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Abstract

This paper considers a new family of the trimodal skew logistic distributions. Some properties of this
distribution, including moments, moments generating function, entropy, maximum likelihood estimates of
parameters and some other properties, are presented. A simulation study is conducted to examine the
performance of the parameters. Numerical optimization is carried out via two real-life datasets. Results
show that the new distribution is better fitted in terms of these datasets among logistic, skew logistic and
alpha skew logistic distributions based on the value of AIC and BIC.
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1 Introduction

It is well-known that the bimodal distribution is widely applied for modeling many phenomena. Recently,
many researchers introduced families of distributions that are appropriate to model the bimodality of data.
Some of the families can fit symmetric data, and others can fit the asymmetric data. Bimodal expansion
of skew-normal distribution can be found in Ma and Genton (2004), Huang and Chen (2007), Elal-Olivero
et al. (2009), Elal-Olivero (2010), Arellano-Valle et al. (2010), Gómez et al. (2011), Handam (2012), Harandi
and Alamatsaz (2013), Hazarika and Chakraborty (2014), among others.

Alpha Skew Normal distribution was another bimodal distribution introduced by Elal-Olivero (2010) and its
density is given by

f(x) =

[
(1− αx)

2
+ 1
]

(2 + α2)
φ(x), x ∈ R,α ∈ R,
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where α is the asymmetry parameter which regulates the skewness and φ(.) is the standard normal pdf.
Adopting this concept, Hazarika and Chakraborty (2014) introduced Alpha Skew Logistic distribution and
described its distributional properties. The density of the latter is given by

f(x) =
3
[
(1− αx)

2
+ 1
]

(6 + π2α2)

e−x

(e−x + 1)
2 , x ∈ R,α ∈ R,

where, α is the asymmetry parameter. On the other hand Venegas et al. (2016) introduced the logarithmic
form of the alpha skew normal distribution of Elal-Olivero (2010) as Log-Alpha Skew Normal distribution
with the pdf

f(x) =

[
(1− αy)2 + 1

]
(α2 + 2)σx

φ(y), x > 0, α ∈ R,

where y =
log(x)− µ

σ
is the skewness parameter. Generalized Alpha Skew Normal distribution is another

model introduced by Sharafi et al. (2017) and its density function is given by

f(x) =

[
(1− αx)2 + 1

]
C(α, γ)

φ(x)Φ(λx), x ∈ R,α ∈ R, λ ∈ R,

where C(α, λ) = 1−αbδ+
α2

2
, b =

√
2

π
, δ =

λ√
1 + λ2

and Φ(.) is the cdf of the standard normal distribution.

There exists some other version of probability distribution model which allows to fit the unimodal as well as
bimodal data under the Balakrishnan methodology. Hazarika et al. (2019) introduced Balakrishnan Alpha
Skew Normal distribution using this methodology.

Borrowing the same idea, later on Shah et al. (2019) introduced Balakrishnan Alpha Skew Laplace distri-
bution. Shah et al. (2020) also introduced Balakrishnan Alpha Skew Logistic distribution using the same
methodology. However, sometimes the datasets have a high value of skewness and kurtosis and trimodal
behavior in their frequency distribution which cannot be described by traditional or other bimodal distribu-
tions mentioned above.

Mixtures of distributions are always used when it is necessary to model data with more than one mode.
The appearance of tri-modal distribution can be obtained by mixing any particular distribution with three
parameters. However, the mixing of distributions has some mathematical limitations. Suppose the mixture
distribution has a mixing parameter of proportion w1, w2 and w3 = 1 − w1 − w2; those are from the three
distribution groups. For mixed distribution, we have three groups of parameters from those particular distri-
butions and three more mixing parameters of proportions necessary to estimate. So, an increasing number
of parameters are a matter of concern. Therefore, using these distributions has serious estimation problems
while conducting the optimization process.

Accordingly, it is essential to introduce a new family of trimodal distributions as an alternative to the mix-
ture of distributions that present multiple modes and manage to fit the asymmetry of any dataset. The
primary motivation of this paper is to propose a new family of logistic distributions that allows for fitting
both symmetric and asymmetric behavior of any trimodel datasets.

The rest of the article is organized as follows. In section 2, we introduced a new trimodal skew logistic
distribution along with the visualization of the density and its properties. Section 3 presents some important
distributional properties of the new distribution. Certain characterizations of the Tri-modal Skew Logistic
(TSLG) are presented in section 4. Section 5 deals with parameter estimation of TSLG distribution. Section
6 is devoted to the simulation and section 7 provides the applications. Finally, section 8 concludes the papers.
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2 A Tri-modal Skew Logistic Distribution

This section introduces a new form of tri-modal skew logistic distribution and investigates its basic properties.

