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Abstract
Variable selection is an important property of shrinkage methods. The adaptive lasso is an oracle
procedure and can do consistent variable selection. In this paper, we provide an explanation that
how use of adaptive weights makes it possible for the adaptive lasso to satisfy the necessary and
almost sufficient condition for consistent variable selection. We suggest a novel algorithm and
give an important result that for the adaptive lasso normalisation of predictors after the
introduction of adaptive weights makes the adaptive lasso performance identical to the lasso.
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1. Introduction
Tibshirani(1996) proposed a new shrinkage method named least absolute
shrinkage and selection operator, abbreviated as lasso. The theoretical
properties of lasso-type methods are well studied in the past decade. For
example, Fan and Li (2001) have discussed the relationship between the
penalized least squares and subset selection and also studied the variable
selection properties for lasso-type methods. The lasso can do consistent model
selection if it satisfies a necessary condition on the covariance matrix of
predictors (Zhao and Yu, 2006). This same condition is also independently
derived by Zou (2006).

As discussed by Fan and Li (2001), penalised regression methods such as the
lasso, ideally, possess two oracle properties:
• the zero components (and only the zero components) are estimated as

exactly zero with probability approaches 1 as n , where n is the sample
size; and

• the non-zero parameters are estimated as efficiently well as when the correct
submodel is known.

The oracle properties of these procedures are studied for different models and
under various conditions e.g. the necessary condition for consistent selection
discussed in Zhao and Yu (2006) and Zou (2006). We will demonstrate
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numerically that when this condition fails the adaptive lasso can still do correct
variable selection while the lasso cannot.

The rest of the paper is organised as follows: Section 2 gives a review of some
shrinkage methods and popular algorithm LARS proposed by Efron et al. (2004)
to obtain solution for these methods. Section 3 discusses an important
asymptotic condition for consistent variable selection by lasso-type methods. In
this section we also provide an explanation that why the adaptive lasso is an
oracle procedure while the lasso is not. Section 4 gives an important result about
the normalisation of predictors. We also show that in the situations when the
necessary condition for the consistent variable selection fails for the lasso and if
for the adaptive lasso predictors are normalised after the introduction of adaptive
weights, then the adaptive lasso performs identical to the lasso. In this section
we also suggest a novel algorithm to attain consistent variable selection for the
adaptive lasso. Concluding remarks can be found in Section 5.

2. Shrinkage Methods
The ready availability of fast and powerful computers, combined with rapid
technological advances in methods of automated data collection, have led to the
routine production of massive datasets, e.g. in bioinformatics. There are many
real-life examples where we are dealing with a very large number of predictors,
and this naturally leads to consideration of high-dimensional settings.

Traditional statistical estimation procedures such as ordinary least squares (OLS)
tend to perform poorly in high-dimensional problems. In particular, although OLS
estimators typically have low bias, they tend to have high prediction variance,
and may be difficult to interpret (Brown, 1993). In such situations it is often
beneficial to use shrinkage i.e. shrink the estimator towards the zero vector,
which in effect involves introducing some bias so as to decrease the prediction
variance, with the net result of reducing the mean squared error of prediction.

There are several shrinkage methods suggested in the literature including ridge
regression (Hoerl and Kennard, 1970). The paper by Tibshirani (1996), in which
he suggested the lasso, is a big breakthrough in the field of sparse model
estimation which performs the variable selection and coefficient shrinkage
simultaneously. Other shrinkage methods include non-negative garotte (Breiman,
1995), smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001), elastic
net (Zou and Hostile, 2005), adaptive lasso (Zou, 2006), Dantzig selector
(Candes and Tao, 2007), relaxed lasso (Meinshausen, 2007) variable inclusion
and selection algorithm (VISA) (Radchenko, 2008) and the double Dantzig
selector (James and Radchenoko, 2009). Many other methods have been
suggested in the literature but lasso-type methods are currently popular among
researchers (Knight and Fu, 2000; Fan and Li, 2001; Wang and Leng, 2007; Hsu
et al., 2008). The group lasso was originally suggested by Bakin (1999). This
technique selects a group of variables; rather than individual variables, for more
details see e.g. Yuan and Lin (2006), Zhao and Kulasekera (2006).
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James et al. (2009) proposed an algorithm DASSO (Dantzig selector with
sequential optimization) to obtain the entire coefficient path for the Dantzig
selector and they also investigated the relationship between the lasso and
Dantzig selector. Hesterberg et al. (2008) have given a good survey of 1L
penalised regression. Very recent papers by Fan and Lv (2008,2009), and Lv
and Fan (2009) are good references for variable selection especially in high
dimension setting. Very recently, the applications of lasso-type methods and their
oracle properties are studied by Chand (2011) for regression and multivariate
time series models. Leng (2010) in his recent paper suggested a shrinkage
method based on the rank regression. He also proposed a score based
information criterion for tuning parameter selection. To optimize the variable
selection of the lasso and Forward selection method, Radchenko and James
(2011) suggested an adjustment in level of shrinkage at every step in his
proposed method called forward lasso adaptive shrinkage (FLASH).

