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Abstract 

 

In this paper, we proposed a new generalized family of distribution namely new alpha power Exponential 

(NAPE) distribution based on the new alpha power transformation (NAPT) method by Elbatal et al. (2019). 

Various statistical properties of the proposed distribution are obtained including moment, incomplete moment, 

conditional moment, probability weighted moments (PWMs), quantile function, residual and reversed residual 

lifetime function, stress-strength parameter, entropy and order statistics. The percentage point of NAPE 

distribution for some specific values of the parameters is also obtained. The method of maximum likelihood 

estimation (MLE) has been used for estimating the parameters of NAPE distribution. A simulation study has been 

performed to evaluate and execute the behavior of the estimated parameters for mean square errors (MSEs) and 

bias.  Finally, the efficiency and flexibility of the new proposed model are illustrated by analyzing three real-life 

data sets.  

Key Words: New Alpha Power Exponential (NAPE) Distribution, Statistical Properties, Parameter Estimation, 

Simulation. 

 

Mathematical Subject Classification: 60E05, 62E15. 

 

1. Introduction 

 

From the past decades, there has been an increased interest in developing new generalized distributions by adding 

one or more additional parameters (shape) to an existing family of distributions. Adding extra parameter tends to 

bring more flexibility in the distribution and it is also useful to incorporate skewness into a family of distribution, 

Pescim et al. (2010). 

Since the late 1980s, the method of adding parameters to an existing distribution or combining existing distributions 

has been used for generating new distribution. For instance, Azzalini (1985) proposed the skew normal distribution 

by introducing an additional parameter to the normal distribution. This additional parameter incorporates skewness 

and brings more flexibility to the symmetric normal distribution. Mudholkar & Srivastava (1993) proposed the 

exponentiated Weibull model with two shape parameters and one scale parameter. Due to the presence of an 

additional shape parameter, the proposed exponentiated Weibull model is more flexible than the two-parameter 

Weibull model. Marshall & Olkin (1997) proposed a new method for generating distributions by introducing an 

additional parameter to any distribution function. Gupta & Kundu (1999) introduce the generalized Exponential 
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distribution and discuss some of its recent developments. Eugene et al. (2002) proposed the Beta generated method 

that uses the Beta distribution to develop the Beta generated distributions. This Beta-generated approach was further 

generalized by Jones (2004). Alzaatreh et al. (2003) introduced a new method for generating families of continuous 

distributions called the T-X family. A detail regarding the various methods for generating new distributions has been 

given by Lee et al. (2013) and Tahir & Nadarajah (2015). 

In the recent past, Mahdavi & Kundu (2017) proposed the alpha power transformation (APT) method. The proposed 

APT method is quite easy to apply by simply raising the cumulative distribution function (CDF) of an existing 

distribution to a power of an additional parameter “𝛼”. They used the APT method and introduced alpha power 

Exponential (APE) distribution. Unal et al. (2018) proposed alpha power inverted Exponential distribution using the 

concept of the APT method. Hassan et al. (2019) proposed a three-parameter lifetime distribution namely alpha 

power transformed extended Exponential distribution (APTEE) motivated by the APT method. In recent past, 

Elbatal et al. (2019) used a new scheme to add an extra parameter to introduce a new class of distributions. The 

proposed method is the new alpha power transformation (NAPT) method.  

According to Elbatal et al. (2019), the new alpha power transformation method is defined as follows: 

Let 𝐹(𝑥) be the CDF of a continuous random variable RX  , thus the CDF of the NAPT method is defined as, 
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And the corresponding probability distribution function (PDF) is defined as, 
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They have used the proposed model to study a special class of distribution function namely new alpha power 

transformed Weibull (NAPTW) distribution. 

The main aim of this paper is to introduce and study a new lifetime distribution by using the concept of the NAPT 

method proposed by Elbatal et al. (2019). We define the new distribution as new alpha power Exponential (NAPE) 

distribution. The NAPE distribution is a very versatile distribution which is effective in modeling various lifetime 

data having monotonic and non-monotonic hazard rate functions. The rest of the paper is organized as follows: In 

Section 2, we introduce the NAPE distribution and we provide a mixture representation to study the importance of 

the NAPE distribution. In Section 3, basic statistical properties of NAPE distribution including moments, entropy, 

order statistics and quantile function are derived. In section 4, the maximum likelihood estimation (MLE) method is 

applied for estimating the value of the parameters. In section 5, simulation study is performed to outline the 

performance of the parameters. In section 6, the analyses of three real-life data sets are presented to illustrate the 

usefulness and flexibility of the NAPE distribution. Finally, in section 7, we conclude the findings of the paper. 

