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Abstract  

 

In this work, we introduce a novel generalization of the extended exponential distribution with four parameters 

through the Kumaraswamy family. The proposed model is referred to as the Kumaraswamy extended exponential 

(KwEE). The significance of the suggested distribution from its flexibility in applications and data modeling. As 

specific sub-models, it includes the exponential, Kumaraswamy exponential, Kumaraswamy Lindley, Lindley, 

extended exponential, exponentiated Lindley, gamma and generalized exponential distributions. The 
representation of the density function, quantile function, ordinary and incomplete moments, generating function, 

and reliability of the KwEE distribution are all derived. The maximum likelihood approach is used to estimate 

model parameters. A simulation study for maximum likelihood estimates was used to investigate the behaviour of 

the model parameters. A numerical analysis is performed for various sample sizes and parameter values to 

analyze the behaviour of estimates using accuracy measures. According to a simulated investigation, the KwEE's 

maximum likelihood estimates perform well with increased sample size. We provide two real-world examples 

utilizing applied research to demonstrate that the new model is more effective. 

 
 

Key Words: Extended exponential distribution; Moments, Quantile; Maximum likelihood technique. 
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1. Introduction  

The exponential (E) distribution is the commonly used distribution for data analysis and is used in a variety of 

industries. However, in many practical cases, the exponential distribution can only be used with a constant hazard 

rate. Modified extensions of the exponential distribution have been created in contemporary statistical literature to 

overcome such challenges. For instance, exponentiated E (Gupta and Kundu (1999; 2001)), beta generalized E 

(Barreto-Souza et al. (2010)), gamma exponentiated E (Ristić and Balakrishnan (2012)), transmuted exponentiated 

E (Merovci (2013), exponentiated generalized extended E (de Andrade et al. (2016)), modified E (Rasekhi et al. 

(2017), odd exponentiated half-logistic E (Afify et al. (2018), Kumaraswamy extension E (Elbatal et al., 2018), 

alpha power extended E (Hassan et al. (2018)),  Marshall-Olkin logistic-exponential alpha power E (Nassar et al. 

(2019)), extended odd Weibull E (Afify and Mohamed (2020)) distributions among others. 
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Our interest here is in the extended exponential (EE) distribution prepared by Gómez et al. (2014), based on the 

extension of Nadarajah and Haghighi (2011), with the following cumulative distribution function (cdf) and 

probability density function (pdf)  

                                      
( )

( ; , ) , , , 0,
xx e

G x x
    

   
 

−+ − + +
= 

+
                                   (1) 

and,                      

                                         
( )2 1

( ; , ) , , , 0.

xx e
g x x

 
   

 

−+
= 

+
                                             (2) 

The density (2) is a special case of the generalized Lindley (GL) distribution with scale parameters  and   (see 

Zakerzadeh and Dolati (2009)), where the authors do not address this particular case in their research. They proved 

that EE is a mixture of exponential and gamma distributions. 

Many academics believe that extending and generalizing probability distributions can help them model a wider 

range of data in a variety of domains. One of the approaches that allows more flexible models is the use of generated 

families of probability distributions. The Kumaraswamy-G (Kw-G) family, with two parameters provided by 

Cordeiro and de Castro (2011) belong to a well-known family. The pdf and cdf of the Kw–G are defined by 

                                       1 1( ) ( )( ( )) (1 ( ( )) ) ,f x g x G x G x   − −= −                                                                 (3)  

and, 

                                      ( ) 1 (1 ( ( )) ) ,F x G x  = − −                                                                                         (4) 

 where ( )G x is the baseline cdf, , 0,   are two additional shape parameters. Clearly, for 0, = = we obtain the 

baseline distribution ( )G x . Equation (3) has the advantage of being able to fit skewed data that cannot be 

successfully fitted by existing distributions. Furthermore, it provides for higher tail flexibility and may be widely 
employed in many areas of reliability and biology, which is typically noticed in data sets emerging from sectors such 

as medicine, engineering, and so on. The composite between Kw and other distributions has gotten a lot of interest 

from researchers in the last few decades, and it's been extensively examined, such as Kw Gumbel distribution 

(Cordeiro et al. (2012)), Kw inverse Weibull distribution (Shahbaz et al. (2012)), Kw generalized Rayleigh 

distribution (Gomes et al. (2014)), Kw exponentiated Burr XII distribution (Afify and Mead (2017)), Kw inverted 

Topp-Leone distribution (Hassan et al. (2021)), and Kw Pareto IV distribution (Tahir et al., 2021). 

