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Abstract  

 

The linear fractional transportation problem (LFTP) is widely encountered as a particular type of transportation 

problem (TP) in real-life. In this paper, a novel algorithm, based on the traditional definition of continuity, is 

presented to solve the LFTP. An iterative constraint is constructed by combining the objective function of the LFTP 

and the supply-demand condition since the fractional objective function is continuous at every point of the feasible 

region. By this constraint obtained, LFTP is converted into an iterative linear programming (LP) problem to reach 

the optimum solution. In this study, the case of asymptotic solution for LFTP is discussed for the first time in the 

literature. The numerical examples are performed for the linear and asymptotic cases to illustrate the method, and 

the approach proposed is compared with the other existing methods to demonstrate the efficiency of the algorithm. 
Also, an application had environmentalist objective is solved by proposed mathematical method using the software 

general algebraic modeling system (GAMS) with data set of the real case. Finally, some computational results from 

tests performed on randomly generated large-scale transportation problems are provided. 
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1. Introduction  

Linear fractional programming (LFP) is encountered more in recent years because it is more realistic in expressing 

real-life problems such as resource allocation, transportation, location selection, production, stochastic processes, 

finance, applied linear algebra, game theory, etc. The LFP problem (such as maximization of profitability rates, 

minimization of risk rates), a particular case of a non-linear programming problem, has the ratio of the linear numerator 

and denominator as the objective function. To solve an LFP problem, it can be converted into a traditional LP problem 

by using the method of Charnes and Cooper transformation (Charnes and Cooper, 1962), or it can be adopted the 

updated objective function method of Bitran and Novaes (1973). Schaible (1981) presented to survey applications as 

well as solution methods in linear, quadratic, and concave-convex fractional programming. Tantawy (2008) proposed 

an iterative process based on the conjugate gradient projection method to solve LFP problems with inequality 

constraints. Ozkok (2020) proposed an iterative method to solve all LFP problems. A detailed bibliography of LFP 

can be found in (Ozkok, 2020). 
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The TP includes decisions having great importance in logistics and supply chain management in terms of 

reducing costs and providing the best service. The TP with a fractional objective is a widely used LFP problem having 

ratios such as profit/cost, income/capital, profit/labor, total actual transportation cost/total standard transportation cost, 

and risk assets/capital, etc. Firstly, Swarup (1966) dealt with a fractional transportation problem (FTP) and supposed 

that the denominator is always positive. Moanta (2007) studied to obtain an optimum solution with the simplex method 

for the three-dimensional TP having the objective function as the ratio of two positive linear functions. Sheikhi et al. 

(2018) proposed a new method allowing decision-makers to evaluate economic activities and make satisfying 

managerial decisions by finding a set of efficient solutions to bi-objective FTPs.  

The FTPs and their solution methods are among the main topics of operations research. Adapting each new 

method developed for LFP is becoming increasingly important to solve FTP. Guzel et al. (2012) transformed FTP 

with interval coefficient to a classical TP by expanding the order 1𝑠𝑡 Taylor polynomial series with multi variables in 

their study. Raina et al. (2018) handled the FTP with some discount cost during the shipment time and tested the 

optimum solution by using the Karush-Kuhn-Tucker optimality algorithm. 

Mostly iterative methods attract the attention of companies and decision-makers today in order to reach the 

acceptable solution faster. Gupta et al. (1993) studied a paradox in LFTPs with 'mixed constraints'. Moreover, they 

established sufficient conditions for the existence of a paradoxical solution and obtained a paradoxical range of flow. 

Sivri et al. (2011) developed a new algorithm looking like the Vogel approximation method for TP to find an initial 

point for LFTP. Also, they constituted the optimality conditions. Gupta and Arora (2017) presented a paradoxical 

method to solve capacitated FTP which has the sum of two fractional functions. Pradhan and Biswal (2015) studied 

on two algorithms to obtain an initial feasible point of an LTFP, and presented a methodology to get the optimum 

solution. Gupta and Arora developed a paradoxical method to solve FTP which has the sum of two fractional functions. 

Some researchers have tried to overcome the real-life uncertainties by handling FTP with multi-objective and 

using fuzzy solution approaches for the stated problem solution. Cetin and Tiryaki (2014) ensured a fuzzy approach 

obtaining a compromise Pareto-optimal solution for a multi-objective LFTP by constructing Generalized Dinkelbach’s 

Algorithm. Taking into consideration on Zadeh’s extension, Liu (2016) handled two-level mathematical programs to 

compute the fuzzy objective value of the problem with fuzzy cost coefficients and fuzzy right-hand side parameters. 