2. New Alpha Power Exponential (NAPE) distribution 

In this section, we apply the new alpha power transformation (NAPT) method to a specific class of distribution, 

namely the Exponential distribution and we refer the new distribution as new alpha power Exponential (NAPE) 

distribution with shape parameter   and scale parameter . 

A random variable X  is said to have a two-parameter NAPE distribution if the CDF of 0x  is, 
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and the corresponding PDF is, 
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The survival function ),;( xS , hazard rate function ),;( xh , reversed hazard rate function ),;( xr  and 

cumulative hazard rate function ),;( xH  for 0x  is given as, 
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 The main motivation for using the NAPT method on Exponential distribution is as follows: 

a) The NAPT method is a very simple and efficient method of introducing only one additional parameter i.e., 𝛼. 

b) The NAPT method provides greater flexibility to a family of distribution functions. 

c) The NAPT method makes the distribution richer and flexible which is capable of modeling monotonically 

increasing, monotonically decreasing, increasing-decreasing and bathtub shape hazard rate function. 

d) The NAPT method provides to be a better fit than other existing models. 

e) When the additional parameter 𝛼 = 1, we get the original baseline distribution which in this case is the Exponential 

distribution.  

 

 

 

2.1. Graphical representation of NAPE distribution 
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Figure 1: Plot of the density function of NAPE distribution for different values of the parameters 

 

Figure 2: plot of hazard rate function of NAPE distribution for different values of the parameters 
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From figure (1), it is observed that the density function of NAPE distribution is log-convex if 1  and log-

concave if 1  . Also, from figure (2), it can be clearly observed that the hazard rate function is increasing, 

decreasing, constant, upside-down bathtub and bathtub shapes for different values of the parameters.  

 

2.2. Useful expansion of NAPE distribution 

 

In this section, the useful expansion of the mixture representation of the PDF and CDF is presented. Using the series 

representation, 
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The PDF of the NAPE distribution given in equation (4) can be written as, 
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Furthermore, another form of the PDF given in (10) which provides the following infinite combination 
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where, 1+= ka  and 2+= kb   

 

Equation (11) can also be written as, 
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where,  
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densities with power parameters a  and b . 

 

Also, the CDF of the NAPE distribution given in (3) can be written as, 
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Let u be an integer, then the expression of 𝑓(𝑥; 𝛼, 𝜆)𝐹(𝑥; 𝛼, 𝜆)𝑢 is derived as,  
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The different functions derived from (10) to (14) can be used for deriving various statistical properties of the NAPE 

distribution. 

 

3. Statistical Properties 

In this section, some basic statistical properties of the NAPE distribution have been derived and discussed. 

 

3.1. Moment and Moment Generating Function 

 

In statistical probability theory, the moment generating function is used to determine the moments of a distribution, 

i.e., first moment (mean), second moment (variance), third moment (skewness) and fourth moment (kurtosis). 

 

Theorem 1: Let X ~ ),( NAPE , then the 
thn moment of X is 
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and the moment generating function of NAPE distribution is  
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Proof: The 
thn moment of a random variable X  is defined as, 
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Substituting (4) in (15) we get, 
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using the series representation given in equation (9) and binomial expansion in equation (16), the nth moment of 

NAPE distribution is obtained as, 
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Also, the moment generating function of NAPE distribution can be derived by using 
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Thus the moment generating function of NAPE distribution is obtained as, 
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Hence proved. 

 

3.2. Incomplete Moment 

 

The incomplete moment is used for measuring inequality, for instance, the Lorentz curve and Gini measures of 

inequality all rely upon the incomplete moments (Butler & McDonald, (1989)). 

 

Theorem 2: The 
thr incomplete moment for the density function ),;( xf  is  
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Proof: The 
thr  incomplete moment of a random variable X is defined as, 
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using the series representation given in equation (9) and binomial expansion in equation (20), the 
thr  incomplete 

moment of NAPE distribution is obtained as, 
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where, ),( ba is the lower incomplete Gamma function.  