 

It's worth noting that the EE distribution's hazard rate functions are limited, so it can't be used to represent lifetime 

data from medical, engineering, or other areas. To overcome this weakness, we propose the Kumaraswamy EE 

(KwEE), a generalization of the EE distribution via the Kw-G family. Furthermore, the KwEE distribution contains 

several important distributions, as cited in Table 1 of this paper, and as such, the proposed model supports a wide 
variety of shapes in terms of its probability density function plots as well as hazard rate function plots. This flexible 

nature of the proposed distribution can be expected to have extensive utility in modelling data sets from various 

fields of scientific research and has motivated us to investigate many useful properties of the distribution. We have 

illustrated the merit of the KwEE distribution over other existing models in Section 6 by considering two types of 

real data sets with an increasing hazard rate function. Furthermore, Tables 6 and 7 reveal that the KwEE distribution 

fits both types of data substantially better, demonstrating its versatility in modelling these data sets from reliability 

studies. 

The following is an example of how to organize this paper. Section 2 contains a model description of the KwEE 

distribution, while Section 3 contains some structural aspects of the KwEE distribution. Parameter estimates and a 

simulation examination are discussed in Sections 4 and 5. The applications are presented in Section 6, followed by 

summary and conclusions. 

 

2. Model Description 

A four-parameter KwEE probability distribution is defined here, as well as its sub-models. The functions for 

reliability and hazard rate are also specified. 
The cdf of the KwEE distribution is determined by substituting G(x) in (4) with the cdf of the EE distribution as 

         
( )

( ; ) 1 1 1 , , , , , 0,
xx e

F x x


  

   
 

−  + + 
= − − −    

+    

M                                                                (5) 
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where ( ), , , ,   =M  is the set of parameters. The pdf that corresponds to (5) is: 

( )
1

12 1 ( ) ( )
( ; ) 1 1 1 .

x x xx e x e x e
f x


          

     

−
−− − −    + + + + + 

= − − −     
+ + +      

M                          (6) 

Let X ~ KwEE ( ), , ,    denotes a random variable with the pdf (6). The KwEE's special sub-models are listed in 

Table 1. 

 

Table1: The KwEE distribution's sub-models 

 

Figure 1 illustrates some KwEE density charts with various shapes for various parameter values. The density (6) 

allows for greater flexibility depending on the parameter values, it can be unimodal, symmetric, reversed J-shaped, 

or right skewed, as seen in Figure 1. 

 
Figure 1: The KwEE density plots for specific values of parameters 

  

The reliability function and hazard rate function (hrf) of X are given, respectively, as follows: 

( )
( ; ) 1 1 ,

xx e
F x


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 

−  + + 
= − −   

+    

M
 

and 

( )
1

12 1 ( ) ( )
( ; ) 1 1 1 .

x x xx e x e x e
h x

          

     

−
−− − −    + + + + + 

= − − −     
+ + +      

M  

Figure 2 depicts some KwEE hrf charts with various shapes for various parameter values. Figure 2 shows that the 

hrf of the KwEE model can be constant-increasing ( 1.5, 2.5, 0.2, 1.5)   = = = = or increasing 

( 0.5, 2.5, 3, 0.5)   = = = =  or decreasing ( 2.5, 3, 0.5, 3),   = = = =  or (reversed 

        Reduced Model Authors 

- - - 0 Kumaraswamy exponential (KwE) Cordeiro and de Castro (2011) 

- - - 1 Kumaraswamy Lindley (KwL) Çakmakyapan and Kadilar (2014) 

- 1 - 0 Generalized exponential (GE) Gupta and Kundu (1999) 

- 1 - 1 Exponentiated Lindley (EL) Nadarajah et al. (2011) 

0 0 - - Extended Exponential Gómez et al. (2014) 
1 1 - 0 Exponential  

1 1 - 1 Lindley (L)  
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( 1.5, 2.5, 0.2, 1.5).   = = = = We can see from Figure 2 that the KwEE model may be used to model data using 

the indicated hrfs. 