Definition

A random variable X follows tri-modal skew logistic distribution, if its pdf is given by

f(x) =

2

((x
β

)2

− 1

)2

+ 2

 exp(−x
β

)

βC1

{
exp

(
−x
β

)
+ 1

}2{
exp

(
−λx
β

)
+ 1

} , x ∈ R, λ ∈ R, β > 0, α ≥ 0, (1)

where, C1 =
1

15

(
45− 10π2 + 7π4

)
and the real number λ is the shape parameter. Using Taylor Series

Expansion for (1 + z)−1 one can write single series representation of the tri-modal skew logistic density as

f(x) =



2

βC1

(
1 + exp−x

β

)2


((

x

β

)2

− 1

)2

+ 2


∑∞
j=0

(
−1
j

)
exp

(
−1 + λj

β
x

)
, x ≥ 0,

2

βC1

(
1 + exp−x

β

)2


((

x

β

)2

− 1

)2

+ 2


∑∞
j=0

(
−1
j

)
exp

(
−1− λ− λj

β
x

)
, x < 0,

(2)

By expanding the terms of equation (2), the double series representation can be written as

f(x) =



2

βC1


((

x

β

)2

− 1

)2

+ 2

∑∞
j=0

∑∞
k=0

(
−1
j

)(
−2
k

)
exp (−C2x) , x ≥ 0,

2

βC1


((

x

β

)2

− 1

)2

+ 2

∑∞
j=0

∑∞
k=0

(
−1
j

)(
−2
k

)
exp (Dx) , x < 0,

(3)

where, C2 =
1 + λj + k

β
,

1 + λ+ λj + k

β
=

(
C2 +

λ

β

)
and D =

(
C2 +

λ

β

)
.
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Figure 1: Plots of the probability density function of TSLG(β, λ) for different choices of β and λ

2.1 Special case of TSLG(β, λ)distribution

1. If β = 1, then we get

f(x) =
2
((
x2 − 1

)2
+ 2
)

exp(−x)

C1{exp(−x) + 1}2{exp(−λx) + 1}
; x ∈ R,α ∈ R, λ ∈ R.

2. If λ = 0, then we get the tri-modal logistic distribution and is given by

f(x) =

((x
β

)2

− 1

)2

+ 2

 exp

(
−x
β

)

βC1

{
exp

(
−x
β

)
+ 1

}2 .

2.2 Plots of density function

The density functions of TSLG(β, λ) for different choice of β and λ are plotted in Figure 1. Figure 1 shows
that the density may have three modes for some values of β and λ . It is noted that the model is positively
skewed when λ > 0 and negatively skewed when λ < 0.

3 Distributional Properties

In this section we investigate some of the distributional properties related to the TSLG distribution.
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3.1 Cumulative distribution function

Theorem 1.

The cdf of TSLG(β, λ) distribution is given by

F (x) =



2

βC1

∑∞
j=0

∑∞
k=0

(
−1

j

)(
−2

k

)
[

1

β4C5
2

{24− exp (−C2x) (24 + C2x(
24 + 12C2x+ (C2x)

3
+ 4 (C2x)

2
)}

− 2

β2C3
2

{
2−

(
(C2x)

2
+ C2x+ 2

)
exp (−C2x)

}
+

3

C2
{1− exp (−C2x)}

]
, x ≥ 0,

2

βC1

∑∞
j=0

∑∞
k=0

(
−1

j

)(
−2

k

)[
1

β4D5
{exp (Dx) (24 +Dx(

−24 + 12Dx− 4 (Dx)
2

+ (Dx)
3
)
− 2

β2 (D)
3 {exp (Dx)(

(Dx)
2 − (Dx) + 2

)}
+

3

D
exp (D)x] , x < 0,

(4)

where, D =

(
C2 +

λ

β

)
.

Proof

Case 1: If X ≥ 0 then cdf F(x) can be written as

F (x) = P (X ≤ x)

=

∫ x

0

2

βC1


((

z

β

)2

− 1

)2

+ 2


∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
exp (−C2z) dz

=
2

βC1

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)[
1

β4

∫ x

0

z4 exp (−C2z) dz

− 2

β2

∫ x

0

z2 exp (−C2z) dz +3

∫ x

0

exp (−C2z) dz

]
.