Hence proved. 

 

3.3. The Conditional Moment 

 

Theorem 3: Let X ~ ),( NAPE , then the conditional moments for the random variable X is  
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Proof: The conditional moment of a random variable X is defined as, 
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Substituting (4) and (5) in (22) we obtained, 
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Using the series representation given in equation (9) and binomial expansion in equation (23), the conditional 

moment of NAPE distribution is obtained as, 
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                                                                                                                                                                            (24) 

where ),( ba is the lower incomplete Gamma function. 

Hence proved. 

 

3.4. Probability Weighted Moments(PWMs) 

The PWMs are used for estimating the parameters of a probability distribution.  

 

Theorem 4: Let X  ~ ),( NAPE , then the probability weighted moments for the random variable X  is 

( ) ( )  
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, 1 11 1 1
0 0 0 0

1log 1 1 log 1 1
( 1) ( 1)

! !1 1

k k k k
k q k q

m l

s q s sq s s
m k l k

k q k qq s q s

m lk km l

 


  

+
+ + + 

+ ++ + +
= = = =
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    

 

 Proof: For a random variable X , the PWMs represented by qs,  is given as, 
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( )  ( )


==
0

, ),;(,;,; dxxFxfxxFxE qsqs

qs                                                                          (25) 

   

Substituting equation (3) and (4) in equation (25) we get, 
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Using the series representation given in equation (9) and binomial expansion in the above equation, the PWMs of 

NAPE distribution is obtained as, 
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                                                                                                                                                                            (26) 

Hence proved. 

 

3.5. Residual and Reversed Residual Life 

The residual lifetime of the random variable X  denoted by )(tR  is given by, 

( )
( )

( )
t

S x t
R x

S t

+
=  

Substituting (5) in the above equation, we derived the residual lifetime as, 
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                                                                                              (27) 

Also, the reverse residual lifetime of X  denoted by )(xR  is given by, 

( )
( )

( )
t

S x t
R x

S t

−
=  

 

Using (5) in the above equation, we derived the reversed residual lifetime as, 
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                                                                                         (28) 

 

3.6. Rényi and q-entropy 

In statistical theory, entropy is defined as a statistical tool for measuring the variation of the uncertainty of a random 

variable X . 

Let the random variable X  ~ ),( NAPE , then the Reńyi entropy of X  is define as, 
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Using the generalized binomial expansion series in the following form 
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Solving the above equation, the Reńyi entropy is derived as, 
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Furthermore, the q-entropy say )( fHq  is defined by, 
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Using the generalized binomial expansion and solving the above expression, the q- entropy is derived as, 
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3.7. Order Statistics 

Let nnnn XXX ::2:1 ,....,,  be the order statistics of the random variable nXXX ,....,, 21 , then the density function of 

niX :  is given by 
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where (.,.)B  denotes the Beta function. 

The PDF of the 
thi  order statistics of NAPE distribution is derived by substituting (3) and (4) in (33) by replacing 

u with 1n v+ − , we have 
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Furthermore, 
ths  ordinary moments of the 

thi  order statistics for NAPE distribution is derived as, 
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Using (34) in the above equation and solving the above equation we derive the 
ths  moment of the 

thi  order 

statistics as, 
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3.8.  Quantile function 

 

The quantile function is used for simulation study and to measure the percentile. The quantile function is defined as 

the inverse of the cumulative distribution function F(x) for a random variable X . 

Theorem 5: The 
thp  quantile function px  of NAPE distribution, for 1  is 

 

1 1
log

1
px

p 

  
= −  

+  
                   for   10  p

 

 

 

Proof: Let us consider the identity, 

 

   1,0),()(,inf)( 1 == − uxFxFuxuQ
 

 

 

Now, let uxF =)(  then by using equation (3), we obtained 

 

( ) ( ) ( ) 0log)log(11log =−−+− −− uee xx 

 
 

 

Solving the above equation numerically, the quantile function of NAPE distribution is defined as, 
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Thus the 
thp  quantile function px  of NAPE distribution is obtained as, 
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Hence proved. 