 Figure 2: The KwEE hrf plots for specific values of parameters 

  

3. Major Properties 

We look at the pdf expansion, quantile function, moments, moment generating function, incomplete moments, and 

residual moments of the KwEE distribution.  

 

3.1 Expansion 

The binomial theorem is used to obtain a suitable expansion of the KwEE pdf, with binomial expansion given as 

                                                1

0

1
(1 ) ( 1) .a c c

c

a
p p

c


−

=

− 
− = −  

 
                                                                (7) 

We get (7) by plugging it into pdf (6) 

( )

( )

2
( 1) 1

( 1)
0

11
( ; ) ( 1) ( ) .

x
j

j x

j
j

x e
f x x e

j






 
    

 

−
+ −

−

+
=

+− 
 = − + − + +   

  +
M                                             (8) 

 

Using binomial expansion once more 

( )2 ( 1)

, 0 0
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Hence, the previous pdf of KwEE distribution formatted as follows: 

         ( )
2

1 ( 1)
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, 0 0
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f x W x x e  
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where,      

       

,

1 ( 1) 1
( 1) .i j

i j

j i
W

j i k

 + − + −   
= −    

   
 

3.2 Quantile function 

It's crucial to know X's quantile function for a variety of applications. X's quantile function can be written as by 

inverting (5). 

( )( )
1 1 1 1 ,Q uQ u

u e





 

−
    

= − − − +   
+    

 

which yields;  
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In above equation, we note that ( )Q u
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   is Lambert W-function of the real argument.  
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Hence, we have the negative Lambert W-function of the real argument 
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1
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( ) ( ) 1 1 1 ,Q u W u e

 
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where 0 < u < 1 and W(·) denotes the Lambert W-function. The Lambert W-function has been used to tackle a 

variety of issues in mathematics, physics, and engineering (Corless et al. (1996); Jodrá, 2010). According to de 

Andrade et al. (2016), the power series for the W-function holds as follows when utilizing the Lagrange inversion 

theorem. 
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Applying (11) in (10), we have 
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  

The median, third quartile and the percentage points at 85% and 95% are computed for some selected values of the 
parameters as seen in Table 2. 

Table 2: Percentage Points for , ,    and   

    
0.5 =             1.5 =   1.5 =            0.5 =  2.5 =            1 =  

50% 75% 85% 95% 50% 75% 85% 95% 50% 75% 85% 95% 

0.5 

0.5 2.511 4.689 6.525 10.325 0.499 1.247 1.816 3.029 1.583 3.328 4.561 7.104 

1 0.844 2.116 3.073 5.094 0.176 0.499 0.767 1.371 0.687 1.583 2.236 3.601 

1.5 0.459 1.283 1.889 3.259 0.090 0.275 0.438 0.821 0.397 0.985 1.426 2.363 

2 0.303 0.844 1.303 2.325 0.055 0.176 0.286 0.556 0.266 0.687 1.016 1.727 

1.5 

0.5 3.991 6.623 8.433 12.169 1.037 1.847 2.421 3.628 2.858 4.627 5.839 8.336 

1 2.476 3.991 4.998 7.025 0.598 1.342 1.037 1.342 1.830 2.858 3.536 4.896 

1.5 1.891 3.010 3.741 5.189 0.438 0.749 0.963 1.400 1.427 2.194 2.689 3.665 

2 1.565 2.476 3.065 4.216 0.353 0.598 0.765 1.105 1.201 1.830 2.231 3.010 

 

From Table 2 we notice that as the percentage level increases, the percentage values of the parameters also increase. 

As the value of   increases, the percentage values decrease at all values of the parameters. 

 

3.3 Moments 

Moments are very valuable in statistical analysis, especially in applications. The formula for moments, incomplete 

moments of the KwEE distribution, is derived here. The sth moment for the KwEE distribution about zero is 

calculated as follows using pdf (9): 
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(12) 

The first four moments about zero can be found by setting 1,2,3s = and 4 in (12). Also, the KwEE distribution's 

moment generating function can be found as follows: 

( ) ( )
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, 1 1 2
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! ( ) ( 1) ( 1)
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The sth central moment ( )s    of 𝑋 is given by 

1 1

0

( ) ( 1) ( )
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E X
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 
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Furthermore, the sth incomplete moment, say ( )s t  of the KwEE distribution can be calculated as follows 
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Then, 
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( ) ( 1) ( 1)

i k k

s i j k s k s k
j i k

s k i t s k i t
t W

i i
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 
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+ + + + +
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where ( , )k t is the lower incomplete gamma function. Table 3 lists numerical values for the KwEE distribution's 

first four moments, skewness (Sk), and kurtosis (Ku) for various parameter values.  