(5)

we can also write it as

F (x) =
2

βC1

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
I1. (6)

applying (3.351.1) and (3.351.8) in Gradshteyn and Ryzhik (2000), the integral I1 can be calculated as

I1 =
1

β4C5
2

{
24− exp

[
(−C2x)

(
C2x

(
(C2x)

3
+ 4 (C2x)

2
+ 12C2x+ 24

)
+ 24

) }
− 2

β2C3
2

{
2− exp

[
(−C2x)

(
(C2x)

2
+ C2x+ 2

) }
+

3

C2
{1− exp [−C2x} .

(7)
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From (6) and (7) one can obtain the cdf F (x) for X ≥ 0 as

F (x) =
2

βC1

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
[

1

β4C5
2

{24− exp (−C2x) (24 + C2x(
24 + 12C2x+ (C2x)

3
+ 4 (C2x)

2
)}

− 2

β2C3
2

{
2−

(
(C2x)

2
+ C2x+ 2

)
exp (−C2x)

}
+

3

C2
{1− exp (−C2x)}

]
.

Case 2: If X < 0 the cdf F (x) can be written as

F (x) =

∫ x

−∞

1

2βC1


((

z

β

)2

− 1

)2

+ 2


∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
exp

(
z

(
λ

β
+ C2

))
dz.

Similarly, the cdf of TSLG(λ) for x < 0 can be written as

F (x) =
2

βC1

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)[
1

β4D5
{exp (Dx) (24 +Dx

(
−24 + 12Dx− 4 (Dx)

2
+ (Dx)

3
)
− 2

β2 (D)
3 {exp (Dx)(

(Dx)
2 − (Dx) + 2

)}
+

3

D
exp (D)x] .

3.2 Moment Generating Function (mgf)

In this section, we derive the moment generating function of the tri-modal skew logistic distribution.

Theorem 2.

The moment generating function (mgf) of TSLG(λ) distribution is given by

M(t) =
1

2C1

24

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

){(
1

D + t

)5

+

(
1

C2 − t

)5
}

− 4

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

){(
1

D + t

)
3 +

(
1

C2 − t

)
3

}

+ 3

∞∑
j=0

(
−1
j

)
(1 + (βt− λj)B(1− βt+ λj)

− (βt+ λ+ λj)B(βt+ λ+ λj + 1))].

(8)
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Proof:

On using single and double series expansion of (2) and (3) one can obtain

M(t) = E(exp(tx)) =
2

βC1
(I2 + I3) where, (9)

I2 =
1

β4

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)∫ ∞
0

x4 exp (t− C2x) dx

− 2

β2

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)∫ ∞
0

x2 exp (t− C2x) dx

+ 3

∞∑
j=0

(
−1
j

)∫ ∞
0

exp

(
x

(
t− 1 + λj

β

))
{

exp

(
−x
β

)
+ 1

}2 dx

and

I3 =
1

β4

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)∫ ∞
0

x4 exp ((t+D)x) dx

− 2

β2

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)∫ ∞
0

x2 exp ((t+D)x) dx

+ 3

∞∑
j=0

(
−1
j

)∫ ∞
0

x4 exp

(
x

(
t− −jλ− λ+ 1

β

))
{

exp

(
−x
β

)
+ 1

}2 dx.

The last part of both of the integrals can be obtained by applying (2.2.4.4) in Prudnikov et al. (1986) after
using the method of substitution and the remaining parts of integrals I2 and I3 can be calculated by using
(3.351.1) and (3.326.2) in Gradshteyn and Ryzhik (2000). Therefore,

I2 =
24

β4

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)(
β

jλ+ k − βt+ 1

)5

− 4

β2

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)(
β

jλ+ k − βt+ 1

)3

+ 3β

∞∑
j=0

(
−1
j

){
B(jλ+ β(−t) + 1)(βt− jλ) +

1

2

}
(10)

and

I3 =
24

β4

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)(
1

D + t

)5

− 4

β2

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)(
1

D + t

)3

+ 3β

∞∑
j=0

(
−1
j

){
1

2
−B(jλ+ λ+ βt)(jλ+ λ+ βt+ 1)

}
.

(11)
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Substituting (10) and (11) in (8), we can get the mgf of tri-modal skew logistic distribution as

M(t) =
1

2C1

24

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

){(
1

D + t

)5

+

(
1

C2 − t

)5
}

− 4

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

){(
1

D + t

)3

+

(
1

C2 − t

)3
}

+ 3

∞∑
j=0

(
−1
j

)
(1 + (βt− λj)B(1− βt+ λj)

− (βt+ λ+ λj)B(βt+ λ+ λj + 1))],

where, D =

(
C2 +

λ

β

)
.