Remark 1: The first three quantiles of NAPE distribution can be obtained by setting 
1

0.25
4

p = =  (25th 

percentile), 
1

0.50
2

p = =  (50th percentile or median) and 
3

0.75
4

p = =  (75th percentile) in the given equation, 

i.e. 
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Therefore the median of NAPE distribution is as follows: 
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Also, the 
th25  and 

th75  can be obtained as, 
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Table 1 displays the percentage point of NAPE distribution for some specific values of the scale parameter 0  

and shape parameter 0 . It contains the first quartile (25%), median (50%) and third quartile (75%). 
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Table 1: The following table displays the percentage point for different values of the parameters 

 

    25% 50% 75% 

 2 0.394679 0.681924 0.916422 

1 5 0.792747 1.23669 1.558278 

 7 0.990686 1.486563 1.832712 

 2 0.197339 0.340962 0.458211 

2 5 0.396373 0.618345 0.779139 

 7 0.495343 0.743282 0.916356 

 2 0.078936 0.136385 0.183284 

5 5 0.158549 0.247338 0.311656 

 7 0.198137 0.297313 0.366542 

 2 0.056383 0.097418 0.130917 

7 5 0.11325 0.17667 0.222611 

 7 0.141527 0.212366 0.261816 

 

From table 1, it is observed that as the value of   increases, for a fixed value of  , the values of the percentage 

point increase. Also, as the value of   increases, for the fixed value of  , the value of the percentage point 

decreases. 

 

4. Parameter Estimation 

 

The method of maximum likelihood estimation method has been used for estimating the parameters of NAPE 

distribution. 

Let nxxx ,...,, 21  be a random sample of size n from the NAPE distribution with PDF given in (4), then the log-

likelihood function is 
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For obtaining the partial derivatives, differentiating (36) for   and   we get, 
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Setting (37) and (38) to zero and solving these equations simultaneously gives the MLE of   and   i.e., ̂ and


 . 

However, solving these equations to get the estimates of the unknown parameter is quite difficult. Therefore, a 

numerical technique such as the newton-raphson method may be used to solve these non-linear equations. 
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5. Simulation Study 

 

In this section, a simulation study has been performed to illustrate the behaviour of the estimates ̂  and ̂  in terms 

of the sample size n. We generate 1000 random sample nxxx ,...,, 21  of sizes n= (30, 50, 100, 150, 200) from NAPE 

distribution using theorem 5. Then, considering the initial values of the parameters ( )1.5,3 =  and ( )3,5 = , 

we generate the bias and MSE from NAPE distribution. 

The bias and MSE are calculated by 
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ii
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=
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( )
2

1

1
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w

ii
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W
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=
= − and ( )

2

1

1 ˆ( )
w

ii
MSE

W
  

=
= −   

 

The average values of MSEs and Bias from NAPE distribution for different values of n are displayed in table 2. 

From table 2, it can be observed that as the value of the sample size n increases i.e., n = (30, 50, 100, 150, 200), the 

MSEs and Bias decreases indicating the reliability and accuracy of the estimates. 

 

Table 2: The average values of Bias and MSEs of NAPE distribution for different values of n.  
Parameter MSE Bias 

n α λ ̂  ̂  ̂  ̂  

30 1.5 3 0.03718 1.26063 0.0352 0.20499 

50 1.5 3 0.00625 1.22657 0.01118 0.15663 

100 1.5 3 0.00461 0.61209 0.00679 0.07824 

150 1.5 3 0.00372 0.50503 0.00498 0.05803 

200 

500 

1.5 

1.5 

3 

3 

0.00142 

0.00003 

0.45721 

0.01329 

0.00411 

0.00025 

0.04781 

-0.0052 

30 3 5 0.19454 1.76047 0.08053 0.24225 

50 3 5 0.14793 0.68568 0.05439 0.11711 

100 3 5 0.06947 0.28125 0.02636 0.05303 

150 3 5 0.03175 0.24348 0.01455 0.04029 

200 

500 

3 

3 

5 

5 

0.03163 

0.01653 

0.23242 

0.01273 

0.01263 

0.00575 

0.03409 

-0.0051 

 

6. Application 

 

In this sub-section, we analyzed three real life data sets to illustrate the performance of the proposed NAPE 

distribution. The first data set is the uncensored data set corresponding to intervals in days between 109 successive 

coal-mining disasters in Great Britain, for the period 1875-1951, published by Maguire et al. (1952).  The second 

data set is the survival times of 72 guinea pigs which are observed and reported by Elbatal et al. (2013). The third 

data sets represent the COVID-19 data set from Italy, recorded between 13 June and 12 August 2021, studied by 