Sadia et al. (2016) modeled the problem determining the optimum transportation schedule as multi-objective 

capacitated FTP with mixed constraints. They presented a fuzzy programming approach having linear, exponential, 

and hyperbolic forms of membership functions. Also, they obtained a compromise solution by using lexicographic 

goal programming with minimum distance techniques. Safi and Ghasemi (2017) studied on three approaches for 

solving the LFTP with uncertain parameters. Javaid et al. (2017) modeled transportation problem with multiple 

fractional objectives with uncertainty. They reached the compromise solution of the problem by using fuzzy goal 

programming approach. Gupta et al. (2018) studied on the multi-objective capacitated transportation problem with 

linear and fractional objective functions. They formulated the parameters of problem with fuzzy numbers and were 

transformed into deterministic form through a ranking function approach. Anukokila et al. (2019) investigated a goal 



Pak.j.stat.oper.res.  Vol.18  No. 1 2022 pp 151-166  DOI: http://dx.doi.org/10.18187/pjsor.v18i1.3889 

 
A novel iterative method to solve a linear fractional transportation problem 153 

 

programming approach to solve multi-objective FTP by using the parameters ( ),   from the point of interval-valued 

fuzzy numbers. 

In the literature, there are no many studies on iterative approaches for the solution of LFTP, a particular type 

of LFP recently. Besides, some methods, mostly based on matrix operations, give cause for losing their computational 

effectiveness by reason of increasing process as the problem size raises. On the other hand, our approach overcomes 

successfully this shortcoming in terms of computation since it is an iterative procedure based on LP. Moreover, 

variable transformation occurs in many papers in the literature, but our algorithm does not need it.  

In this study, we have extended the new iterative algorithm proposed by Ozkok (2020) for an LFP to the 

LFTP. The fractional objective of the LFTP and the convergence condition are combined to generate an iterative 

constraint. We create an iterative LP problem with constraint generated to get the optimum solution of the LFTP 

having a feasible bounded region. We note that our algorithm can solve the LFTP with mixed constraints since our 

iterative method depends on only the fractional objective function. Moreover, the case of asymptotic solution for 

LFTP is handled for the first time as far as it is examined in the literature. The computational steps of the proposed 

approach are carried out more quickly than other algebraic methods. The solution procedure is demonstrated the two 

numerical examples in literature and a practical case study is presented. 

The rest of the paper is arranged as follows. The definition of the LFTP and some preliminaries are mentioned 

in Section 2. In the next section, we describe the solution methodology. We introduce our algorithm and present its 

flow chart in Section 4. There are experiments in order to illustrate our algorithm in Section 5. The last section 

emphasizes our conclusions.  

2. Problem definition and preliminaries 

LFTP is a problem optimizing the rate of profitability expressed as cost/ profit, time/profit or the cost/amount of 

materials to be transported under supply and demand constraints. The mathematical model of a general LFTP can be 

stated as follows:  

ij ij 0

i=1 j=1

ij ij 0

i=1 j=1

p x + p
P( )

min ( )
( )

q x + q

= =





x
x

x

m n

m n
Z

Q
       (1a)  

       subject to   

n

ij i

j=1

x , , a   ,  i = 1,..., =  m     (1b)  

m

ij j

i=1

x , , b   ,  j = 1,..., =  n      (1c) 

ijx 0  ,  i, j        (1d) 
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where 
ijP p


 =  m n

 and 
ijq


 =  m n

Q  are matrices for linear functions of numerator and denominator, respectively, 

0p  and 
0q  are constant, 

ia  
i(a 0,  i)   is the amount of supply from the 𝑖𝑡ℎ source ,

jb  
j(b 0,  j)   is the amount of 

demand from the 𝑗𝑡ℎ region, and 
11 12(x ,x ,..., x )mn=x is decision variable which refers to product amount transported 

from 𝑖𝑡ℎ supply source to 𝑗𝑡ℎ demand region. We assume that ( ) 0P x  (Since it is an objective for  the TP, it will 

always be positive.), ( ) 0Q x , (x )ij S = x ,  where the feasible region S  is a convex and non-empty feasible 

set defined by constraints (1b)-(1d), and ( ): .mnZ S S → R R R  Moreover, we suppose that  

         
i j

i=1 j=1

a b
m n

                        (2) 

which is a necessary and sufficient condition for the existence of a feasible solution to the problem (1a)-(1d). Because 

the total supply is not less than the total demand. 