3.3 Moments

In this section, we derive the nth order moment of the tri-modal skew logistics distribution. Using single-series
and double-series expansion of the new distribution one can obtain nth order moments as

E(Xn) =



1

C1

[
2(n+ 4)!βn

{
1− 21−(n+4)

}
ζ(n+ 4)

−2(2(n+ 2))!βn
{

1− 21−(n+2)
}
ζ(n+ 2)

+3(2n)!βn
{

1− 21−n
}
ζ(n)

]
, when n is even,

1

C1

[
2(n+ 4)!βn

{
ζ(n+ 4)

{
1− 21−(n+4)

}
+

1

2n+4λn+5

∑∞
j=0(−1)j(j + 1)ξ(j, n+ 5)

}
−4(n+ 2)!βn

{
ζ(n+ 2)

{
1− 21−(n+2)

}
+

1

2n+2λn+3

∑∞
j=0(−1)jj + 1ξ(j, n+ 3)

}
+6n!βn

{
ζ(n)

{
1− 21−n

}
+

1

2nλn
∑∞
j=0(−1)jj + 1ξ(j, n+ 1)

}]
, when n is odd,

(12)

Proof:

E(Xn) =
2

C1

∫ ∞
−∞

Xn

exp

(
−x
β

)
((

x

β

)2

− 1

)2

+ 2


β

{
exp

(
−x
β

)
+ 1

}2{
exp

(
−λx
β

)
+ 1

}dx

=
1

C1

[
1

β4

∫ ∞
−∞

xn+4

(
2 exp

(
−x
β

))
β

{
exp

(
−x
β

)
+ 1

}2{
exp

(
−λx
β

)
+ 1

}dx

− 2

β2

∫ ∞
−∞

xn+2

(
2 exp

(
−x
β

))
β

{
exp

(
−x
β

)
+ 1

}2{
exp

(
−λx
β

)
+ 1

}dx
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+3

∫ ∞
−∞

xn
(

2 exp

(
−x
β

))
β

{
exp

(
−x
β

)
+ 1

}2{
exp

(
−λx
β

)
+ 1

} dx


or,

E(Xn) =
1

C1
[I4 − 2I5 + 3I6]. (13)

Now the integrals I4,I5 and I6 are same as the (n+4)th, (n+2)th and nth order moments of the skew logistic
distribution of Nadarajah (2009). Thus from the literature the even order moments of (1) are

I4 = 2(n+ 4)!βn1− 21−(n+4)ζ(n+ 4) (14)

I5 = 2(n+ 2)!βn1− 21−(n+2)ζ(n+ 2) (15)

I6 = 2n!βn1− 21−nζ(n). (16)

Thus, by combining (14)-(16) and substituting (13), the even order moment becomes

E(Xn) =
1

C1

[
2ζ(n+ 4)(n+ 4)!βn

{
1− 21−(n+4)

}
− 2ζ(n+ 2)(2(n+ 2))!βn

{
1− 21−(n+2)

}
+3ζn(2n)!βn

{
1− 21−n

}]
.

(17)

If n is odd then, using the definition of zeta function one can obtain the nth the order moment as

E(Xn) =
1

C1

[
2(n+ 4)!βn

{{
1− 21−(n+4)

}
ζ(n+ 4)

+
1

2n+4λn+5

∞∑
j=0

(−1)j(j + 1)ξ(j, n+ 5)


− 4(n+ 2)!βn

{{
1− 21−(n+2)

}
ζ(n+ 2)

+
1

2n+2λn+3

∞∑
j=0

(−1)j(j + 1)ξ(j, n+ 3)


+ 6n!βn

{
ζn
{

1− 21−n
}

+
1

2nλn

∞∑
j=0

(−1)j(j + 1)ξ(j, n+ 1)


 ,

(18)

where the Riemann’s zeta functions are defined by

ζ(a, q) =

∞∑
j=0

1

(j + q)a

and

ξ(j, k) = ζ

(
k,
j + 2λ+ 1

2λ

)
− ζ

(
k,
j + λ+ 1

2λ

)
.
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One can found these special functions in Prudnikov et al. (1986) and Gradshteyn and Ryzhik (2000).

Remark 1:

Thus, using (17) and (18), the first four raw moments of X can be obtained as

E(X) =
1

C1

15β5

2

−5

4
ψ′′′(1) +

1

λ6

∞∑
j=0

(−1)j(j + 1)ξ(j, 6)


− 3β3

−3ψ′′(1) +
1

λ4

∞∑
j=0

(−1)j(j + 1)ξ(j, 4)

 +3
β

λ2

∞∑
j=0

(−1)j(j + 1)ξ(j, 2)

 .
E(X2) =

(πβ)2

3C1

[
115(πβ)4 − 98(πβ)2 + 105

35

]
.

