍

. 

 

2.3 BQPGW-G type via Renyi's entropy 

Consider theorem of Pougaza and Djafari (2011) where 

𝒞(𝒫, 𝒬) = 𝓏2𝒫 + 𝓏1𝒬 − 𝓏1𝓏2, 
then, the associated CDF of the BQPGW-G will be 

𝒞(𝓏1, 𝓏2) = 𝑅 (𝐹𝛩1(𝓏1), 𝐹𝛩2(𝓏1)) = −𝓏1𝓏2 

+𝓏2 {
1

1 − 𝑒𝑥𝑝(−1)
[1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏1,𝓥

(𝓏1)]}
𝑎1
)]} 

+𝓏1 {
1

1 − 𝑒𝑥𝑝(−1)
[1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏2 ,𝓥

(𝓏2)]}
𝑎2
)]}. 

 

2.4 BQPGW-G type via Ali-Mikhail-Haq copula 

Under the stronger Lipschitz condition, the joint CDF of the Archimedean Ali-Mikhail-Haq copula can expressed as 

𝒞(𝒫,𝒬) =
𝒫𝒬

1 − 𝜍𝒫𝒬
|𝜍∈(−1,1), 

 the corresponding J-PDF of the Archimedean Ali-Mikhail-Haq copula can expressed as 

𝑐(𝒫,𝒬) =
1

[1 − 𝜍𝒫𝒬]
2 (1 − 𝜍 + 2𝜍

𝒫𝒬

1 − 𝜍𝒫𝒬
) |𝜍∈(−1,1), 

then for any 𝑍1 ∼ QPGW-G (𝑎1, 𝑏1) and 𝑍2 ∼ QPGW-G  (𝑎2, 𝑏2) we have 

𝒞(𝓏1, 𝓏2) =

{

1
[1 − 𝑒𝑥𝑝(−1)]2

[1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏1,𝓥
(𝓏1)]}

𝑎1)]

× [1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏2 ,𝓥
(𝓏2)]}

𝑎2
)]

}

1 − 𝜍(
{1 −

1
1 − 𝑒𝑥𝑝(−1)

[1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏1,𝓥
(𝓏1)]}

𝑎1
)]}

× {1 −
1

1 − 𝑒𝑥𝑝(−1)
[1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏2 ,𝓥

(𝓏2)]}
𝑎2
)]}
)

|𝜍∈(−1,1). 

The J-PDF is straightforward then omitted. 
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2.5 The MvQPGW-G type 

Following Nelsen (2007) and Balakrishnan and Lai (2009), a straightforward Multivariate QPGW-G ℏ-dimensional 

extension can be derived from 

𝐻(𝓏𝒾) = (∑{𝑐1
−1[1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏𝒾 ,𝓥

(𝓏𝒾)]}
𝑎𝒾
)]}

−𝜍
ℏ

𝒾=1

+ 1− ℏ)

−
1
𝜍

. 

 

3. Mathematical Properties 

3.1 Linear representation 

In this section, we derive a useful linear representation for the QPGW-G density function. Using the power series, we 

expand the quantity 𝐴(𝓏) as 

𝐴(𝓏) = 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏,𝓥(𝓏)]}
𝑎
) =∑

1

ℓ!

+∞

ℓ=0

(−1)ℓ{1 − 𝑒𝑥𝑝[−𝓦𝑏,𝓥(𝓏)]}
𝑎ℓ
. 

Then, the PDF in (4) can be expressed as 

𝑓𝝫(𝓏) =
𝑎𝑏

1 − 𝑒𝑥𝑝(−1)
∑

(−1)ℓ 𝑒𝑥𝑝[−𝓦𝑏,𝓥(𝓏)]𝓱𝓥(𝓏)

ℓ!𝐇𝓥(𝓏)
𝑏+1𝐇𝓥(𝓏)

−𝑏+1

+∞

ℓ=0

{1 − 𝑒𝑥𝑝[−𝓦𝑏,𝓥(𝓏)]}
𝑎(ℓ+1)−1

⏟                  

𝐵(𝓏)

. 
 

 

(5) 

Then, consider the power series  

(1 −
𝜍1
𝜍2
)
1+𝜍3

=∑(−1)𝒾
𝛤(2 + 𝜍3)

𝒾!𝛤(2 + 𝜍3 − 𝒾)

+∞

𝒾=0

(
𝜍1
𝜍2
)
𝒾

|
|
𝜍1
𝜍2
|<1 and 𝜍3>0

. 
 

(6) 

Applying (6) to the quantity 𝐵(𝓏) in (5), we get 

𝑓𝝫(𝓏) = 𝑎𝑏
𝓱𝓥(𝓏)𝐇𝓥(𝓏)

𝑏−1

[1 − 𝑒𝑥𝑝(−1)]𝐇𝓥(𝓏)
𝑏+1

∑
(−1)ℓ+𝒾𝛤(𝑎(ℓ + 1))

𝒾! ℓ!𝛤(𝑎(ℓ + 1) − 𝒾)

+∞

ℓ,𝒾=0

𝑒𝑥𝑝[−(𝒾 + 1)𝓦𝑏,𝓥(𝓏)]⏟              

𝐶(𝓏)

. 
 