Almetwally et al. [2022].  The observed data sets are presented below: 
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First Data set: 

1 ,4 ,4 ,7, 11, 13, 15, 15, 17, 18, 19, 19, 20, 20, 22, 23, 28, 29, 31, 32, 36, 37, 47, 48, 49, 50, 54, 54, 55, 59, 59, 61, 

61, 66, 72, 72, 75, 78, 78, 81, 93, 96, 99, 108, 113, 114 ,120, 120, 120, 123, 124, 129, 131, 137, 145, 151, 156, 171, 

176, 182, 188, 189, 195, 203, 208, 215, 217, 217, 217, 224, 228, 233, 255, 271, 275, 275, 275, 286, 291, 312, 312, 

312, 315, 326, 326, 329, 330, 336, 338 ,345, 348, 354, 361, 364, 369, 378, 390, 457, 467, 498, 517,566, 644, 745, 

871, 1312, 1357, 1613, 1630 

 

Second Data set:   

0.1, 0.33 ,0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92,0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08,1.08, 1.08, 1.09, 1.12, 

1.13, 1.15, 1.16, 1.2, 1.21,1.22, 1.22, 1.24, 1.3 ,1.34, 1.36, 1.39, 1.44, 1.46,1.53, 1.59, 1.6 ,1.63, 1.63, 1.68 ,1.71, 

1.72, 1.76,1.83, 1.95, 1.96 ,1.97, 2.02, 2.13, 2.15, 2.16, 2.22,2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78,2.93, 

3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55 

Third Data set: 

52, 26, 36, 63, 52, 37, 35, 28, 17, 21, 31, 30, 10, 56, 40, 14, 28, 42, 24, 21, 28, 22, 12, 31, 24, 14, 13, 25, 12, 7, 13, 

20, 23, 9, 11, 13, 3, 7, 10, 21, 15, 17, 5, 7, 22, 24, 15, 19, 18, 16, 5, 20, 27, 21, 27, 24, 22, 11, 22, 31, 31 

 

Table 3: Descriptive statistic of the data sets 

First data set 

minimum maximum first quartile median third quartile skewness kurtosis 

1 1630 54 145 312 2.998619 13.5256 

Second data set 

minimum maximum first quartile median third quartile skewness kurtosis 

0.1 5.55 1.080 1.495 2.240 1.37059 5.22477 

Third data set 

minimum maximum first quartile median third quartile skewness kurtosis 

3 63 13 21 28 1.096814 4.472707 

 

The descriptive statistic of the observed real life data sets is presented in table (3). From table (3) it is observed that 

the first data set are skewed and leptokurtic, the second data set are right-skewed and leptokurtic and the third data 

set are highly skewed and leptokurtic (kurtosis>3). Hence, the NAPE distribution is a reasonable choice for fitting 

these data sets.  
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3(a) First data set                              3(b) Second data set                           3(c) third data set 

Figure 3: TTT plots of the first, second and third data sets 

The TTT plot of the first, second and third data sets are shown in figure 3. The TTT plot shown in figure 3(a) 

represents a decreasing hazard rate function, 3(b) represents an increasing hazard rate function and 3 (c) 

represents an increasing hazard rate function. 

We fit the proposed NAPE distribution to the above three data sets along with other competing distribution namely; 

alpha power Exponential (APE) (by Mahdavi & Kundu, 2017), alpha power inverted Exponential (APIE) (by Unal 

et al., 2018), Exponential (E) (by Gupta et al., 2010), Exponentiated Exponential (EE) (by Gupta & Kundu, 2001) 

and Generalized Inverted Exponential (GIE) (by Abouammoh & Alshangiti, 2009) distribution respectively. We 

have computed the maximum likelihood estimates (MLEs) along with its standard error (SE) and the associated log 

likelihood(-LogL) in all the cases.  