E(X3) =
1

C1

63β5

4

−7

8
ψ′′′(1) +

5

λ8

∞∑
j=0

(−1)j(j + 1)ξ(j, 8)


− 15β5

−15

4
ψ′′(1) +

1

λ6

∞∑
j=0

(−1)j(j + 1)ξ(j, 6)


+

9

2
β3

−3ψ′′(1) +
1

λ4

∞∑
j=0

(−1)j(j + 1)ξ(j, 4)


 .

E(X4) =
(πβ)4

3C1

[
889(πβ)4 − 310(πβ)2 + 147

35

]
.

3.4 Entropy

The amount of information of the distribution, relating to the outcome of an experiment is called the entropy
of the distribution Rényi (1961). The Renyi entropy of order γ for a random variable X is defined as

HR(γ) =
1

1− γ
log

∫
fγ(x)dx

where, γ > 0 and γ 6= 1. Using the single series representation of TSLG(β, γ), one can write∫ ∞
−∞

xfγ dx =
1

Cγ
(I7 + I8) ;where (19)

I7 =
1

β4

∞∑
j=0

∞∑
k=0

(
−γ
j

)(
−2γ
k

)∫ ∞
−∞

x4 exp

(
−x(γ + jλ+ k)

β

)
dx

− 2

β2

∞∑
j=0

∞∑
k=0

(
−γ
j

)(
−2γ
k

)∫ ∞
−∞

x2 exp

(
−x(γ + jλ+ k)

β

)
dx

+ 3

∞∑
j=0

(
−γ
j

)∫ ∞
−∞

exp

((
−γ + λj

β

)
x

)
(

1 + exp(−x
β

)

)2γ dx
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and

I8 =
1

β4

∞∑
j=0

∞∑
k=0

(
−γ
j

)(
−2γ
k

)∫ ∞
−∞

x4 exp

(
x(γλ+ γ + jλ+ k)

β

)
dx

− 2

β2

∞∑
j=0

∞∑
k=0

(
−γ
j

)(
−2γ
k

)∫ ∞
−∞

x2 exp

(
x(γλ+ γ + jλ+ k)

β

)
dx

+ 3

∞∑
j=0

(
−γ
j

)∫ ∞
−∞

exp

((
−γ − λγ − λj

β

)
x

)
(

1 + exp(−x
β

)

)2γ dx.

Substituting y = exp

(
−x
β

)
in last part of the both the integrals and by applying respectively (3.194.1) –

(3.194.2) and (3.351.1) and (3.326.2) in Gradshteyn and Ryzhik (2000) in the remaining part, the integrals
I7 and I8 reduces to

I7 =
24

β4

∞∑
j=0

∞∑
k=0

(
−γ
j

)(
−2γ
k

)(
β

γ + jλ+ k

)5

− 4

β2

∞∑
j=0

∞∑
k=0

(
−γ
j

)(
−2γ
k

)(
β

γ + jλ+ k

)3

+ 3

∞∑
j=0

(
−γ
j

)
β

γ + jλ
2F1(2γ, γ + λj; 1 + γ + λj;−1)

(20)

and

I8 =
24

β4

∞∑
j=0

∞∑
k=0

(
−γ
j

)(
−2γ
k

)(
β

γλ+ γ + jλ+ k

)5

− 4

β2

∞∑
j=0

∞∑
k=0

(
−γ
j

)(
−2γ
k

)(
β

γλ+ γ + jλ+ k

)3

+ 3

∞∑
j=0

(
−γ
j

)
β

γλ+ γ + jλ
2F1(2γ, γ + γλ+ λj; 1 + γ + γλ+ λj;−1).

(21)

Substituting (20) and (21) in (19), one obtains the Renyi entropy as

Hr(γ) = γ log(2βC1) +
1

1− γ

 24

β4

∞∑
j=0

∞∑
k=0

(
−γ
j

)(
−2γ
k

){(
β

γ + jλ+ k

)5

+

(
β

γλ+ γ + jλ+ k

)5
}
− 4

β2

∞∑
j=0

∞∑
k=0

(
−γ
j

)(
−2γ
k

){(
β

γ + jλ+ k

)3

+

(
β

γλ+ γ + jλ+ k

)3
}

+ 3

∞∑
j=0

(
−γ
j

){
β

γ + jλ
2F1(2γ, γ + λ; γ + jλ+ 1;

−1) +
β

γλ+ γ + jλ
2F1(2γ, γλ+ γ + jλ; γλ+ γ + jλ+ 1;−1)

}]
.