 
Table 3: The KwEE distribution's moments measures 

Ku Sk 4 3 2 1 1.5, 2 = =  

11.369 2.433 4.838 1.622 0.729 0.515 0.5, 1 = =  

11.61 2.474 0.362 0.23 0.196 0.264 0.5, 1.5 = =  

13.284 2.687 0.098 0.083 0.096 0.177 0.5, 2 = =  

14.916 2.875 0.034 0.037 0.053 0.129 0.5, 2.5 = =  

7.057 1.675 4.071 1.714 0.929 0.714 1, 1 = =  

7.007 1.674 0.953 0.577 0.448 0.494 1, 1.5 = =  

7.022 1.683 0.341 0.266 0.267 0.38 1, 2 = =  

7.061 1.694 0.153 0.146 0.178 0.31 1, 2.5 = =  

6.203 1.461 5.974 2.465 1.282 0.903 1.5, 1 = =  

5.799 1.379 1.642 0.954 0.691 0.669 1.5, 1.5 = =  

5.547 1.328 0.675 0.496 0.451 0.543 1.5, 2 = =  

5.377 1.292 0.344 0.301 0.325 0.463 1.5, 2.5 = =  

5.818 1.35 7.802 3.163 1.591 1.048 2, 1 = =  

5.283 1.227 2.385 1.339 0.917 0.807 2, 1.5 = =  

4.95 1.147 1.073 0.749 0.632 0.675 2, 2 = =  

4.723 1.091 0.59 0.485 0.477 0.589 2, 2.5 = =  

5.607 1.282 9.566 3.817 1.865 1.166 2.5, 1 = =  

5.009 1.135 3.159 1.722 1.127 0.92 2.5, 1.5 = =  

4.642 1.039 1.514 1.014 0.805 0.784 2.5, 2 = =  

4.396 0.97 0.879 0.685 0.626 0.696 2.5, 2.5 = =  
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We observe from Table 3 that with a constant value of  and as the value of   increases, all moments measures  

decerease.  For the same value of   and as the value of   increases, all moments measures are increased. Based on 

the values of the Sk and Ku measurements, the KwEE distribution is right skewed and leptokurtic. 

3.4 Residual life and reversed failure rate function 

The mth moment of the residual life, ( ) ( ) , 1,2,...
m

m t E X t X t m  = −  =
 

uniquely determines ( ).F x  
The mth 

moment of the residual life is defined by: 

1
( ) ( ) ( ) .

( )

m
m

t

t x t f x dx
F t



 = −  

The mth moment of the residual life of the KwEE distribution is calculated using pdf (9)  
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                           (13) 

The mean residual life (MRL) function is another remarkable function with various applications in survival analysis 

in biological sciences, life insurance, maintenance, and so on. Setting m = 1 in (13), will give the MRL of X. 

 

The mth moment of the reversed residual life, say ( ) ( )K ,
m

m t E X t X t = − 
 

 for 𝑡 > 0 and m = 1,2,... uniquely 

determines 𝐹(𝑥). Therefore, the mth moment of the reversed residual life of 𝑋 is given by 

0

1
( ) ( ) ( ) .

( )

t

m
m t x t f x dx

F t
 = −  

The mth moment of the residual life of the KwEE distribution is calculated using pdf (9) as: 

                     
( )

( )

2

, 1 1
, 0 0 0

2

1 ( 1, ( 1) )
( ) ( 1)

( ; ) ( ) ( 1)

( 2, ( 1) )
.

( 1)

i m k k
m r m r

m i j k r k
j i k r

r k

m r k i t
t t W

rF t i

r k i t

i

   

  

 




 +
− −

+ + +
= = =

+ +

  + + +
 = −  

+   +

+ + +
+
+ 

M
                  (14)   

 

The mean inactivity time (MIT) or mean waiting time, also known as the mean reversed residual life function, 

represents the amount of time that has passed since an item has failed under the assumption that it failed in (0, t). By 

setting m = 1 in the KwEE distribution, the MIT may be easily obtained from (14). 