In the following paragraphs we will define the linear model and some notations
used and referred to frequently in the later sections.

Let 1 1( , ), , ( , )T T
n ny yx x be n independent and identically distributed random

vectors, assumed to satisfy the linear model

= ,T
i i iy x

β
(2.1)

such that iy  is the response variable, 1= ( , , )T p
i i ipx x x   is the p -

dimensional set of predictors, the i 's are independently and identically
distributed with mean 0 and variance 2 and 1= ( , , )p β  is the set of
parameters.

We define  = : 0jj   and  = : = 0c
jj  . Assume that only 0p 0( < )p p

parameters are non-zero i.e. 0j  for j where 0| |= p and | . | stands for
the number of elements in the set i.e. the cardinality of the set. Thus we can

define  = :j j β  and  = : c
c j j β


 . Also assume that 1 pT

n
X X C ,

where 1= ( , , )TnX x x is the design matrix and C is a positive definite matrix. We
can define a partition of the matrix C as

11 12

21 22

=
 
 
 

C C
C

C C
(2.2)

where 11C is the 0 0p p submatrix corresponding to the active predictors

 :j jx  . The least squares estimator estimates the zero coefficients as non-
zero in the model defined above. We would like a method which is consistent in
variable selection i.e. which correctly classifies the active (i.e. non-zero
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coefficients) and non-active (i.e. zero coefficients) predictors. This is an important
property of lasso-type methods as mentioned by Knight and Fu (2000).

2.1 The Lasso
The lasso shrinks some coefficients while setting others exactly to zero, and thus
theoretical properties suggest that the lasso potentially enjoys the good features
of both subset selection and ridge regression (Tibshirani, 1996). The lasso
estimator of b is defined by

2

*

=1 =1 =1
= | | ,

p pn

i j ij j
i j j

argmin y x subjectto t 
 

  
 

  β


or equivalently,
2

*

=1 =1 =1
= | | ,

p pn

i j ij j
i j j

argmin y x  
      

   
  β



where t and  are user-defined tuning parameters and control the amount of
shrinkage. Smaller values of t and larger values of  result in a higher amount
of shrinkage.

2.2 LARS Algorithm
Efron et al. (2004) developed an efficient algorithm known as least angle
regression (LARS) algorithm for finding the solution path of the lasso method,
where the solution path is the set of values of *ˆ ( )b as  varies. Efron et al.
(2004) also showed that both forward stagewise linear regression and the lasso
are variants of the LARS. ("L" for least, "A" for angle, "R" for regression and "S"
suggests "Lasso" and "Stagewise"). LARS cleverly organizes the calculations
and thus the computational cost of the entire p steps is of the same order as
that required for the usual least squares solution for the full model, though LARS
modified for the lasso solution requires some additional steps (Efron et al., 2004).
LARS, like classic forward selection, starts with all coefficients equal to zero.

Hastie et al. (2007) described the LARS algorithm to obtain the lasso solution as
follows:

Algorithm 1: LARS alogorithm

Step 1 Standardise the predictors  : = 1, ,j j px  to have zero mean and unit
variance. Start with the residual = r y y , 1, , = 0p  .

Step 2 Find the predictor jx most correlated with r .