4 Characterizations Results

This section considers the characterizations of the TSLG distribution via two truncated moments. For these
characterization, the cdf need not to have a closed form.
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4.1 Characterizations based on two truncated moments

This subsection deals with the characterizations of TSLG distribution based on a relationship between two
truncated moments. The first two characterization apply a theorem of Glänzel (1987) Theorem 3 given
below. Clearly, the result holds as well when the H is not a closed interval. This characterization is stable
in the sense of weak convergence, please see reference Glanzel (1990).

Theorem 3 Let (Ω,F ,P) be a given probability space and let H = [d, e] be an interval for some d < e
(d = −∞, e =∞ might as well be allowed) . Let X : Ω → H be a continuous random variable with the
distribution function F and let k and h be two real functions defined on H such that

E [k (X) | X ≥ x] = E [h (X) | X ≥ x] η (x) , x ∈ H,

is defined with some real function η. Assume that k, h ∈ C1 (H), η ∈ C2 (H) and F is twice continuously
differentiable and strictly monotone function on the set H. Finally, assume that the equation ηh = k has no
real solution in the interior of H. Then F is uniquely determined by the functions k, h and η , particularly

F (x) =

∫ x

a

C

∣∣∣∣ η′ (u)

η (u)h (u)− k (u)

∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the differential equation s′ =
η′ h

η h − k
and C is the normalization

constant, such that
∫
H
dF = 1.”

Proposition 1 Let the random variable X : Ω→ R be continuous, and let h (x) =
1 + e

−
λx

β[(
x

β

)2

− 1

]2
+ 2

and

k (x) = h (x)
(
1 + e−x/β

)−1
for x ∈ R. Then, the density of X is given in (1) if and only if the function ξ

defined in Theorem 3 is

η (x) =
1

2

{
1 +

(
1 + e−x/β

)−1}
, x ∈ R.

Proof. If X has pdf (1), then

(1− F (x))E [h (X) | X ≥ x] =
2

C1

{
1−

(
1 + e−x/β

)−1}
, x ∈ R,

and

(1− F (x))E [k (X) | X ≥ x] =
1

C1

{
1−

(
1 + e−x/β

)−2}
, x ∈ R,

and finally

η (x)h (x)− k (x) =
1

2
h (x)

{
1 +

(
1 + e−x/β

)−1}
> 0 for x ∈ R.

Conversely, if η has the above form, then
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s′ (x) =
η′ (x)h (x)

η (x)h (x)− k (x)
=

1

β
e−x/β

(
1 + e−x/β

)−2
1−

(
1 + e−x/β

)−1 ,

and hence

s (x) = − log

{
1−

(
1 + e−x/β

)−1}
, x ∈ R.

In view of Theorem 3, X has pdf (1) .

Corollary 1 If X : Ω → R is a continuous random variable and h (x) is as in Proposition 1 Then, X has
pdf (1) if and only if there exist functions k and η defined in Theorem 3 satisfying the following first order
differential equation

η′ (x)h (x)

η (x)h (x)− k (x)
=

1

β
e−x/β

(
1 + e−x/β

)−2
1−

(
1 + e−x/β

)−1 .

Corollary 2 The general solution of the above differential equation is

η (x) =

{
1−

(
1 + e−x/β

)−1}[
−
∫

1

β
e−x/β

(
1 + e−x/β

)−2
(h (x))

−1
k (x) +D

]
,

where D is a constant. A set of functions satisfying this differential equation is presented in Proposition 1

with D =
1

2
. Clearly, there are other triplets (h, k, ξ) satisfying the conditions of Theorem 3 of which one is

given in Proposition 2 below.

Proposition 2 Let the random variableX : Ω→ R be continuous, and let h (x) =

1 + e
−
x

β


2
1 + e

−
λx

β

[(
x

β

)2

− 1

]2
+ 2

and k (x) = h (x) e−x/β for x ∈ R. Then, the density of X is given in (1) if and only if the function ξ defined
in Theorem 3 is

η (x) =
1

2
e−x/β , x ∈ R.

Remark 2. Similar Corollaries can be stated for the Proposition 2 as well.