Theorem 1: LFTP is solvable if and only if the above inequality (2) holds. 

Proof: It can be found on page 247 of (Bajalinov, 2003). 

Remark 1: With the assumption ( ) 0Q x , the objective function ( )Z x  is continuous on R , and its domain S . It 

means that ( )Z x  is continuous on k S x . Note that ( )k kZ Z=x . 

The continuity can be stated in terms of traditional neighborhoods as follows: R +  , if there exists 0   such 

that ( ),kB  x x  and ( ),kZ B Z   where ( ) ,k kZ Z=x  then ( )Z x  is continuous at the given k mnx R . 

3. Our methodology 

Considering the algorithm in (Ozkok, 2020), the convergence ensures for every ( ) ( ) ( ), , ,k kZ B Z B  x x  and 

the convergence condition for the LFTP (1)  

= + −x x x x
k k k kZ Z Z Z         (3) 

is obtained. From the fractional objective function (1a) of LFTP, we get 

ij ij 0 ij ij 0

i=1 j=1 i=1 j=1

q Zx Zq = p x + p
m n m n

+         (4)  

 

Combining the convergence condition (3) and the other expression of the fractional objective function (4), we have: 

( )ij ij ij ij 0 ij ij 0

i=1 j=1 i=1 j=1

q Z x + Zx Z x + Zq p x p = 0− − − 
m n m n

k k k k
      

Following the algebraic operations,  
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ij ij 0 ij ij 0 ij ij 0 ij ij 0

i=1 j=1 i=1 j=1 i=1 j=1 i=1 j=1

Z q x + q - Z q x + q + Z q x + q p x p = 0
     

− −     
     
   
m n m n m n m n

k k k k   

and noting that 

ij ij 0

i=1 j=1

ij ij 0

i=1 j=1

p x + p

Z = Z(x ) =

q x + q





m n
k
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m n
k

, 

ij ij 0 ij ij 0 ij ij 0 ij ij 0

i=1 j=1 i=1 j=1 i=1 j=1 i=1 j=1

Z q x q p x p + Z q x + q p x p = 0
m n m n m n m n

k k k
   

+ − − − −   
   
     

or 

ij ij ij 0 ij 0 0 0

i=1 j=1 i=1 j=1 i=1 j=1

(Z q - p ) q q Z p p Z q + px x x
m n m n m n

k k k k
 

+ + = + − 
 

      

or 

( )ij ij ij 0 ij 0

i=1 j=1 i=1 j=1 i=1 j=1

p p
m n m n m n

k k k kZ q q q Z Z q
 

− + + = + 
 

  x x x    (5) 

is obtained. Z and Z  are used to explain the objective function for the LFTP and the LP problem, respectively. The 

following iterative LP problem denominated LFTP-LP(k) is constructed to solve the LFTP (1): 

min Z            (6.1) 

 s.t. ( )ij ij ij 0 ij 0

i=1 j=1 i=1 j=1 i=1 j=1

p p
m n m n m n

k k k kZ q q q Z Z q
 

− + + = + 
 

  x x x   (6.2)  

  Sx           (6.3)  

Here, the superscript  0,1,2,k points out the iteration counter and (6.2) denotes our iterative 

constraint. Our algorithm starts with an initial point ( )0 0, Zx , that is 0k = . By using the initial solution, a second 

feasible solution ( )1 1,x Z  is obtained with the help of the sub-problem (6). Then, another feasible solution ( )2 2,x Z  

is determined by using the previous feasible solution ( )1 1,x Z , and so on. As a rule, if ( ),xk kZ  is a feasible solution 

achieved at iteration k , then the solution procedure goes on with a new feasible solution ( )1 1,+ +xk kZ  at iteration 1.k +  

Proposition 1: Let 
0 Sx  be an initial point, and 

1 2 1, , , , ,k k+x x x x  be the successive optimum solutions of (6) 

k N   (the iteration counter). Then, the fractional objective function values come up with a decreasing sequence 

for 
1 2 1, , , , ,k k+x x x x , that is 

0 1 1k kZ Z Z Z +      until reaching the optimum solution of (1). 
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Proof: It can be proved easily by keeping up with (Ozkok, 2020). 