 

4. Parameter Estimators 

The KwEE distribution parameters' maximum likelihood (ML) estimators are obtained. Let X1,…, Xn represent 

observed values from the KwEE distribution with a set of parameters ( ), , , .
T

   =M  The log-likelihood function 

for ,M may be stated as 
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The ML estimators, say ( )ˆ ˆ ˆ ˆˆ, , , ,
T

   =M  are obtained by setting the nonlinear system of equations , ,Z Z Z    and 

Z  to zero and solving them simultaneously. 

 

5. Simulation Study  

We conduct a simulation analysis in this part to assess the performance of ML estimates (MLEs) in terms of 

absolute biases (ABs), standard errors (SEs), and mean squared errors (MSEs) for various sample sizes and 
parameter values. The simulation method is as follows 

 

❖ From the KwEE distribution, generate 1000 random sample with sizes n =10, 20, 30, 50, and 100. 

❖ Choose the following parameter values  

 Set1 ( =0.3, =0.2, =0.8, =0.5),    Set2 ( =0.5, =0.5, =0.6, =0.8),   
 

 
Set3 ( =0.1, =0.5, =1.2,  =2) and Set4 ( =1.2,   =0.2,  =2, =1.5)   

❖ For each model parameter and sample size, the MLEs of parameters are determined. 

❖ The ABs, SEs, and MSEs of MLEs are then computed. The formula of ABs, SEs and MSEs are defined as 

follows 

1000

1
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i

i
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= −
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1

1 ˆMSEs= ( ) ,
1000

i

i

 
=

−
1000

2

1
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i

i

 
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−  

where, ̂  is the estimates of the parameter .   From numerical outcomes in Tables 4 and 5, we notice the following 

▪ The ABs and MSEs decrease with increases n (see Tables 4, 5 and Figures 3, 4). 

▪ As the value of  gets larger, the ABs of ̂ decrease. In almost estimates, the ABs of ̂  increase as 

value increases. 

▪ In almost all cases, the ABs and MSEs decrease as values of   and  increase for a fixed value of  (see 

Tables 4 and 5). 
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Figure 3: MSEs of MLEs for the Set 1 Figure 4: ABs of MLEs for the Set 4 

 

Table 4: ABs, SEs and MSEs of the KwEE parameters 

n Measure 
Set 1  Set 2 

̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  

10 

MSE 0.1225 0.0361 0.6400 0.2294 0.2953 0.3221 0.2176 0.2089 

AB 0.3500 0.1900 0.8000 0.4790 0.5432 0.5624 0.4984 0.6106 

SE 0.0000 0.0000 0.0000 0.0000 0.0023 0.0021 0.0010 0.0045 

20 

MSE 0.1156 0.0357 0.6400 0.2285 0.2947 0.3087 0.0539 0.0514 

AB 0.3400 0.1890 0.8000 0.4780 0.5429 0.5556 0.2318 0.2266 

SE 0.0000 0.0000 0.0000 0.0000 0.0020 0.0020 0.0119 0.0089 

30 

MSE 0.1089 0.0353 0.6400 0.2275 0.2947 0.3088 0.0537 0.0513 

AB 0.3300 0.1880 0.8000 0.4770 0.5428 0.5557 0.2315 0.2263 
SE 0.0000 0.0000 0.0000 0.0000 0.0004 0.0004 0.0004 0.0014 

50 

MSE 0.0529 0.0342 0.6400 0.2266 0.2946 0.3088 0.0534 0.0511 

AB 0.2300 0.1850 0.8000 0.4760 0.5428 0.5557 0.2312 0.2261 

SE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011 

100 

MSE 0.0169 0.0306 0.6400 0.2172 0.2945 0.3085 0.0533 0.0435 

AB 0.1300 0.1750 0.8000 0.4660 0.5426 0.5554 0.2308 0.2086 

SE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Table 5: ABs, SEs and MSEs of the KwEE parameters 