Step 3 Move j from 0 towards its least squares coefficient ( , )jx r , until some
other competitor kx has as much correlation with the current residual as
does jx .
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Step 4 Move ( , )j k  in the direction defined by their joint least squares
coefficient of the current residual on ( , )j kx x , until some other competitor

lx has as much correlation with the current residual.

Step 5 If a non-zero coefficient hits zero, drop it from  and recompute the
current joint least squares direction.

Step 6 Continue in this way until all p predictors have been entered in the
model and we arrive at the full least squares solution.  LARS algorithm

2.3 The Adaptive Lasso
Zou (2006) proposed a new version of the lasso, named the adaptive lasso, by
using adaptive weights which result in different penalisation for the coefficients
appearing in the 1L penalty term. The adaptive lasso can be defined as

** 2

=1 =1 =1
= ( ) | | ,

p pn

i j ij j j
i j j

argmin y x w  
 

  
 
  β



where 1= ( , , )pw ww  are the adaptive weights. Zou has shown that if the
weights are efficiently chosen in a data-dependent way then the adaptive lasso
can achieve the oracle properties. He suggested the use of estimated weights,
ˆ =| |j jw b  , where = { : = 1, , }jb j pb  is a root-n-consistent estimator of β and
> 0 is a user-chosen constant.

The choice of ˆ jw is very important and Zou (2006) suggested using ordinary
least squares estimates while  can be chosen by k -fold cross-validation. Zou
(2006) has also noted that the adaptive lasso, like the lasso, is a convex
optimisation problem and so does not suffer from having more than one local
minimum, and its global minimum can be obtained by the LARS algorithm (Efron
et al., 2004) after a simple modification given in Algorithm 2.

Algorithm 2: Zou algorithm to obtain the adaptive lasso solution.

Step 1 Define * ˆ= /j j jwx x , =1, ,j p .
Step 2 Solve the lasso problem for all 

2

* *

=1 =1 =1
= | | .

p pn

i j j j
i j j

argmin y   
      

   
  β x



Step 3 Output ** *ˆ ˆ ˆ= /j j jw  .

Zou (2006) has studied whether the standard lasso has the oracle properties
discussed by Fan and Li (2001). He showed that there are some scenarios e.g.
when condition (2.3) given below does not hold, the lasso variable selection is
not consistent. The oracle properties of other shrinkage methods are also studied
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in the literature. Fan and Li (2001) have studied the asymptotic properties of the
SCAD and showed that penalized likelihood methods have some local
maximisers for which the oracle properties hold.

Zou (2006) also gave a necessary and almost sufficient condition for the
consistency of lasso variable selection. This condition, named as the
irrepresentable condition, was also found independently by Zhao and Yu (2006).
We will call this condition the Zhao-Yu-Zou condition (ZYZ condition). Assuming
11C is invertible, the ZYZ condition can be stated as

1
21 11 ( ) 01, =1, , ,

r
r p p

    C C s  (2.3)

where 11C , 21C are the partitions of C defined in (2.2) , ( ) = {sgn( ) : }j j  s  

and 0p is the number of elements in  .

In general, lasso-type methods are more effective than conventional methods,
e.g. ordinary least squares, when the true model is sparse. If sparsity is not
known to be present then there are not many advantages of using lasso-type
methods as the shrinkage results in biased estimates for the nonzero
components (Hsu et al., 2008).

3. ZYZ Condition and Variable Selection
The ZYZ condition (2.3) discussed by Zhao and Yu (2006) and Zou (2006) is a
necessary condition on the matrix C defined in (2.2) for consistent variable
selection. The ZYZ condition is always satisfied for an orthogonal design but
there are some scenarios where this condition fails. Zhao and Yu (2006) and Zou
(2006) have presented some examples where this condition fails, in which case,
the lasso is inconsistent in variable selection. However, Zou (2006) has shown
that the adaptive lasso has the oracle properties for the linear regression model,
so that variable selection is consistent.

An important point to note is that the ZYZ condition is an asymptotic condition.
The condition requires 0p , which refers to large sample sizes ( )n  . For
finite sample sizes, the ZYZ condition does not always guarantee good variable
selection.