Proposition 2: The gradient vectors of the fractional objective function Z  and the linear objective function Z  are 

equal at every point 
k Sx . 

Proof: Please see (Ozkok, 2020). 

Result: Suppose that 
*x  refers to the optimum solution of the problem. The gradient direction specifies the direction 

of the decrease of a function. As a result of this, a decrease in the linear objective function ( ) *( )x xkZ Z  implies a 

decrease in the fractional objective function ( ) *( )x xkZ Z . 

3.1. Determining an initial solution 

Firstly, the initial point needs to be determined to start the algorithm. Choosing an initial solution ( )0 0, Zx , the only 

condition to be considered is that the fractional objective function must not be undefined at that point. In this study, 

the initial feasible point is chosen by solving the following LP problem: 

01 . min 0
Sx

                                                                                                                (7) 

Since we are solving LFTP, it is possible to obtain the initial feasible solution by using The Northwest Corner 

Method (or upper left-hand corner), Maximum Profit (or Minimum Cost) Method, and Vogel’s Method which are 

adapted to LFTP by Bajalinov (2003).  

3.2. Determining the stopping criterion  

01 .  Considering Proposition 1, a decreasing sequence consists of the fractional objective thanks to the 

optimum solutions of the auxiliary iterative LP problem (6). If the LFTP (1) has an optimum solution *
x  resulted in 

a finite value  
*Z , then the corresponding sequence will be bounded below.  The new solution obtained in each 

iteration comes close to 
*Z . In this way, if the objective functions are achieved the same value in two successive 

iterations, then 
* *1+ =k kZ Z can be identified as the stopping criterion. 

02 .  When the least the decision variable x ij
 approaches infinity under supply-demand constraints, if the 

objective function of LFTP converges to a finite limit value, then this situation is called the asymptotic case. In this 

case, the minimum value of the fractional objective function will be gotten at the position vector line of the feasible 

region (Ozkok, 2020). That is, ( )inf k

x S
Z Z


=x . 

03 .  When x  goes to infinity, if the fractional objective function approaches infinity, then the LFTP is 

unbounded. 

4. Execution of the proposed algorithm 

Considering the previous statements, our algorithm is as follows: 
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Step 1: Choose the initial solution ( )0 0, Zx  for the LFTP (1) and M which is a very big number, set 0k = . 

Step 2: Obtain the optimum solution 
*x  of LFTP-LP(k). 

Step 3: Find the product value of *1.x . 

Step 𝟑𝐢: If 
* =1.x M , then take 1 *1+ =x x

k

M
 and 

1

ij

i=1 j=11

1

ij

i=1 j=1

p

q

+

+

+

=





x

x

m n
k

k

m n
k

Z . 

Step 𝟑𝐢𝐢: If 
* 1.x M , then take 1 *+ =x xk  and 

1
1

1

( )

( )

k
k

k

P
Z

Q

+
+

+
=

x

x
. 

Step 4: Take into consideration 
1kZ +
. 

Step 𝟒𝐢:  If 
1kZ + → , then the LFTP (1) is unbounded. STOP. 

Step 𝟒𝐢𝐢: If 
1k kZ Z+  , then the asymptotic solution occurs as the infimum of all alternative solutions: 

( )inf k

x S
Z Z


=x . STOP. 

Step 𝟒𝐢𝐢𝐢: If 
1k kZ Z+ = , then * 1+=x x

k  is the optimum solution and 
* 1+= kZ Z  is the optimum value of 

LFTP. STOP. 

Step 𝟒𝐢𝐯: If 
1k kZ Z+  , then put 1k k= + , and return to Step 2.  

The flow chart of the proposed method is illustrated in Figure 1. The algorithm is presented with the direction of the 

minimum objective. On the other hand, we notify that the procedure can be updated to the direction of the maximum 

objective with respect to the structure of the LFTP thanks to the flexibility of the algorithm. 
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Figure 1: Flow chart of our algorithm for LFTP having minimization objective. 
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5. Numerical illustrations 

In this section, the new introduced solution method is made easier to understand with examples in literature 

for different cases and a real-life problem. Randomly generated LFTP problems are also carried out to demonstrate 

the performance of the presented algorithm. 