5 Parameter Estimation

5.1 Location and Scale Extension

We consider an extension of tri-modal skew logistic distribution by introducing location and scale extension
parameters. Using the transformation of Z = µ+ βX, where X ∼ TSLG(λ), the corresponding density ofZ
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can be written as

f(z;µ, β, λ) =

2


((

zi − µ
β

)2

− 1

)2

+ 2

 exp

(
−zi − µ

β

)

βC1

{
exp

(
−zi − µ

β

)
+ 1

}2{
exp

(
−λ (zi − µ)

β

)
+ 1

} . (22)

5.2 Maximum Likelihood Estimation

This section concern the inference process about the parameters θ = (µ, β, λ) of the location-scale family
introduced above. If z1, z2,..., zn are independently and identically distributed random variables drawn from
the tri-modal skew logistic distribution, then the log-likelihood function for θ = (µ, β, λ) is expressed as

l(θ) = n log 2 +

n∑
i=1

log

({((
zi − µ
β

)
2 − 1

)
2 + 2

})
− 1

β

n∑
i=1

(zi − µ)

− n log(β)− n log (C1)− 2

n∑
i=1

log

({
exp

(
−zi − µ

β

)
+ 1

})

−
n∑
i=1

log

({
exp

(
−λ (zi − µ)

β

)
+ 1

})
.

(23)

Differentiate equation (23) with respect to the parameters θ = (µ, β, λ), the likelihood equation becomes

∂l(θ)

∂µ
= n− 4

n∑
i=1

(zi − µ)

((
zi − µ
β

)2

− 1

)

β

{((
zi − µ
β

)2

− 1

)
2 + 2

} − 2

n∑
i=1

exp

(
−zi − µ

β

)
{

exp

(
−zi − µ

β

)
+ 1

}

− λ
n∑
i=1

exp

(
−λ (zi − µ)

β

)
{

exp

(
−λ (zi − µ)

β

)
+ 1

} .
(24)

∂l(θ)

∂β
= −4

n∑
i=1

(zi − µ)

((
zi − µ
β

)2

− 1

)

β


((

zi − µ
β

)2

− 1

)2

+ 2


+ β

(
n∑
i=1

(zi − µ)

)
+ β2(−n)

− 2β

n∑
i=1

(zi − µ) exp

(
−zi − µ

β

)
{

exp

(
−zi − µ

β

)
+ 1

} β(−λ)

n∑
i=1

(zi − µ) exp

(
−λ (zi − µ)

β

)
{

exp

(
−λ (zi − µ)

β

)
+ 1

} .

(25)

∂l(θ)

∂λ
=

n∑
i=1

(zi − µ) exp

(
−λ (zi − µ)

β

)
{

exp

(
−λ (zi − µ)

β

)
+ 1

} . (26)

More preciously, by solving the above simultaneous equations, one can obtain the desired estimate of the pa-
rameters. However, the direct solution of the above normal equation is not mathematically sound. Therefore,
we implement a numerical procedure using the GenSA package at R software.
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6 Simulation Study

A simulation study has been carried out to evaluate the performance of the maximum likelihood estimates of
the parameters of the TSL(λ) model. To generate the set of random numbers we have used the Metropolis-
Hastings (M-H) algorithm, with twenty-seven combinations of parameters. The process is replicated 1000
times along with the three different generated samples of size n = 100, 300 and 500 and finally the MLE
are estimated for each generated sample using the GenSA packagee (GenSA-package,Version – 1.0.3) in R
software. The estimated statistics are presented in terms of biases and mean square errors (MSEs) of the
estimates and the formula are given by

Bias(θ̂) = E(θ̂)− θ and MSE(θ̂) = V (θ̂) +Bias(θ̂)
2
Where, θ̂ = (µ̂, σ̂, λ̂)

Table 1: Results of Simulation

µ = 0, σ = 1
µ σ λ

λ n Bias MSE Bias MSE Bias MSE
100 0.090 2.879 0.709 1.486 1.000 2.318

-1 300 0.0212 0.759 0.286 0.594 0.932 2.197
500 -0.0072 0.755 0.240 0.570 0.891 2.147
100 0.00036 0.749 0.0556 0.555 0.229 0.974

-0.5 300 1.86E-10 0.766 0.0585 0.574 0.278 1.016
500 4.61E-05 0.745 0.0605 0.577 0.258 0.984
100 -0.039 1.354 -0.012 0.329 0.083 1.357

0 300 0.013 1.343 -0.022 0.329 -0.002 1.329
500 -0.567 0.989 0.514 1.039 -0.223 1.089
100 -0.547 1.503 0.459 0.972 -0.511 1.034

0.5 300 -0.541 1.039 0.531 1.066 -0.496 0.981
500 -0.507 1.010 0.467 0.989 -0.502 0.983
100 -0.512 1.005 0.532 1.298 -0.235 1.696