When using the lars package in R for the implementation of the adaptive lasso,
we notice that the theoretical properties are not shown in the simulated
examples. As shown by Zou (2006) the adaptive lasso is consistent in variable
selection even where the ZYZ condition fails for the standard lasso, but we failed
to approach the variable selection oracle property of the adaptive lasso in the
numerical example when the sample size becomes large. These strange results
for the adaptive lasso led us to look in depth to the LARS algorithm. We noticed
that if we implement LARS algorithm to obtain the adaptive lasso solution as
mentioned in Step 2 of Zou's Algorithm 2 and as predictors are rescaled by
adaptive weights in Step 1 of this algorithm thus normalisation at Step 2 in LARS
algorithm nullifies the effect of adaptive weights. See Section 4 for details.
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Normalisation of predictors is a common practice so it is important to know that at
which stage we should perform this normalisation especially in the case of the
adaptive lasso.

Now we show how the use of adaptive weights makes the ZYZ condition hold
even when it originally fails. Assume 1 ( )= pT nn X X C C and is partitioned as
indicated in (2.2). The adaptive lasso rescales the design matrix X using some
data-driven adaptive weights { : = 1, , }jw j p . We can rearrange and partition the
weight matrix, W , as

11

22

= ,
 
 
 

W 0
W

0 W

where 1
11 = ( ; )jdiag w j W  and 1

22 = ( ; )cjdiag w j W  .

Writing  =X XW , we can define    ( ) 1=
n T pn C X X C 

( )n
C and can be partitioned

as


 

 

( ) ( )
( ) 11 12

( ) ( )
21 22

= .
n n

n

n n

 
 
 
 

C C
C

C C
Now,

  ( )

( )

( ) ( )
11 11 11 11 12 22

( ) ( )
22 21 11 22 22 22

1=

=

=

n T

T n

n n

n n

n

 
 
 

C X X

W C W

W C W W C W
W C W W C W .

(3.1)

Take
    

1 1( ) ( ) ( ) ( )
21 11 ( ) 22 21 11 11 11 11 ( )

( ) ( ) 1 1
22 21 11 11 ( )

=

= ( ) ,

n n n n

n n

 



 

 

C C s W C W W C W s

W C C W s
 



where ( )s  is defined in (2.3). If the weights { }jw are chosen appropriately
(typical choices are inverse powers of absolute values of least squares estimates
or ridge estimates or lasso estimates) then,

1/ | | ,1= ˆ , .| |
p j

j
j

j
w

j








 


 




(3.2)

As  1
11 = :jdiag w j W  ,  1

11 = :jdiag w j W  , so we can say, when in

general >>1j for j , the elements of 1
11
W will be bounded by some finite

value say *k . Moreover, since  1
22 = :jdiag w j W  , it can be easily concluded

from (3.2) that 22 0

p
p pW 0 , the 0 0( ) ( )p p p p   matrix of zeros. So for an

appropriate choice of the adaptive lasso weights, we can say that
componentwise
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( ) ( ) 1
22 21 11 11 ( ) 0( ) 0, =1, ,n n

r
r p p

    W C C W s 

thus we can conclude that componentwise
( ) ( ) 1

22 21 11 11 ( ) 0( ) 1, =1, ,n n
r

r p p
    W C C W s  (3.3)

always holds, at least asymptotically. So the adaptive lasso always satisfies the
ZYZ condition asymptotically.

4. Normalisation after Rescaling by the Adaptive Weights
We have mentioned earlier that, under certain conditions, normalisation of the
design matrix often improves the performance of the lasso. As penalized least
squares methods are not scale equivariant, it is recommended to normalize the
predictors so that each variable has unit 2L norm. Such a scaling is also the
default option of the lars package in R.

To provide insight into the effect of normalisation, we consider a simple case.
Suppose we have p predictors { : = 1, , }j j px  for the model defined in (2.1)
such that 1 pTn X X C . LARS uses /j jhx to normalise the predictors, where

2
=1

= ; =1, ,n
j iji
h x j p  .