(7) 

Expanding the quantity 𝐶(𝓏) in power series, we can write 

𝐶(𝓏) = ∑(−1)𝓅
(𝒾 + 1)𝓅

𝓅!

+∞

𝓅=0

𝐇𝓥(𝓏)
𝓅𝑏

𝐇𝓥(𝓏)
𝓅𝑏
. 

 

(8) 

Inserting the above expression of 𝒞𝒾(𝓏) in (9), the QPGW-G density reduces to  

𝑓𝝫(𝓏) = 𝑎𝑏  ∑
(−1)ℓ+𝓅+𝒾𝛤(𝑎(ℓ + 1))(𝒾 + 1)𝓅

ℓ! 𝒾! 𝓅! [1 − 𝑒𝑥𝑝(−1)]𝛤(𝑎(ℓ + 1) − 𝒾)

+∞

ℓ,𝒾,𝓅=0

𝓱𝓥(𝓏)𝐇𝓥(𝓏)
(𝓅+1)𝑏−1

𝐇𝓥(𝓏)
(𝓅+1)𝑏+1

. 

 

 

(9) 

Using the generalized binomial expansion to [1 − 𝐇𝓥(𝓏)]
−[(𝓅+1)𝑏+1]

, we can write  

[1 − 𝐇𝜉(𝓏)]
−[(𝓅+1)𝑏+1]

=∑
𝛤([𝓅 + 1]𝑏 + 𝓆 + 1)

𝓆! 𝛤([𝓅 + 1]𝑏 + 1)

+∞

𝓆=0

𝐇𝓥(𝓏)
𝓆 . 

 

(10) 

Inserting (10) in (9), the QPGW-G density can be expressed as an infinite linear combination of exp-G density 

functions  

𝑓𝝫(𝓏) = ∑ 𝛶𝓅,𝓆

+∞

𝓅,𝓆=0

𝓱𝑏∗(𝓏)|𝑏∗=[𝓅+1]𝑏+𝓆 , 
 

(11) 

 

where 𝓱𝑏∗(𝓏) = 𝑑𝐇𝑏∗(𝓏)/𝑑𝓏 = 𝑏
∗𝓱(𝓏)𝐇𝓥(𝓏)

𝑏∗−1 is the exp-G PDF with power parameter 𝑏∗ and 

𝛶𝓅,𝓆 =
𝑎𝑏

1 − 𝑒𝑥𝑝(−1)
∑

(−1)ℓ+𝓅+𝒾(𝒾 + 1)𝓅𝛤(𝑎(ℓ + 1))𝛤(𝑏∗ + 1)

ℓ! 𝒾! 𝓅!𝓆! 𝑏∗𝛤(𝑎(ℓ + 1) − 𝒾)𝛤([𝓅 + 1]𝑏 + 1)

+∞

ℓ,𝒾=0

. 

 

Equation (11) reveals that the PDF of QPGW-G family can be expressed as a linear combination of exp-G PDFs. So, 

several mathematical properties of the new family can be obtained by knowing those of the exp-G distribution.  
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Similarly, the CDF of the QPGW-G family can also be expressed as a linear combination of exp-G CDFs given by  

𝐹𝝫(𝓏) = ∑ 𝛶𝓅,𝓆

+∞

𝓅,𝓆=0

 𝐇𝑏∗(𝓏), 
(12) 

where 𝐇𝑏∗(𝓏) is the exp-G CDF with power parameter 𝑏∗. 
 

3.2 Moments 

The 𝓇th moment of 𝑍, say 𝜇𝓇,𝑍
′ , follows from equation (12) as  

𝜇𝓇,𝑍
′ = 𝐸(𝑍𝓇) = ∑ 𝛶𝓅,𝓆

+∞

𝓅,𝓆=0

𝐸(𝑌𝑏∗
𝓇), 

where 𝑌𝑏∗ denotes the exp-G RV with power parameter 𝑏∗. The 𝑛th central moment of  𝑍, say 𝑀𝑛, is given by  

𝑀𝑛,𝑍 = 𝐸(𝑍 − 𝜇1,𝑍
′ )

𝑛
= ∑(

𝑛
𝓇
)

𝑛

𝓇=0

(−𝜇1,𝑍
′ )

𝑛−𝓇
𝐸(𝑍𝓇). 