n Measure 
Set 3  Set 4  

̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  

10 

MSE 0.0042 0.2866 1.1521 2.4012 1.2426 0.0797 2.1949 0.4910 

AB 0.0646 0.5354 1.0732 1.5495 1.1146 0.2817 1.4785 0.6843 

SE 0.0013 0.0013 0.0181 0.0153 0.0185 0.0169 0.0950 0.1509 

20 

MSE 0.0042 0.2853 1.1329 2.3587 1.2412 0.0781 2.1816 0.4725 

AB 0.0646 0.5341 1.0567 1.5357 1.1142 0.2795 1.4768 0.6865 

SE 0.0013 0.0017 0.0216 0.0199 0.0015 0.0037 0.0219 0.0349 

30 

MSE 0.0042 0.2844 1.1101 2.3359 1.2207 0.0781 1.3083 0.4432 

AB 0.0644 0.5333 1.0534 1.5281 1.1142 0.2795 1.1012 0.6572 
SE 0.0021 0.0021 0.0203 0.0273 0.0015 0.0037 0.3092 0.5621 

50 

MSE 0.0036 0.2842 1.0346 2.1055 1.0171 0.0781 1.2537 0.3750 

AB 0.0598 0.5330 1.0170 1.4509 1.0079 0.2795 1.0994 0.2276 

SE 0.0020 0.0021 0.0193 0.0240 0.0351 0.0037 0.2124 0.5685 

100 

MSE 0.0033 0.2765 0.9592 1.8908 1.0147 0.0779 1.2498 0.3564 

AB 0.0557 0.5253 0.9725 1.3684 1.0068 0.2793 1.1066 0.2428 

SE 0.0144 0.0144 0.1159 0.1348 0.0331 0.3948 0.1591 0.5454 
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6. Data Analysis  

Fitting the proposed distribution to two real data sets, we demonstrate the utility of the KwEE distribution. The 

KwEE distribution is compared to KwE, gamma, GE, one parameter L, GL, and EL models. 

 

(i) Data I 

The breaking stress of carbon fibers (in Gba) reported by Cordeiro and Lemonte (2011) is represented by this real 

data set. In the applications, the information about the hazard shape can help in selecting a particular model. For this 

aim, the total time test (TTT) plot (see Aarset (1987)) is an essential graphical technique to check if the data can be 

applied to a given distribution or not, this plot's is given by plotting 

 ( ) ( ) ( ) ( )

1 1

( ) ,      =1,2,3,... ,

r n

i r i

i i

rG x n r x x r n
n

= =

    
 = + −   
    
    
   against   /r n , and ( )ix , (   1  , . . . , i n= ) are the order 

statistics of the sample. The hrf is constant if the TTT plot is graphically displayed as a straight diagonal, but 

increasing (or decreasing) if the TTT plot is concave (or convex).  If the TTT plot is initially convex and then 

concave, the hrf is U-shaped (bathtub); otherwise, the hrf is unimodal.  The scaled-TTT plot in Figure 5 is concave. 

It shows that the hrf is increasing, proving the validity of our model. 

 
 

Figure 5: Scaled-TTT plot of the carbon data set 

 

Table 6 shows the MLEs for the carbon data set, as well as the Akaike information criterion (AIC), Bayesian 

information criterion (BIC), Cramer-von Mises statistic (W*), and Anderson-Darling statistic (A*). The better the 

fit, the lower the numerical criteria values. Table 6 shows that the KwEE model, out of all the models used, provides 

the best fit. In comparison to the other models, the KwEE model has the smallest AIC, BIC, A*, and W*.  

 

Table 6: The MLEs and the proposed measures for carbon data 

Model MLEs AIC BIC 𝑨∗ 𝑾∗ 

KwEE ̂ = 3.016 ̂ = 33.90 180.580 189.337 0.542 0.098 

 
̂ = 0.301 ̂ = 1.1555     

gamma  ̂ = 7.487 ̂ = 2.713 186.335 190.714 1.311 0.246 

GE ̂ = 9.201 ̂ = 1.007 194.745 199.124 2.094 0.373 

KwE ̂ = 10.424  ̂ = 1.235 193.360 197.740 2.120 0.424 

L ˆ 1.623 =   246.768 248.958 10.692 2.091 

GL ̂ = 2.783 ̂ =  6.904 187.860 194.429 1.286 0.242 

 ̂ = 9.725      

EL ̂ = 1.246 ̂ = 7.042 191.594 195.973 1.286 0.328 
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A probability plot (P-P), often known as a probability plot, is a simple tool for detecting if a data set fits a 

hypothesized distribution. The data are plotted against a theoretical distribution in such a way that if the plot is a 

straight line, it's safe to believe the statistical sample comes from the stated distribution. Departures from this line 

denote deviations from the underlying distribution. Furthermore, the quantile-quantile (Q-Q) plot is a graphical tool 
for detecting whether two data sets are from the same population. A Q-Q plot is a plot of the quantiles of the first 

data set against the quantiles of the second data set.  