We consider the analytical measures to verify which distribution has the best fits for the observed data sets. The 

adequacy and efficiency of the distribution are checked by considering the goodness of fit measures such as Akaike 

Information Criterion (AIC), corrected Akaike information criterion (CAIC), Bayesian Information Criterion (BIC), 

Hannan-Quinn information criterion (HQIC), Kolmogorov-Smirnov (KS) test statistic and its p-value, Cramer-von-

Misses (CM) test statistic and Anderson-Darling (AD) test statistic. From tables 4 and 5, it is clear that based on the 

p-value, -LogL and analytical measures of the NAPE distribution along with the other competing distribution, the 

proposed NAPE distribution provides the overall best fit as compared to the other well-known probability 

distribution. Hence, we can presume that NAPE distribution may be chosen as a suitable distribution as compared to 

the other competing distributions for explaining the first data set. Figure 4 and figure 5, represents the estimated 

densities and CDFs of the fitted distribution and estimated density and CDF of NAPE distribution for the first data 

set. From figure 4 and figure 5, it is evident that the NAPE distribution provides to be a better fit for the first data 

set. Also, the pp-plot of the fitted distributions is provided in figure 6. 
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Table 4, table 6 and table 8  provides the maximum likelihood estimates (MLEs) along with the standard error (SE), 

minus log-likelihood and p-values for the first, second and third data sets respectively. The analytical measures for 

the first, second and third data set are provided in table 5, table 7 and table 9 respectively.  

 

Table 4: The MLEs (SE) of the parameter fitted to the first data set  
Models MLEs (SE) -LogL p-value 

 

NAPE 

𝛼 =0.487 (0.072) 

𝜆̂= 0.003(0.0003)  

 

700.763 

 

0.832 

 

APE 

𝛼 =0.277 (0.187) 

𝜆̂= 0.003 (0.0005)  

 

701.204 

 

0.575 

 

APIE 

𝛼 = 147.517 (94.348) 

𝜆̂= 13.404 (2.138)  

 

721.551 

 

0.005 

E 𝜆̂= 0.004 (0.0004) 703.316 0.547 

 

EE 

𝛼 = 0.874 (0.106) 

𝜆̂= 0.004 (0.0005) 

 

702.562 

 

0.476 

 

GIE 

𝛼 =0.513 (0.061) 

𝜆̂= 20.387 (3.307)  

 

743.644 

 

0.0001 

 

 

Table 5: Analytical measures of the NAPE distribution and other competing distributions for the first data set  

Models W A KS AIC CAIC BIC HQIC 

NAPE 0.066 0.479 0.059 1405.525 1405.639 1410.908 1407.708 

APE 0.067 0.516 0.075 1406.408 1406.522 1411.791 1408.591 

APIE 0.562 3.191 0.165 1447.101 1447.214 1452.484 1449.284 

E 0.067 0.608 0.076 1408.632 1408.669 1411.323 1409.723 

EE 0.067 0.621 0.081 1409.125 1409.238 1414.508 1411.308 

GIE 1.059 6.120 0.213 1491.287 1491.400 1496.670 1493.470 
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Figure 4: Plot of the estimated densities and CDFs of the fitted distributions for the first data set 

 

 

Figure 5: Plot of the estimated density and CDF of NAPE distribution for the first data set 
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Figure 6: PP-plots of the fitted distribution to first data set 

 

Table 6: The MLEs (SE) of the parameter fitted to the second data set 

  
Models MLEs (SE) -LogL p-value 

 

NAPE 

𝛼 =45.905 (34.515) 

𝜆̂= 1.246 (0.116) 93.471 0.589 

 

APE 

𝛼 =66.769 (38.924) 

𝜆̂= 1.184 (0.105) 94.472 0.246 

 

APIE 

𝛼 =0.018 (0.018) 

𝜆̂= 2.420 (0.304) 112.41 0.067 

E 𝜆̂=0.566 (0.067) 
113.037 7.503e-06 

 

EE 

𝛼 = 3.629 (0.721) 

𝜆̂= 1.127 (0.132) 
94.236 0.561 

 

GIE 

𝛼 =2.889 (0.603) 

𝜆̂= 2.105 (0.278) 108.013 0.049 
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Table 7: The analytical measures of the NAPED and other competing distribution for the second data set  
Models W A KS AIC CAIC BIC HQIC 

NAPE 0.094 0.543 0.091 190.941 191.115 195.495 192.754 

APE 0.106 0.612 0.121 192.944 193.118 197.497 194.757 

APIE 0.395 2.619 0.154 228.82 228.994 233.373 230.633 

E 0.097 0.598 0.295 228.074 228.131 230.351 228.980 

EE 0.097 0.552 0.093 192.472 192.646 197.025 194.285 

GIE 0.303 2.045 0.160 220.026 220.199 224.579 221.838 

 