3.3 Moment generating function and the characteristic function 

The moment generating function (MGF) of 𝑍 can follow from equation (12) as  

𝑀𝑍(𝑡) = ∑ 𝛶𝓅,𝓆

+∞

𝓅,𝓆=0

𝑀𝑏∗(𝑡), 

where 𝑀𝑏∗(𝑡) is the MGF of 𝑌𝑏∗ (for 𝓅,𝓆 ≥ 0). Hence, 𝑀𝑍(𝑡) can be easily obtained from the exp-G generating 

function. The characteristic function (CF) of 𝑍 can be derived from  

𝐶𝑍(𝑖𝑡) = ∑ 𝛶𝓅,𝓆

+∞

𝓅,𝓆=0

𝑀𝑏∗(𝑖𝑡), 

where 𝑀𝑏∗(𝑖𝑡) is the CF of 𝑌𝑏∗ (for 𝓅,𝓆 ≥ 0) and 𝑖 = √−1. 

 

3.4 Incomplete moments 

The  𝑠th incomplete moment, say 𝚫𝑠,𝑍(𝑡) , of  𝑍  can be expressed from (12) as  

𝚫𝑠,𝑍(𝑡) = ∫ 𝓏𝑠
𝑡

−∞

𝑓(𝓏)𝑑𝓏 = ∑ 𝛶𝓅,𝓆

𝑛

𝓅,𝓆=0

∫ 𝓏𝑠
𝑡

−∞

𝓱𝑏∗(𝓏)𝑑𝓏. 
 

(13) 

Clearly, the integral in equation (13) denotes the 𝑠th incomplete moment of  𝑌𝑏∗ .  
 

3.5 Convex-concave analysis 

Convex probability density functions play a very important role in many areas of mathematics. They are important 

especially in studying of the “optimization problems” where they are distinguished by several convenient properties. 

In mathematical analysis, a certain PDF defined on certain n-dimensional interval is called "convex probability density 

function " if the line between any two points on the graph of the probability density function lies above the graph 

between the two points.  

 

The PDF in (4) is said to be “concave probability density function” if for any 𝑋1 ∼ QPGW− G (𝝫
1
)  and 𝑋2 ∼

QPGW− G (𝝫
1
) the probability density function satisfies 

𝑓(𝜸𝑥1 + �̅�𝑥2) ≥ 𝜸𝑓𝝫1(𝑥1) + �̅�𝑓𝝫2(𝑥2)|0≤𝜸≤1 and   �̅�=1−𝜸. 

 

If the function 𝑓(𝜸𝑥1 + �̅�𝑥2) is twice differentiable, then if 𝑓//(𝜸𝑥1 + �̅�𝑥2) < 0,   ∀  𝑥 ∈ ℝ , then 𝑓(𝜸𝑥1 + �̅�𝑥2) is 

“strictly convex”. If 𝑓//(𝜸𝑥1 + �̅�𝑥2) ≤ 0,   ∀  𝑥 ∈ ℝ  , then 𝑓(𝜸𝑥1 + �̅�𝑥2) is “convex”.  

 

The PDF in (4) is said to be “convex probability density function” if for any 𝑋1 ∼ QPGW− G (𝝫
1
)  and 𝑋2 ∼

QPGW− G (𝝫
1
) the probability density function satisfies 
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𝑓(𝜸𝑥1 + �̅�𝑥2) ≤ 𝜸𝑓𝝫1(𝑥1) + �̅�𝑓𝝫2(𝑥2)|0≤𝜸≤1 and   �̅�=1−𝜸. 

 

If the function 𝑓(𝜸𝑥1 + �̅�𝑥2) is twice differentiable, then if 𝑓//(𝜸𝑥1 + �̅�𝑥2) > 0,   ∀  𝑥 ∈ ℝ  , then 𝑓(𝜸𝑥1 + �̅�𝑥2) is 

“strictly convex”. If 𝑓//(𝜸𝑥1 + �̅�𝑥2) ≥ 0,   ∀  𝑥 ∈ ℝ, then 𝑓(𝜸𝑥1 + �̅�𝑥2) is “convex”. If 𝑓(𝜸𝑥1 + �̅�𝑥2) is “convex” 

and 𝑐 is a constant, then the function 𝑐𝑓(𝜸𝑥1 + �̅�𝑥2) is “convex”. If 𝑓(𝛾𝑥1 + �̅�𝑥2) is “convex probability density 

function”, then [𝑐𝑓(𝜸𝑥1 + �̅�𝑥2)] is convex for every 𝑐 > 0. If 𝑓(𝜸𝑥1 + �̅�𝑥2) and 𝑔(𝜸𝑥1 + �̅�𝑥2) are “convex 

probability density function” then [𝑓(𝜸𝑥1 + �̅�𝑥2) + 𝑔(𝜸𝑥1 + �̅�𝑥2)] is also “convex probability density function”. 