1 300 -0.494 1.223 0.458 1.159 -0.254 1.823
500 4.59E-05 0.328 0.001 0.339 1.071 2.422

Table 2: Results of Simulation

µ = 1, σ = 2
µ σ λ

λ n Bias MSE Bias MSE Bias MSE
100 -0.973 3.912 -0.249 1.101 0.967 2.326

-1 300 -0.999 3.996 -0.194 1.1 0.998 2.389
500 -1.039 4.099 -0.254 1.081 0.973 2.3
100 -1.005 4.119 -0.186 1.091 0.516 1.026

-0.5 300 -0.968 3.918 -0.251 1.087 0.463 0.944
500 -1.127 4.269 -0.22 1.108 0.481 1.005
100 -0.954 3.977 -0.273 1.092 -0.029 0.758

0 300 -0.934 3.932 -0.287 1.112 -0.007 0.765
500 -1.026 4.091 -0.259 1.123 -0.012 0.765
100 -0.959 3.923 -0.243 1.066 -0.493 0.998

0.5 300 -1.005 4.052 -0.268 1.145 -0.535 1.046
500 -1.035 4.221 -0.205 1.017 -0.471 1.003
100 -0.957 3.839 -0.221 1.117 0.916 2.308

1 300 -1.066 4.084 -0.256 1.076 -0.991 2.307
500 -1.04 4.202 -0.282 1.104 1.082 2.327
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Figure 2: The histogram of N latitude degrees of 69 samples from world lakes data and fitted densities.

From Table 1 and 2, it can be seen that the MLEs perform well in estimating the parameters of the model.
Also, as the sample size increases, the bias and mean-square error of the MLEs decrease as expected. Then,
it follows that the estimation of MLEs was asymptotically consistent for moderate and large sample sizes.

7 Real Life Applications

This section illustrates the application of the new distribution using two real-life data sets. We fit the pro-
posed distribution with other distributions like the logistic, the skew logistic, and the alpha skew logistic
distribution.

With the help of the GenSA package in R software, we obtained the maximum likelihood estimate of the
parameters. Also, we compare these fitted models by using some analytical measures like the Akaike infor-
mation criterion (AIC) and Bayesian information criterion (BIC).

Illustration I:

The data set considered here is the N latitude degrees of 69 samples from world lakes; we have received this
data set from the website http://users.stat.umn.edu/sandy/ courses/8061/datasets/lakes.lsp. Table 1 shows
the MLEs, log-likelihood, AIC and BIC of the distributions mentioned above.

Table 3: MLE’s, log-likelihood, AIC and BIC for the data set of N latitude degrees of 69
samples from world lakes

Distributions µ λ α β log l AIC BIC
LG(µ, β) 43.64 – – 4.49 -246.65 497.29 501.86
SLG(µ, β, λ) 36.79 2.83 – 6.42 -239.05 484.11 490.81
ASLG(µ, β, α) 49.09 – 0.86 3.45 -237.35 480.70 487.40
TSLG(µ, β, λ) 57.13 -0.43 – 2.78 -232.71 471.41 478.12

It is found from the Table 3 and figure 2 that TSLG distribution is better fitted to the data rather than the
other three distributions in terms of AIC and BIC.

Illustration II:

The data set is heterodatatrain$V4, obtained from R software using ”Rmixmod” package packages. Vila
et al. (2022) analyzed these data sets to show the modelling ability of tri-modal distribution. Table 4 shows
the MLEs and log-likelihood AIC and BIC of the earlier distributions.

It is found from the Table 4 and figure 3 that TSLG distribution is better fitted to the data rather than the
other three distributions in terms of AIC and BIC.
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Table 4: MLE’s, log-likelihood AIC and BIC of the heterodatatrain$V4 data of 300 individuals

Distributions µ λ α β logL AIC BIC
LG(µ, β) -0.76 – – 3.56 -957.87 1925.27 1936.38
SLG(µ, β, λ) -7.01 32.99 – 4.94 -874.27 1754.55 1765.66
ASLG(µ, β, α) -0.49 – 21.08 1.68 -811.18 1628.37 1639.48
TSLG(µ, β, λ) -0.34 -0.02 – 1.05 -755.29 1516.59 1527.70

Figure 3: The histogram of heterodatatrain$V4 data and fitted densities

8 Conclusion

A new form of tri-modal logistic distribution was studied. The main statistical properties and the parameter
estimation with maximum likelihood method are investigated. The characterizations of the TSLG distribu-
tion via two truncated moments have studied. The new family is found to fit unimodal as well as tri-modal
data very well considering two well known multimodal data sets.
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the log-alpha-skew-normal model with geochemical applications. Appl. Math, 10(5):1697–1703.
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