Let Z be the normalised design matrix of X , which can be defined as
 = ,Z XD (4.1)

where  1= 1/ , ,1 / pdiag h hD  . For illustrative purposes we consider
*
1
*
2

= .j c

h for all j
h

h for all j
 







Thus D can be partitioned as 11

22

=
 
 
 

D 0
D

0 D
, where

1*
11 1 0
= ph


D I and

1*
22 2 0
= p ph



D I . We can write the covariance matrix for the normalised predictors

defined in (4.1) as   ( ) 1=
n T
Z nC Z Z as follows:


 

  

 

 

( ) ( )
( ) 11 1211 11 11 22

( ) ( ) ( )
21 11 2222 22 22

( ) ( )
11( ) 12( )

( ) ( )
21( ) 22( )

=

= , ,

n n
n
Z n n n

n n
Z Z

n n
Z Z

say

 
 
 
 

 
 
 
 

D C D D C D
C

D C C D C D

C C

C C

where  ( ) ( )* * 1
( ) = ( )
n n
ij Z iji jh h C C , , = 1, 2i j .

Now take
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     
 

 

1( ) ( ) ( ) ( )1
21( ) 11( ) 21 11( ) 22 11 11 11 ( )

( ) ( ) 1 1
21 1122 11 ( )

( ) ( )1* * 1
21 111 2 ( )

( ) =

= ( )

= ( ) .

n n n n
Z Z

n n

n n
h h

 








 

 

C C s D C D D C D s

D C C D s

C C s

 





Using 
( ) ( )
11 11 11 11=
n nC W C W and 

( ) ( )
21 22 21 11=
n nC W C W , we get

   ( ) ( ) 11 * * ( ) ( ) 1
21( ) 11( ) ( ) 1 2 22 21 11 ( )( ) = ( ) .
n n n n
Z Z h h 

 
11C C s W C C W s 

For the necessary condition for consistent variable selection to hold, we require

 1* * ( ) ( ) 1
1 2 22 21 11 ( ) 0( ) 1, =1, , .n n

r
h h r p p

      11W C C W s 

Using the result in (3.3), this will lead to two different scenarios:

• if * *
1 2h h , then the ZYZ condition always holds;

• if * *
1 2>h h , then normalisation can lead to failure of the ZYZ condition thus

making the variable selection inconsistent.

4.1 Numerical Results

Consider the 0=i i iy x
β

, where 0 = (5.6,5.6,5.6,0)
Tβ , 2(0, )i N  and

 1 4 4= ( , , ) ,T NX x x 0 C  where
1 0.39 0.39 0.23
0.39 1 0.39 0.23

= .
0.39 0.39 1 0.23
0.23 0.23 0.23 1

  
   
  
 
 

C

This is the same model as Model 0 studied by (Zou, 2006). We will also refer
this model as Model 0. For this above choice of C , we have

1
21 11 ( ) = 3.1363 > 1

C C s  , thus the ZYZ condition fails. Suppose ( )nC be the

covariance matrix of the simulated set of predictors, ix :

( )

1.0428311 0.4203259 0.3738564 0.2409415
0.4203259 0.9585507 0.3345396 0.2163182

= .
0.3738564 0.3345396 0.9631588 0.2878907
0.2409415 0.2163182 0.2878907 1.0548909

n

  
   
  
 
 

C

We observed that ( ) ( ) 1
21 11 ( )( ) = 3.161134 > 1n n


C C s  . Thus the ZYZ condition fails so

the lasso variable selection will be inconsistent.
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Now if we apply the adaptive lasso, we need to rescale the predictors  = /j j jwx x
using the adaptive weights, jw . Here, for example, we use estimated weights

1ˆˆ =| |j jw   , for =1, ,j p , where ˆ
j is the least squares estimate of j , i.e. we

choose the tuning parameter  to be 1. Now the covariance matrix, 
( )n
C , of the

 jx 's is given by

 ( )
0.169194693 0.080898724 0.067396782 0.004310662
0.080898724 0.218853480 0.071542606 0.004591009

=
0.067396782 0.071542606 0.192927391 0.005722972
0.004310662 0.004591009 0.005722972 0.002081131

n

  
   
  
 
 