If 𝑓(𝜸𝑥1 + �̅�𝑥2) and 𝑔(𝜸𝑥1 + �̅�𝑥2) are “convex probability density function” then [𝑓(𝜸𝑥1 + �̅�𝑥2). 𝑔(𝜸𝑥1 + �̅�𝑥2)] 
is also “convex probability density function”. If the function −𝑓(𝜸𝑥1 + �̅�𝑥2) is “convex probability density function”, 

then the function 𝑓(𝜸𝑥1 + �̅�𝑥2) is “convex probability density function”.  If 𝑓(𝜸𝑥1 + �̅�𝑥2) is “concave probability 

density function”, then 
1

𝑓(𝜸𝑥1+ �̅�𝑥2)
 is “convex probability density function” if 𝑓(𝑥) > 0. If 𝑓(𝜸𝑥1 + �̅�𝑥2) is “concave 

probability density function”, 
1

𝑓(𝜸𝑥1+ �̅�𝑥2)
 is “convex probability density function” if 𝑓(𝑥) < 0. If 𝑓(𝜸𝑥1 + �̅�𝑥2) is 

“concave probability density function”, 
1

𝑓(𝜸𝑥1+ �̅�𝑥2)
 is “convex probability density function”. 

 

4. A special case  

In this section, we will focus on the base line exponential distribution. The CDF of the standard exponential model 

can be expressed as 

𝐹𝑐(𝓏) = 1 − 𝑒𝑥𝑝(−𝑐𝓏)|𝑐>0,𝓏>0. 
Based on (3), the CDF of the quasi-Poisson generalized Weibull-exponential (QPGW-E) distribution is can then be 

expressed as 

𝐹𝝫(𝓏) =
1

1 − 𝑒𝑥𝑝(−1)
[1 − 𝑒𝑥𝑝(−{1 − 𝑒𝑥𝑝[−𝓦𝑏,𝑐(𝓏)]}

𝑎
)]|𝑍∈𝓡, 

 
 

where 𝝫= (𝑎, 𝑏, 𝑐) is the parameter vector of the QPGW-E model and 𝓦𝑏,𝑐(𝓏) = [𝑒𝑥𝑝(𝑐𝓏) − 1]
𝑏.  

i. For 𝑏 = 1, the QPGW-E reduces to the quasi-Poisson generalized exponential-exponential distribution. 

ii. For 𝑏 = 2, QPGW-E distribution reduces to quasi-Poisson generalized Rayleigh-exponential distribution.  

iii. For 𝑎 = 1, the QPGW-E reduces to the quasi-Poisson Weibull-exponential distribution.  

iv. For 𝑎 = 𝑏 = 1, the QPGW-E reduces to quasi-Poisson exponential-exponential distribution.  

v. For 𝑏 = 2 and 𝑎 = 1 the QPGW-E reduces to the reduced quasi-Poisson exponential-exponential 

distribution.  
 

The PDF of the QPGW-E distribution can then be derived using (4). Figure 1 gives some plots of the PDF of the 

QPGW-E distribution for some selected parameter values. Figure 2 gives some plots of the HRF of the QPGW-E 

distribution for some selected parameter values. Based on Figure 1, we note that the new PDF of the QPGW-E 

distribution can be “asymmetric and right skewed shape” with no peak, “asymmetric right skewed shape” with one 

peak, “symmetric shape” and “asymmetric left skewed shape” with one peak.  
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Figure 1: Some PDF plots of for the QPGW-E model. 
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Figure 2: Some HRF plots of for the QPGW-E model. 

 

 

Based on Figure 2, it is noted that the new HRF can be “increasing”, “U-shape”, “decreasing” and “J-shape”. In the 

literature there are various exponential extensions which can be used in comparison such as Beta exponential (BE) 

model (see Lee et al. (2007)), Marshall-Olkin exponential (MO-E) extension (Ghitany et al. (2005)), Kumaraswamy 

exponential (Km-E) model (Cordeiro et al. (2010)), Poisson-exponential (P-E) model (Cancho et al. (2011)), Moment 

exponential (M-E) extension (Dara and Ahmad (2012)), Generalized Marshall-Olkin exponential (GzMO-E) model 
(Chakraborty and Handique (2017)), transmuted exponentiated generalized exponential (TEG-E) extension (Yousof 

et al. (2017a)), Marshall-Olkin Kumaraswamy exponential (MOKm-E) model (Chakraborty and Handique (2017)), 

Burr XII exponential (BXII-E) distribution (Cordeiro et al. (2018)), odd Lindley exponential (OL-E) extension 

(Almamy et al. (2018)), log Burr-Hatke exponential (LBH-E) model (Yousof et al. (2018b)), Kumaraswamy Marshall-

Olkin exponential (KmMO-E) distribution (George and Thobias (2019)), the Burr X exponentiated exponential (BX-

EE) distribution (Khalil et al. (2019)), quasi Poisson Burr X exponentiated exponential (QPBX-EE) distribution 

(Mansour et al. (2020a)), generalized odd log-logistic exponentiated exponential (GOLL-EE) distribution (see 

Mansour et al. (2020b)) and the Burr X exponential (BX-E) model (see Yousof et al. (2017b)) and Mansour et al. 

(2020c)), among others. 