From tables 6 and 7, it is clear that NAPE distribution provides the overall best fit as compared to the other well-

known probability distribution. Hence, we can say that NAPE distribution is more adequate as compared to the other 

competing distributions like Alpha Power Exponential (APE), Alpha Power Inverted Exponential (APIE), New 

Alpha Power Transformed Exponential (NAPTE), Exponential (E), Exponentiated Exponential (EE) and 

Generalized Inverted exponential (GIE) distribution for explaining the second data set. Figure 7 and figure 8 shows 

the estimated densities and CDFs of the fitted distribution and estimated density and CDF of NAPE distribution for 

the second data set. Also, the pp-plot of the fitted distributions for the second data set is provided in figure 9. 

 

Figure 7: Plot of the estimated densities and CDFs of the fitted distributions for the second data set 
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Figure 8: Plot of the estimated density and CDF of NAPE distribution for the second data set 

 

Figure 9: PP-plots of the fitted distribution to second data set 
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Table 8: The MLEs (SE) of the parameter fitted to the third data set  

Models MLEs (SE) -LogL p-value 

 

NAPE 

𝛼 = 41.683 (33.320) 

𝜆̂= 0.096 (0.009)  

 

234.736 

 

0.779 

 

APE 

𝛼 = 61.050 (38.212) 

𝜆̂= 0.091 (0.009)  

 

235.579 

 

0.625 

 

APIE 

𝛼 = 0.008 (0.009) 

𝜆̂= 35.202 (4.318)  

243.443 0.091 

E 𝜆̂= 0.044 (0.006) 251.257 0.002 

 

EE 

𝛼 = 3.721 (0.804) 

𝜆̂= 0.089 (0.011) 

 

235.758 

 

0.671 

 

GIE 

𝛼 =3.463 (0.804) 

𝜆̂= 31.033 (4.284)  

 

240.341 

 

0.121 

 

Table 9: The analytical measures of the NAPED and other competing distribution for the third data set  
Models W A KS AIC CAIC BIC HQIC 

NAPE 0.038 0.230 0.084 473.472 473.679 477.694 475.126 

APE 0.039 0.231 0.096 475.159 475.366 479.381 476.813 

APIE 0.289 1.686 0.159 490.885 491.092 495.107 492.539 

E 0.047 0.277 0.242 504.514 504.582 506.625 505.341 

EE 0.059 0.326 0.093 474.517 474.724 478.738 476.171 

GIE 0.216 1.244 0.152 484.681 484.888 488.903 486.336 

 

From table 8 and table 9, it is evident that NAPE distribution provides the overall best fit as compared to the other 

well-known probability distribution. Hence, we can say that NAPE distribution is more suitable for explaining the 

third data set as compared to the other competing distributions. Figure 10 and 11 shows the estimated densities and 

CDFs of the fitted distribution and estimated density and CDF of NAPE distribution for the third data set. Also, the 

pp-plot of the fitted distributions for the third data set is provided in figure 12. 
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Figure 10: Plot of the estimated densities and CDFs of the fitted distributions for the third data set 

 

 

Figure 11: Plot of the estimated density and CDF of NAPE distribution for the second data set 
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Figure 12: PP-plots of the fitted distribution to second data set 

7. Conclusion 

 

In this paper, we have proposed a new generalized family of Exponential distribution namely new alpha power 

Exponential (NAPE) distribution based on the NAPT method proposed by Elbatal et al. (2019). The density function 

of the proposed distribution can be increasing-decreasing, right-skewed or symmetrical depending upon the values 

of the parameters. The hazard rate function can be increasing, decreasing and bathtub shape. Various statistical 

properties of the NAPE distribution have been discussed along with the method of maximum likelihood estimation 

(MLE) for estimating the unknown parameters of the NAPE distribution. To show the capability and effectiveness 

of the NAPE distribution we have considered three real life data sets and it is shown that the proposed NAPE 

distribution tends to provide a very good fit to all the considered data sets as compared to other competing 

distributions. Hence, for modeling monotonic and non-monotonic functions the NAPE distribution can be used more 

effectively. 
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