5.1 Examples 

Example 1 (Bajalinov, 2003) (Optimum solution case): The following LFTP is considered 

( ) 11 12 13 14 21 22 23 24 31 32 33 34

11 12 13 14 21 22 23 24 31 32 33 34

11 12 13 14

21 22 23 24

31 32

10 14 8 12 8 12 14 8 9 6 15 9 100
max

15 12 16 8 10 6 13 12 13 15 12 10 120

s.t. 150,

250,

x x x x x x x x x x x x
Z

x x x x x x x x x x x x

x x x x

x x x x

x x

+ + + + + + + + + + + +
=

+ + + + + + + + + + + +

+ + + 

+ + + 

+ +

x

33 34

11 21 31

12 22 32

13 23 33

14 24 34

200,

150,

250,

50,

150,

0                                                                                                                          

x x

x x x

x x x

x x x

x x x

+ 

+ + 

+ + 

+ + 

+ + 

x                 

 

Let S  denotes the feasible region. 

Step 1: The initial solution ( )0 0,0,0,150,0,200,50,0,150,50,0,0=x  is obtained, and the fractional objective 

0 6650
1.1329

5870
Z =   is achieved. We also choose 1010M = .  

Step 2: Using 
0

x and  
0Z , the problem LFTP-LP(0) is constituted as:  

3 4
10

ij

i=1 j=1

11 12 13 14 21 22 23

24 31 32 33 34

max  

s.t.  x 10 ,

        7.087 x -0.3304 x +10.2261x -2.887 x +3.3913x -5.1652 x +0.8087 x

                     +5.6696 x + 5.8087 x +11.087 x - 1.3304 x +2.3913x +5870  = 6650,

  .







x

Z

Z

S

            (8) 

The optimum solution of (8) is ( )* 0,0,0,150,0,250,0,0,150,0,50,0=x . 

Step 3: Since 
* 10101.x , then 

1 *=x x , and the numerator and denominator of the fractional objective are calculated 

as 1 7000
1.3035

5370
= Z . 

Step 𝟒𝐢𝐯: Since 
0 1Z Z , then put 1k = , and return to Step 2.  

Step 2: The LFTP-LP(1) is constituted as: 
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3 4
10

ij

i=1 j=1

11 12 13 14 21 22 23

24 31 32 33 34

max  

s.t.  x 10 ,

        9.7143x +1.7714 x +13.0286 x -1.4857 x +5.1429 x -4.1143x +3.0857 x

                     +7.7714 x + 8.0857 x +13.7143x 0.7714 x +4.1429 x +5370  = 7000,

 .







x

Z

Z

S

                (9) 

The optimum solution of (9) is ( )* 0,0,0,150,0,250,0,0,150,0,50,0=x  

Step 𝟑𝐢𝐢: Since * 10101.x , then 
2 *=x x , and 2 7000

1.3035
5370

= Z  is calculated. 

Step 𝟒𝐢𝐢𝐢: Since 2 1Z Z= , then the algorithm ends with the optimum solution 

( )
** 2 0,0,0,150,0,250,0,0,150,0,50,0= =x x  and the objective function value is * 7000

1.3035
5370

Z =  .  

We state that our algorithm finds the same optimum solution with the transportation simplex method 

(Bajalinov, 2003). However, our algorithm generates the optimum solution by applying two iterations containing one 

linear programming problem instead of many computations. 

Example 2 (Gupta et al., 1993) (Asymptotic case): The following LFTP is considered 

( ) 11 12 13 21 22 23 31 32 33

11 12 13 21 22 23 31 32 33

11 12 13

21 22 23

31 32 33

11 21 31

12 22 32

13 23 33

5 4 2 6 5 3 8 9 4
min

6 3 4 7 4 2 6 5 2

s.t. 5,

10,

9,

8,

15,

6,

0

x x x x x x x x x
Z

x x x x x x x x x

x x x

x x x

x x x

x x x

x x x

x x x

+ + + + + + + +
=

+ + + + + + + +

+ + 

+ + 

+ + 

+ + 

+ + 

+ + 



x

x

   

Let S  denotes the feasible region. 