 

5. The maximum likelihood method 

Let 𝓏1, 𝓏2, … , 𝓏𝑛  be a random sample (RS) from the QPGW-G family with parameters 𝑎, 𝑏,𝓥T and. Let 𝝫 =

(𝑎, 𝑏,𝓥T)
T
 be the parameter vector. The log-likelihood function ℓ𝝫 for the QPGW-G distribution is given by  
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ℓ𝝫 = 𝑛 log 𝑏 +𝑛 log𝑎 − 𝑛𝑙𝑜𝑔𝑐1 +∑log𝓱𝓥(𝓏𝒾)

𝑛

𝒾=1

++(𝑏 − 1)∑log𝐇𝓥(𝓏𝒾)

𝑛

𝒾=1

−∑𝓦𝑏,𝓥(𝓏𝒾)

𝑛

𝒾=1

− (𝑏 + 1)∑𝐇𝓥(𝓏𝒾)

𝑛

𝒾=1

− (1 − 𝑎)∑{1 − 𝑒𝑥𝑝[−𝓦𝑏,𝓥(𝓏𝒾)]}

𝑛

𝒾=1

−∑{1 − 𝑒𝑥𝑝[−𝓦𝑏,𝓥(𝓏𝒾)]}
𝑎
.

𝑛

𝒾=1

 

The log-likelihood function (ℓ𝝫) can be maximized either directly by using the SAS (PROC NLMIXED), Ox 

program (MaxBFGS sub-routine), R(optim function) and MATH-CAD program or by solving the nonlinear 

likelihood equations obtained by differentiating ℓ𝝫. The score vector components, are given by  

𝐔𝑎 =
𝜕

𝜕𝑎
ℓ𝝫, 𝐔𝑏 =

𝜕

𝜕𝑏
ℓ𝝫, 𝐔𝓥𝓅 =

𝜕

𝜕𝓥𝓅
ℓ𝝫. 

Setting 𝐔𝑎 = 𝐔𝑏 = 𝐔𝓥𝓅 = 0 and solving them simultaneously yields the maximum likelihood estimations (MLEs) of 

𝝫.  

 

6. Applications 

In this section some competitive models are selected as competitive exponential extensions such as the odd Lindley 

exponential  (OL-E) model, Marshall-Olkin exponential (MOE) model, Moment exponential (M-E) extension, The 

Logarithmic Burr-Hatke exponential (LBHE) model, Generalized Marshall-Olkin exponential (GzMO-E) model, Beta 

exponential (B-E) extension, Marshall-Olkin Kumaraswamy exponential (MOKm-E) model, Kumaraswamy 

exponential (Km-E), the Burr X exponential (BX-E) extension, Kumaraswamy Marshall-Olkin exponential (KmMO-

E) model and standard exponential (E) model. Some details related to these competitive extensions are available in 

Aboraya, M. (2019a,b and 2021b), Aboraya and Butt (2019), Elgohari and Yousof (2020), Ibrahim et al. (2020). The 
following are the CDFs of the competitive models: 

 

i. The standard exponential model (𝑐 > 0, 𝓏 > 0):𝐹𝑐(𝑥) = 1 − 𝑒𝑥𝑝(−𝑐𝓏). 
ii. Burr-X exponential model (𝑎, 𝑐 > 0, 𝓏 > 0):𝐹𝑎,𝑐(𝓏) = (1 − 𝑒𝑥𝑝{−[𝑒𝑥𝑝(𝑐𝓏) − 1]

2})𝑎 . 
iii. odd Lindley exponential model (𝑐 > 0, 𝓏 > 0): 

𝐹𝑐(𝓏) = 1 −
1 + 𝑒𝑥𝑝(−𝑐𝓏)

2 𝑒𝑥𝑝(−𝑐𝓏)
𝑒𝑥𝑝(

−[1 − 𝑒𝑥𝑝(−𝑐𝓏)]

1 − [1 − 𝑒𝑥𝑝(−𝑐𝓏)]
). 

 

iv. Kumaraswamy Marshall-Olkin exponential model (𝑎, 𝑏, 𝑐 > 0, 𝓏 > 0): 

𝐹𝑎,𝑏,λ,𝑐(𝓏) = 1 − {1 − [
𝑒𝑥𝑝(−𝑐𝓏)

1 − (1 − λ)1 − 𝑒𝑥𝑝(−𝑐𝓏)
]

𝑎

}

𝑏

. 

v. Moment exponential model (𝑐 > 0, 𝓏 ≥ 0): 𝐹𝑐(𝓏) = 1 − (1 +
𝓏

𝑐
) 𝑒−

𝓏

𝑐 . 

vi. Marshall-Olkin Kumaraswamy exponential model (𝑎, 𝑏, λ, 𝑐 > 0, 𝓏 > 0): 

𝐹𝑎,𝑏,λ,𝑐(𝓏) =
{1 − [1− 𝑒𝑥𝑝(−𝑐𝓏)]𝑎}𝑏

1 − (1 − λ)(1 − {1 − [1 − 𝑒𝑥𝑝(−𝑐𝓏)]𝑎}𝑏)
. 