As a result, we may conclude that the KwEE model is the best. Figure 6 shows the fitted pdfs, cdfs, P-P and Q-Q 

plots for all competitive distributions of the first data set. With a focus on the KwEE model, the fitted pdfs, cdfs, PP 

and Q-Q plots for the considered data is displayed in Figure 7. They all indicate how well the KwEE model fits the 

data, indicating its potential for use by practitioners in data analysis. Table 6's conclusions are also validated by 

these graphs. 
 

 
 

Figure 6:. Histogram and fitted density plots, the plots of empirical and fitted cdfs, P-P plots and Q-Q plots for the 

carbon data set 
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Figure 7: Histogram and fitted density plot, the plot of empirical and fitted cdf, P-P plot and Q-Q plot for the carbon 

data set in case of KwEE model. 

 

(ii) Data II 

The data represent fracture toughness of Alumina (Al2O3) (see Nadarajah and Kotz (2008)). We use the scaled-TTT 

plot to confirm the validity of the proposed model once more. The scaled-TTT plot is concave in Figure 8. It 
suggests that the hrf is increasing, confirming the accuracy of our model. 

 

 
 

Figure 8: Scaled-TTT plot of the data II 

 

The MLEs, AIC, BIC, W*, and A* are listed in Table 7. The KwEE model, according to the results in Table 7, 

provides the best fit of all the models used here. The KwEE model holds lower the values of these numerical 

criteria. 
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Table 7: The MLEs the proposed measures for second data set 

Model MLEs  AIC BIC 𝑨∗ 𝑾∗ 

KwEE ̂ = 6.025 ̂ = 23.170 349.245 360.362 0.981 0.152 

 ̂ = 0.348 ̂ = 0.683     

gamma ̂ = 15.523 ̂ = 3.588 358.736 364.295 2.342 0.388 

GE ̂ = 30.628 ̂ = 0.910 378.844 384.402 4.225 0.718 

KwE ̂ = 41.715 ̂ = 1.02 380.842 386.400 5.100 0.966 

L ˆ 0.397 =   536.795 539.575 25.114 4.993 

GL ̂ = 3.640 ̂ = 15.058 360.543 368.880 2.326 0.386 

 ̂ = 7.983      

EL ̂ = 1.082 ̂ = 19.973 375.315 380.873 3.877 0.657 

 

Figure 9 shows the histogram of the data set, the fitted pdf of the KwEE distribution, and the fitted pdfs of other 

comparable distributions for the second data set. The P-P plots and Q-Q plots for all models are also represented in 

Figure 9. Plots of empirical pdf, fitted cdf, as well as P-P and Q-Q plots for the KwEE model are represented in 

Figure 10. All the graphs show that the KwEE model yields a better fit in comparison to the competitor models. The 

results in Table 7 are similarly supported by these charts. 

 
 

Figure 9: Histogram and fitted density plots, the plots of empirical and fitted cdfs, P-P plots and Q-Q plots for data 

II 
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Figure 10: Histogram and fitted density plot, the plot of empirical and fitted cdf, P-P plot and Q-Q plot for the 

carbon data set in case KwEE model 

 

7. Summary and Conclusion 

Significant progress has been achieved in the generalization of some well-known lifetime models, which have been 

effectively applied to challenges in a variety of fields. In this paper, we introduce a four-parameter distribution 

obtained by applying the Kumaraswamy generator to the extended exponential distribution. A new generalization of 

the EE distribution called Kumaraswamy extended exponential distribution. The exponential, Kumaraswamy 

exponential, Kumaraswamy Lindley, Lindley, extended exponential, exponentiated Lindley, gamma, and 

generalized exponential distributions are among the specialized sub-models. Structure behavior of the new model is 

studied based on its some useful properties. The estimation of the model parameters is approached by maximum 

likelihood method. Simulation illustration is conducted in order to evaluate the performance of estimates for 
different sample sizes. Two applications of the KwEE model to the real data show that the new distribution can be 

used quite effectively to provide better fits then we expect that the proposed model may be an interesting alternative 

model for a wider range of statistical research. 
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