Step 1: The initial solution ( )0 0,15,0,10,0,0,0,0,0=x  is determined, and the fractional objective 

0 120
1.04348

115
Z =   is achieved. We also choose 1010M =  . 

Step 2: Using 
0

x and  
0Z , the problem LFTP-LP(0) is constituted as:  

3 3
10

ij

i=1 j=1

11 12 13 21 22 23

31 32 33

min

s.t. x 10 ,

x x x + x x x

                                            x x x  + 115  = 120

.

    1.2609 0.8695 2.1739 1.3043 0.8261 0.913

1.7391 3.7826 1.913

Z

Z

S



−

− + − −

− −





x

                      (10) 
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The optimum solution of (10) is ( )* 0,0,5,8,11.9895,0,0,3.0105,0=x . 

Step 𝟑𝐢: Since 
* 10101.x , then 

1 *=x x , and the fractional objective is calculated as 1 145.042
1.04338

139.
 

0105
Z =  . 

Step 𝟒𝐢𝐯: Since 
0 1Z Z , then put 1k = , and return to Step 2.  

Step 2: The LFTP-LP(1) is constituted as: 

3 3
10

ij

i=1 j=1

11 12 13 21 22 23

31 32 33

min

s.t. x 10 ,

x x x + x x x

                                            x x x  + 139.01  = 145.042

.

    1.2603 0.8698 2.1736 1.3037 0.8264 0.9132

1.7397 3.7831 1.9132

Z

Z

S



+ − −

−



−

− −



x

             (11) 

The optimum solution of (11) is ( )* ,0,6,10.6302,15,0,0,0,00=x . 

Step 3: Since * 10101.x , then 
2 *=x x , and 2 150.7812

158
85

.4114
0.9 1Z =  is calculated. 

Step 𝟒𝐢𝐯: Since 
2 1Z Z , then put 2k = , and return to Step 2.  

Step 2: Using 
2

x and  
2Z , the problem LFTP-LP(2) is constituted as:  

3 3
10

ij

i=1 j=1

11 12 13 21 22 23

31 32 33

min

s.t. x 10 ,

x x x + x x x

                                            x x x  + 158.4114  = 150.7812

.

    0.711 1.1445 1.8073 0.6628 1.1927 1.0963

2.289 4.2408 2.0963

Z

Z

S



+ − −

− −

−

−





x

               (12) 

The optimum solution of (12) is ( )* 0,15,6,237.0321,0,0,0,0,0=x . 

Step 𝟑𝐢: Since 
* 10101.x , then 

3 *=x x , and the fractional objective is calculated as 3 1494.1926
0.8646

1728.2247
Z = . 

Step 𝟒𝐢𝐯: Since 
3 2Z Z , then put 3k = , and return to Step 2.  

Step 2: Using 
3

x and  
3Z , the problem LFTP-LP(3) is constituted as:  

3 3
10

ij

i=1 j=1

11 12 13 21 22 23

31 32 33

min

s.t. x 10 ,

x x x + x x x

                                            x x x  + 1728.2247  = 1494.1926

.

    0.1875 1.4062 1.4583 0.0521 1.5417 1.2708

2.8125 4.6771 2.2708

Z

Z

S



+ − −

−



−

− −



x

          (13) 

The optimum solution of (13) is ( )* 8032.0790,15,6,10,0,0,0,0,0=x . 
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Step 𝟑𝐢: Since * 10101.x , then 
4 *=x x , and the fractional objective is calculated as 4 40292.395

0.83367
48331.474

Z = . 

Step 𝟒𝐢𝐯: Since 
4 3Z Z , then put 4k = , and return to Step 2.  

Step 2: The LFTP-LP(4) is constituted as: 

3 3
10

ij

i=1 j=1

11 12 13 21 22 23

31 32 33

       0

.

.002 1.499 1.3347 0.1643 1.6653 1.33

min  

s.t. x 10 ,

x x x - x

x

2

7

x x

                       x  

6

2  .99 x +  =8 4.831 2.3327 48331.474 40292.39 5

Z

Z

S



+ − −

−



−

− −



x

                   (14) 

The optimum solution of (14) is ( )* ,15,6,10,0,0,0,0,00=x . 

Step 3: Since 
* 10101.x , then 

5 *=x x , and 5 6
132

139
0.949Z =   is calculated. 