vii. Burr–Hatke exponential model (𝑐 > 0, 𝓏 > 0):𝐹𝑐(𝓏)
1−𝑒𝑥𝑝(−𝑐𝓏)

1−𝑐𝓏
. 

viii. Beta exponential model (𝑎, 𝑏, λ, 𝑐 > 0, 𝓏 > 0):𝐹𝑎,𝑏,𝑐(𝓏) = 𝐼1−𝑒𝑥𝑝(−𝑐𝓏)(𝑎, 𝑏). 

ix. Marshall-Olkin exponential model (𝑎, 𝑐 > 0, 𝓏 > 0): 

𝐹a,𝑐(𝓏) =
𝑒𝑥𝑝(−𝑐𝓏)

1 − (1 − a)[1 − 𝑒𝑥𝑝(−𝑐𝓏)]
. 

x. Kumaraswamy exponential model (𝑎, 𝑏, 𝑐 > 0, 𝓏 > 0): 

𝐹𝑎,𝑏,𝑐(𝓏) = 1 − {1 − [1 − 𝑒𝑥𝑝(−𝑐𝓏)]
𝑎}𝑏 . 

xi. Generalized Marshall-Olkin exponential model (𝑎, 𝑏, 𝑐 > 0, 𝓏 > 0): 

𝐹λ,𝑐(𝓏) =
1 − [1 − 𝑒𝑥𝑝(−𝑐𝓏)]𝑎

1 − (1 − 𝑏)[1− 𝑒𝑥𝑝(−𝑐𝓏)]𝑎
. 

 

The following statistical tests are considered the two applications: 

i. Cramér-von Mises (CvM-C),  
ii. Anderson-Darling (AD-C),  

iii. Akaike information (AI-C),  
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iv. Consistent-AIC (CAI-C),  

v. Bayesian-IC (BI-C),  

vi. Hannan-Quinn-IC (HQI-C),  

vii. Kolmogorov-Smirnov (KS) and P-value. 

 
6.1 Modeling failure (relief) times 

The first data set is related to Gross and Clark (1975) and called the failure time data. The data represents the lifetime 

observations relating to relief times (in minutes) of patients receiving an analgesic. The Gross and Clark data is 

recently analyzed by Al-Babtain et al. (2020) and Ibrahim et al. (2020). Table 1 below gives the MLEs, standard errors 

(SE(s)) and corresponding confidence intervals (C.I.s) for the Gross and Clark data.  Table 2 below provides the AI-

C, BI-C, CAI-C, HQI-C, AD− C, CvM-C, K.S. and p-value for the Gross and Clark data. Figure 3 gives the box plot 

(top left), quantile- quantile plot (top right), total time in test (TTT) plot (bottom left) and non-parametric Kernel 

density estimation (NKDE) plot (bottom right) for the relief times data. Based on Figure 3 (top left and top right), the 

relief times data has one outlier observation. Based on Figure 3 (bottom left), the HRF of the relief times is 

"monotonically increasing HRF".  

 

 

Figure 3: Plots for exploring failure (relief) times data. 
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Table 1: Estimation results for the relief times data. 

Models↓ 

Estimates→ 

 Estimates 

E(𝑐) MLEs 0.5261 

 SE(s) (0.1172) 

ME(𝑐) MLEs 0.950 

 SE(s) (0.150) 

LBHE(𝑐) MLEs 0.5263 

 SE(s) (0.118) 

OL-E(𝑐) MLEs 0.6044 

 SE(s) (0.0535) 

MO-E(𝑎, 𝑐) MLEs 54.47, 2.32 

 SE(s) (35.58), (0.37) 

BX-E(𝑎, 𝑐) MLEs 1.1635, 0.3207 

 SE(s) (0.332), (0.033) 

KmE(𝑎, 𝑏, 𝑐) MLEs 83.756, 0.568, 3.330 

 SE(s) (42.361), (0.326), (1.188) 

KmMO-E(𝑎, 𝑏, λ, 𝑐) MLEs 8.868, 34.826, 0.299, 4.899 

 SE(s) (9.15), (22.31), (0.24), (3.18) 

GzMO-E(𝑎, 𝑏, 𝑐) MLEs 0.519, 89.462, 3.169 

 SE(s) (0.256), (66.278), (0.77) 

MOKm-E(𝑎, 𝑏, λ, 𝑐) MLEs 0.133, 33.232, 0.571, 1.669 

 SE(s) (0.332), (57.84), (0.72), (1.81) 

BE(𝑎, 𝑏, 𝑐) MLEs 81.633, 0.542, 3.514 

 SE(s) (120.41), (0.327), (1.410) 

QPGW-E(𝑎, 𝑏, 𝑐) MLEs 29.392, 0.7174, 1.837 

 SE(s) (37.72), (0.688), (1.772) 

 

Table 2: Statistics for the relief times data. 