C

and we observed that  ( ) ( ) 1
21 11 ( )( ) = 0.3185492 < 1
n n


C C s  . Thus the ZYZ condition

holds and leads the adaptive lasso to consistent variable selection. Now if we
normalise the predictors after rescaling by the adaptive weights, the effect of the
adaptive weights is nullified and the resulting covariance matrix after
normalisation is given as



3 4 3 4

4 5 5 5
( )

3 5 3 4

4 5

6.9640450 10 2.068320 10 1.109767 10 8.745434 10
2.068320 10 3.475609 10 7.317432 10 5.785579 10

=
1.1097671 10 7.317432 10 1.270880 10 4.644906 10
8.745434 10 5.785579 10 4.64

n
z

   

   

   

 

     
     
     

 

C

4 34906 10 2.081131 10 

 
 
 
 
 

  

and we observe that   ( ) 1
21( ) 11( ) ( )( ) = 9.645727 >1

n
z z 

C C s  . Hence if predictors are

normalised after introducing adaptive weights the adaptive lasso will result into
the standard lasso.

The general case is less transparent but, even so, this illustrative example throws
some light in to the effect of normalisation. The use of adaptive weights makes
the adaptive lasso an oracle procedure. Therefore it is crucial to determine at
which stage we should normalise the predictors, if required. We observe that
normalisation nullifies the effect of adaptive weights if it is done after the
introduction of adaptive weights. In Algorithm 3, we elaborate the Zou (2006)
Algorithm 1 to obtain the adaptive lasso estimates for normalised predictors.

Algorithm 3: New algorithm to obtain the adaptive lasso solution
Step 1 Standardise the predictors 1, , px x so that each has mean 0 and

variance 1.

Step 2 Estimate the weights ˆ , = 1, ,jw j p using the normalised predictors
obtained in Step 1 above.

Step 3 Define * ˆ= /j j jwx x , =1, ,j p .
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Step 4 Solve the lasso problem for all 
2

* *

=1 =1 =1
= | | .

p pn

i j j j
i j j

argmin y   
      

   
  β x



Step 5 Output ** *ˆ ˆ ˆ= /j j jw  . New algorithm to obtain the adaptive lasso solution.
Now we compare the lasso and adaptive lasso variable selection when ZYZ
condition fails. We obtain the lasso solution path using Algorithm 1 while for the
adaptive lasso we use Algorithm 2 and our suggested novel Algorithm 3.

We study the same Model 0 and use 100 Monte Carlo runs to study the empirical
probability of containing the true model on the solution path (PTSP). The PTSP is
the proportion of Monte Carlo runs for which the true model lies on the lasso
(adaptive lasso) solution path. In practice, to pick up the correct model from the
entire solution path also depends on the efficiency of tuning parameter selector.
The advantage of studying this PTSP is that it does not require a single choice of
tuning parameter rather we are looking at the entire solution path. The lower the
PTSP, more challenging will be for tuning parameter selectors to pick up the
correct model. We consider various choices of sample size ranging from = 50n
to = 50000n and for error standard deviation = 1,3,6,9 . The results are shown
in Figure 1.

Figure 1 shows the plots of PTSP for the lasso and adaptive lasso based. It can
be noticed that PTSP for the lasso (Figure 1(a)) lies around 0.5 and does not
converge to 1 even for the sample size as large as = 50000n . The adaptive lasso
performance is identical to the lasso when solution is obtained using Algorithm 2.
While for the adaptive lasso with the new Algorithm 3 shows that the PTSP is
converging to 1 thus resulting in consistent variable selection. As expected, the
larger error variance makes the variable selection harder.
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Figure 1: Probability, based on 100 runs, that solution paths of the lasso ( = 0)
and adaptive lasso ( = 1) for the Model 0: 0 = (5.6,5.6,5.6,0)

Tb . The error
distribution is 2(0, )i N  where ([.5ex]10mm0.3pt =1 ); ( = 3 ); (
= 6 ); ( = 9 ).

5. Conclusion
The adaptive lasso is an oracle procedure and able to do consistent variable
selection. This good property of the adaptive lasso is due to the rescaling of the
predictors by the adaptive weights. While using LARS to obtain the solution for
the adaptive lasso it is important to do normalisation before this recscaling
otherwise the adaptive lasso performs identical to the lasso.
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