Step 𝟒𝐢𝐢: 
5 4Z Z , so the limit value of the objective function at the asymptotic solution of the LFTP is 

40292.395
0.83367

48331.474
 . Namely, ( ) 4inf

x S
Z Z


=x . 

Thus, the solution generated by our algorithm yields a better objective function value than Gupta et al.’s 

(1993) optimum solution. A comparison of the solutions is presented in Table 1. 

Table 1: Comparison of the solutions for Example 2. 

 Gupta et al.’s Method Proposed Method 

*
x  ( ),9,6,4,6,0,0,0,05  ( )8032.0790,15,6,10,0,0,0,0,0  

*
Z  127

0.9549
133

  0.83367  

 

5.2 Practical applications  

Let us consider a part of supply chain network of a company which produces and markets textile products. It 

is desired to implement logistic processes most efficiently by focusing on customer satisfaction. In the part of network, 

the products are transported from six distribution centers to meet ten customer zones demand. By minimizing the 

carbon footprint by taking into account the 2CO  emission that occurs during transportation, an environmentalist 

perspective will be gained to the supply chain management. The requirements of the customer zones are respectively 

4830,2900,4910,2720,4800,2760,3740,4520,7460,3500  units of product and the supply of distribution centers 

are respectively 6600,9040,7800,9600,7200,1900  units of product. Moreover, the data of profit and transportation 

cost for one unit of product to be transported from 𝑖𝑡ℎ distribution center to 𝑗𝑡ℎ  customer zone are given in Table 2-
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3. How many units should be transported from each distribution centers to each customer zones in order that the 

profitability ratio of the company, expressed as profit/total
2CO emission, is maximum with the fixed amount of 

2CO  

emission of processing at distribution centers being 165000 units? 

Table 2: Profit of transportation from Distribution Centers (DC)s to Customer Zones (CZ)s. 

 DC1 DC2 DC3 DC4 DC5 DC6 

CZ1 15.3625 11.1725 24.875 8.35 5.2725 2.9705 

CZ2 16.2935 23.69 0.375 9.5125 28.2925 3.0975 

CZ3 16.575 19.5725 15.625 9.4325 18.375 1.7875 

CZ4 13.025 31.125 12.375 11.25 22.0925 1.7935 

CZ5 17.325 21.475 21.95 16.275 23.175 7.875 

CZ6 17.015 16.55 8.35 22.625 15.625 6.625 

CZ7 7.795 7.175 8.125 22.175 4.135 13.375 

CZ8 6.995 7.45 6.745 12.25 5.905 5.1875 

CZ9 4.175 6.345 6.425 11.125 4.865 24.075 

CZ10 4.0625 3.225 3.55 9.125 3.075 20.375 

 

Table 3: Amount of 
2CO  emission of transportation from Distribution Centers (DC)s to Customer Zones (CZ)s. 

 DC1 DC2 DC3 DC4 DC5 DC6 

CZ1 0.755625 6.0825 14.18875 14.7755 11.2725 31.9705 

CZ2 8.29775 7.52 58.775 15.95125 3.2925 32.0975 

CZ3 8.24575 3.95725 5.9625 11.4325 3.2375 28.89875 

CZ4 6.0925 1.39125 6.95375 11.3825 6.0925 28.79375 

CZ5 10.3125 5.9475 2.295 10.22375 4.9175 27.27875 

CZ6 9.015 8.73755 14.31875 8.65725 14.7625 23.3625 

CZ7 17.695 17.2875 18.9925 7.5375 23.135 10.63375 

CZ8 22.06895 19.4025 23.5745 12.625 25.905 12.41875 

CZ9 27.28275 23.3745 23.1425 12.7625 25.865 8.1175 

CZ10 26.0625 26.2225 26.2225 15.80125 28.89375 4.03775 

 

 The fractional programming of the above transportation problem is as follows: 
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6 10

ij ij

i=1 j=1

6 10

ij ij

i=1 j=1

p x

max Z( )

c x +165000

=




x         (15)  

       subject to   
10

ij i

j=1

x a   ,  i = 1,...,6        

6

ij j

i=1

x b   ,  j =1,...,10       

ijx 0  ,  i, j          

where 
ij 6 10

p


 =  P  and 
ij 6 10

c


 =  C  are matrices for profit and 
2CO  emission of transportation respectively,

   a 6600 9040 7800 9600 7200 1900= =
i

a , , , , ,   is the vector of supply of the distribution centers,

 j
b 4830 2900 4910 2720 4800 2760 3740 4520 7460 3500 = = b , , , , , , , , ,  is the vector of demand of the customer 

zones. 