Models↓ 
Statistic→ 

AI-C, BI-C, CAI-C, HQI-C KS p-value AD-C CvMC 

E 68.0, 68.7, 67.9, 68.0 0.4 0.004 4.60 0.96 

BX-E 48.1, 50.1, 49.0, 48.5 0.25 0.17 1.34 0.24 

OL-E 49.1, 50.1, 49.3, 49.3 0.92 <0.01% 1.30 0.22 

KMO-E 43.0, 46.8, 45.6, 43.6 0.15 0.86 1.08 0.19 

M-E 54.3, 55.3, 54.5, 54.5 0.32 0.07 2.76 0.53 
MOKm-E 41.6, 45.5, 44.3, 42.3 0.14 0.87 0.60 0.11 

LBH-E 67.7, 68.7, 67.9, 67.8 0.43 <0.01% 0.62 0.11 

B-E 43.5, 46.5, 44.9, 44.0 0.16 0.80 0.70 0.12 

MO-E 43.5, 45.5, 44.2, 43.9 0.18 0.55 0.80 0.14 

Km-E 42.0, 44.8, 43.3, 42.3 0.14 0.86 0.45 0.07 

GzMO-E 42.8, 45.7, 44.3, 43.3 0.15 0.78 0.51 0.08 

QPGW-E 38.5, 41.4, 39.9, 39.1 0.137 0.8469 0.319 0.0539 
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Figure 4: Fitted density, fitted CDF, P-P plot, estimated HRF and fitted survival function for relief data. 

 

Based on Figure 3 (bottom right), NKDE of the relief times data bimodal and right skewed. Figure 4 gives the fitted 

density, fitted CDF, P-P plot, estimated HRF and fitted survival function for relief data. Based Figure 4, it is noted 
that the QPGW-E model provides adequate fits to the relief data. Based on results of Table 2, we see that the QPGW-

E lifetime model is better than the exponential, Odd Lindley exponential, Marshall-Olkin exponential, Moment 

exponential, The Logarithmic Burr-Hatke exponential, generalized Marshall-Olkin exponential, Beta exponential,  

Marshall-Olkin Kumaraswamy exponential, Kumaraswamy exponential, the Burr X exponential and  Kumaraswamy 

Marshall-Olkin exponential models with AI − C = 38.50,  BI − C = 41.4,  CAI − C = 39.99, HQI − C = 39.08, AD −
C = 0.319, CvM− C = 0.0539, KS=0.137 and p-value=0.8469 so the new lifetime model is a good alternative to 

these models in modeling relief times data set.  

 

6.2 Modeling survival times 

The second data set called the survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli, observed 
and reported by Bjerkedal (1960). This data was recently analyzed by Ibrahim et al. (2020) and Al-Babtain et al. 

(2020). Table 3 below gives the MLEs, SE(s) and corresponding confidence intervals (C.I.s) for the guinea pigs data.  
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Table 2 below provides the AI-C, BI-C, CAI-C, HQI-C, AD − C, CvM-C, K.S. and p-value for the guinea pigs data. 

Figure 5 gives the box plot (top left), quantile- quantile plot (top right), the TTT plot (bottom left) and the NKDE plot 

(bottom right) for the survival times data. Based on Figure 5 (top left and top right), the survival times data has some 
outlier observations. Based on Figure 5 (bottom left), the HRF of the survival times is "monotonically increasing 

HRF". Based on Figure 5 (bottom right), NKDE of the survival times data bimodal and right skewed. Figure 6 gives 

the fitted density, fitted CDF, P-P plot, estimated HRF and fitted survival function for survival data. Based Figure 6, 

it is noted that the QPGW-E model provides adequate fits to the survival data.  

 

Based on results of Table 5, it is concluded that the QPGW-E lifetime model is better than the exponential, Odd 

Lindley exponential, Marshall-Olkin exponential, Moment exponential, The Logarithmic Burr-Hatke exponential, 

generalized Marshall-Olkin exponential, Beta exponential,  Marshall-Olkin Kumaraswamy exponential, 

Kumaraswamy exponential, the Burr X exponential and  Kumaraswamy Marshall-Olkin exponential models with 

AI − C = 204.59,  BI − C = 211.43,  CAI − C = 204.95, HQI − C = 207.31, AD − C = 0.50, CvM− C = 0.077, 

KS=0.08572 and p-value=0.6653 so the new lifetime model is a good alternative to these models in modeling relief 
times data set.  

 

Figure 5: Plots for exploring survival times data. 
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Table 3: Estimation results for the survival times data. 