 The model, which is equivalent to equation (6) given in the theory, was constituted with 17 constraints and 

60 variables. All the computational experiments were performed by using the software GAMS 35.1.0 on a computer 

with a 2.7 GHz processor and 8 GB RAM running Windows 10. The optimum solution set x  of the problem (15) is  

ij 6 10

  0         0       0         0          0     2760     0     2240      0     1600

  0         0    4040    2720      0         0       0     2280      0          0

4830     0        0    
x


 = = x

     0       1370     0       0        0       1600      0

  0         0        0         0         0         0     3740    0       5860      0

  0       2900   870      0       3430     0       0        0          0         0

  0         0        0         0         0         0       0        0          0      1900

 
 
 
 
 
 
 
 
 

 

 

with a resulting the value of fractional objective with the nominator and denominator 77471.1

5936
2Z 1.3 8

11
050= = . 

 In addition to application, the large-scale transportation problems with fractional objective are constructed 

by generating data randomly. A company transports the units from supply nodes to demand points. Number of Supply 

Constraints (NoSC), Number of Demand Constraints (NoDC) and Number of Decision Variables (NoDV) indicates 

the size of generated problems. For each test problem, we generate all parameters as uniformly random numbers. We 

observe that the effect of NoSC, NoDC and NoDV on the total execution time and the iteration number of our method 

and present the results in Table 4.  

We note that just the optimum solution case is taken into consideration to test our algorithm. For each class, 

ten test problem are generated randomly and solved with the software GAMS 35.1.0. The results indicates that our 

introduced procedure can overcome the optimum solution for different sizes of the LFTP problem within an acceptable 

time and number of iterations, even with large-scale problem. 
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Table 4: Results of generated LFTP problems solving with the proposed algorithm. 

Class (NoSC, NoDC, NoDV) Iterations Execution time 

Min Max Average Min Max Average 

1 (10,10,100) 3 5 3.8 0.457 0.784 0.612 

2 (25,25,625) 4 6 4.8 0.686 0.93 0.784 

3 (50,50,2500) 5 6 5.6 0.785 1.689 1.018 

4 (75,75,5625) 6 8 6.5 1.32 1.711 1.461 

5 (100,100,10000) 6 8 6.8 1.829 2.631 2.13 

6 (200,200,40000) 5 5 5 4.756 5.961 5.003 

7 (250,250,62500) 4 5 4.9 6.457 8.682 7.649 

8 (500,500, 250000) 4 4 4 36.59 44.156 40.386 

9 (750,750,562500) 4 4 4 155.546 132.53 147.443 

10 (1000,1000,1000000) 3 4 3.5 364.021 434.986 328.149 

 

6. Conclusion 

In this study, we expanded the iterative method developed by Ozkok (2020) for the LFP problem to LFTP. Firstly, it 

is considered that the objective function is continuous when linearization is performed for the proposed solution 

procedure based on the traditional definition of continuity. Then, a linear iterative structure is constructed with the 

linearization. This iterative method plays an important role in solving LFTP in real-life situations due to the 

effectiveness and easiness of computation. Our approach overcomes successfully the shortcoming in terms of 

computation by reason of increasing process as the problem size raises since it is an iterative procedure based on LP 

unlike existing methods. The proposed algorithm can be easily applied to even large-scale LFTPs since it solves LFTP 

by a series of LP problems. Another advantage of our algorithm is that it has the ability to solve the LFTP with mixed 

constraints since the method does not depend on constraints. Moreover, the case of asymptotic solution for LFTP was 

handled for the first time. The numerical examples and a case study were executed to demonstrate the proposed 

mathematical solution method, and the solutions of the examples were also compared with existing methods. Finally, 

the proposed method was performed on randomly generated large-scale problems, and computational results were 

presented. We coded the proposed algorithm in the software GAMS 35.1.0. For further study, the expanded iterative 

solution procedure can be adapted to different kinds of LFTP (i.e interval or solid LFTP) thanks to its flexibility of 

algorithm. As another future research, the algorithm can be improved to solve fuzzy LFTPs since introducing the 

parameters with fuzzy numbers would give more realistic result in modelling of real situations.  
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