Models↓ 

Estimates→ 

 Estimates 

E(𝑐) MLEs 0.540 

 SE(s) (0.063) 

OL-E(𝑐) MLEs 0.38145 

 SE(s) (0.021) 

ME(𝑐) MLEs 0.9250 

 SE(s) (0.080) 

BX-E(𝑎, 𝑐) MLEs 0.480, 0.2060 

 SE(s) (0.0611), (0.012) 

LBHE(𝑐) MLEs 0.542 

 SE(s) (0.06) 

GzMO-E(𝑎, 𝑏, 𝑐) MLEs 0.179, 47.635, 4.470 

 SE(s) (0.072), (44.901), (1.327) 

MO-E(𝑎, 𝑐) MLE 8.780, 1.380 

 SE(s)s (3.555), (0.193) 

B-E(𝑎, 𝑏, 𝑐) MLEs 0.807, 3.461, 1.331 

 SE(s) (0.696), (1.003), (0.855) 

Km-E(𝑎, 𝑏, 𝑐) MLEs 3.3042, 1.1010, 1.0372 

 SE(s) (1.106), (0.764), (0.614) 

KmMO-E (𝑎, 𝑏, λ, 𝑐) MLEs 0.372, 3.483, 3.31, 0.302 

 SE(s) (0.14), (0.86), (0.78), (1.11) 

MOKm-E (𝑎, 𝑏, λ, 𝑐) MLEs 0.0082, 2.716, 1.986, 0.099 

 SE(s) (0.002), 1.316), (0.784), (0.048) 

QPGW-E(𝑎, 𝑏, 𝑐) MLEs 2.432, 1.316, 0.772 

 SE(s) (1.807), (0.638), (0.261) 

 

Table 5: Statistic for the survival times data. 

Models↓ 
Statistic→ 

AI-C, BI-C, CAI-C, HQI-C KS p-value AD-C CvMC 

E 234.6, 236.9, 234.7, 235.5 0.27 0.060 6.53 1.25 

BX-E 235.3, 239.9, 235.5, 237.1 0.22 0.002 2.90 0.52 

OL-E 229.1, 231.4, 229.2, 230.0 0.49 <0.01 1.94 0.33 

KMO-E 208.0, 217.0, 208.4, 211.4 0.09 0.530) 0.61 0.11 

M-E 210.4, 212.7, 210.5, 211.3 0.14 0.130 1.52 0.25 
B-E 207.4, 214.2, 207.7, 210.1 0.11 0.340 0.98 0.15 

LBH-E 235.0, 237.0, 235.0, 236.0 0.28 <0.01% 0.71 0.12 

MOKm-E 209.4, 218.6, 210.0, 213.0 0.10 0.440 0.79 0.12 

MO-E 210.4, 215.0, 210.5, 212.2 0.10 0.430 1.20 0.17 

Km-E 209.4, 216.2, 209.8, 212.1 0.09 0.500 0.74 0.11 

GzMO-E 210.5, 217.4, 211.0, 213.2 0.09 0.510 1.02 0.16 

QPGW-E 204.6, 211.4, 205.0, 207.3 0.0857 0.665 0.50 0.077 
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Figure 6: Fitted density, fitted CDF, P-P plot, estimated HRF and fitted survival function for survival data. 

 

6. Conclusions 

A novel two-parameter compound G family of distributions is derived and studied. Relevant statistical properties such 

as the ordinary moments, incomplete moments and moment generating function are derived.  Using common copulas 

such as “Farlie-Gumbel-Morgenstern copula”, “Ali-Mikhail-Haq copula”, “Clayton copula” and “Renyi copula”, 

some new bivariate type G families are derived. A special attention is devoted to the quasi-Poisson generalized 
Weibull-exponential distribution as a special case.  

 

The density of the quasi-Poisson generalized Weibull-exponential distribution can be “asymmetric and right skewed 

shape” with no peak, “asymmetric right skewed shape” with one peak, “symmetric shape” and “asymmetric left 

skewed shape” with one peak.  
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The hazard rate of the quasi-Poisson generalized Weibull-exponential distribution can be “increasing”, “U-shape”, 

“decreasing” and “J-shape”. The usefulness and flexibility of the quasi-Poisson generalized Weibull-exponential 

distribution is illustrated by means of two applications to real data sets.  

 

The new the quasi-Poisson generalized Weibull-exponential distribution is much better than many common 
exponential extensions in modeling relief times and survival times data sets under the eight criteria called Anderson-

Darling Criteria, Akaike Information Criteria, Cramér-Von Mises Criteria, Hannan-Quinn Information Criteria, 

Bayesian Information Criteria, Consistent Akaike Information Criteria, Kolmogorov-Smirnov (KS) statistic test and 

its corresponding p-value. As a future interesting works, many new statistic tests can be used for right censored 

validation such as the Nikulin Rao Robson (N.R.R) goodness-of-fit statistic test and Bagdonavicius-Nikulin (Bag.N) 

goodness-of-fit statistic test test (see Goual et al. (2019, 2020), Yadav et al. (2020), Ibrahim et al. (2019), Mansour et 

al. (2020 d-f), and Goual and Yousof (2020)). Results of characterization and regression models can be derived based 

on the new family (see Altun et al. (2018a-d) for more details). 
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