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Abstract

Recently, autoregressive (AR) time-series models have been extended to model time-series with double seasonality.
However, in some real applications, high frequency time-series can exhibit triple seasonal patterns. Therefore, in this
paper we aim to extend the AR models to fit time-series with three seasonality layers, and accordingly we introduce the
Bayesian inference for triple seasonal autoregressive (TSAR) models. In this Bayesian inference, we first assume the
normal distribution for the TSAR model errors and employ different priors on the TSAR model parameters, including
normal-gamma, g and Jeffreys’ priors. Based on the normally distributed errors and employed model parameters’
priors, we derive the marginal posterior distributions of different TSAR model parameters in closed forms. Particularly,
we show that the marginal posterior of the TSAR model coefficients vector to be a multivariate t distribution and the
marginal posterior of the TSAR model precision to be a gamma distribution. We conduct an extensive simulation
study aiming to evaluate the efficiency of our proposed Bayesian inference, and also we apply our work to real hourly
time-series on electricity load in some European countries.
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1. Introduction

Time-series with high frequency are observed in many real applications, such as hourly electricity load, half-hourly
volumes of call arrivals, and half-hourly access to web sites. These time-series are usually characterized by exhibiting
multiple layers of seasonality, such as intraday, intraweek and intrayear seasonal patterns. Since the traditional sea-
sonal autoregressive moving average (SARMA) models can not capture multiple seasonalities, some researchers have
extended these models to model and forecast time-series with multiple seasonalities, see for example Amin (2018)
in the Bayesian framework, and see also De Livera et al. (2011) and Sulandari et al. (2021) in the non-Bayesian
framework.
Modeling time-series with two seasonality layers in the non-Bayesian framework has been the interest of several
researchers, see for example Taylor (2008b, 2008a), Ryu et al. (2017), Deb et al. (2017), Taylor and McSharry (2017)
and Lago et al. (2018). However, few work have been introduced for the analysis of time-series with three seasonality
layers, see for example Taylor (2010b, 2010a) De Livera et al. (2011), Taylor and Snyder (2012) and Dumas and
Cornélusse (2018).
As it is known in literature, SARMA models are nonlinear in the coefficients because of the products of non-seasonal
and seasonal coefficients, which makes their likelihood function analytically intractable and complicates their posterior
and predictive analyses (Amin, 2009). In order to simplify the Bayesian analysis of SARMA models, some approaches
have been presented in literature to approximate their posterior and predictive densities. Most of these approaches are
based on analytical or Markov-Chain Monte-Carlo (MCMC) approximations. The analytical approximation is simply
based on modifying analytically SARMA’s posterior and predictive densities to be in closed-form distributions, see
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for example Shaarawy and Ali (2003), Amin (2018) and Amin (2019a, 2022b). On the other hand, the approximation
based on MCMC methods is mainly simulating SARMA’s conditional posterior and predictive densities to approximate
their intractable posterior and predictive densities, see for example Barnett et al. (1997), Vermaak et al. (1998) and
Ismail and Amin (2014).
Bayesian analysis of time-series with single seasonality modeled by SARMA models is rich and well established. For
example, Based on MCMC methods, Barnett et al. (1996) introduced the Bayesian analysis of seasonal AR (SAR)
models, and also Vermaak et al. (1998) proposed Metropolis within Gibbs sampler to present the Bayesian inference
of SAR models. Based on the analytical approximation, Shaarawy and Ali (2003) presented the identification of SAR
models by deriving the approximate posterior mass function of the SAR model order. Using Gibbs sampler, Ismail
and Amin (2014) presented the Bayesian inference of SARMA models, and also recently Amin (2019b) introduced
the Bayesian estimation and prediction of these models.
Bayesian analysis of time-series with double seasonality modeled by double SARMA (DSARMA) models is still
in its initial stages. The first work is this direction is introduced by Ismail and Zahran (2013) that used analytical
approximations to present the Bayesian inference of double SAR (DSAR) models. In addition, Amin and Ismail
(2015) applied Gibbs sampler to present the Bayesian estimation of DSAR models. This work is extended by Amin
(2017a, 2017b) to introduce the Bayesian estimation of double seasonal moving average (DSMA) and DSARMA
models respectively. Based on analytical approximations, Amin (2018, 2019a) presented the Bayesian estimation of
DSARMA models and Bayesian identification of DSAR models respectively. In the same line of work, recently Amin
(2020) applied Gibbs sampler to conduct both Bayesian estimation and prediction of DSAR models. However, to the
best of our knowledge none has introduced the Bayesian analysis of time-series with triple seasonality, except our
recent work of proposing the Bayesian estimation for triple seasonal autoregressive (TSAR) models via Gibbs sampler
(Amin, 2022a).
Therefore, in order to enrich the literature of Bayesian analysis of time-series with triple seasonality we introduce
in the paper the Bayesian inference of TSAR models based on the analytical approximations, aiming to simplify the
analysis without conducting extensive MCMC-based simulations. We first assume the normal distribution for the
TSAR model errors and employ different priors on the TSAR model parameters, including normal-gamma, g and
Jeffreys’ priors, for more details about these priors see for example Amin (2017c, 2019c). Based on the normally
distributed errors and employed model parameters’ priors, we derive the marginal posterior distributions of different
TSAR model parameters in closed forms. Particularly, we show that the marginal posterior of the TSAR model
coefficients vector to be a multivariate t distribution and the marginal posterior of the TSAR model precision to be a
gamma distribution.
The remainder of this paper is structured as follows: In Section 2 we introduce the TSAR models. We then present
the proposed Bayesian inference for TSAR models in Section 3. In Section 4 we introduce the simulation study and
discuss results, and then present a real application of our work on hourly time-series of electricity load in six European
countries. Finally, we conclude our work in Section 5.

2. Triple Seasonal Autoregressive (TSAR) Models

A time-series {ut} with zero-mean that is generated by a TSAR model of order p, P1, P2 and P3, denoted by
TSAR(p)(P1)s1 (P2)s2 (P3)s3 , can be written in a compact form as

φp(B)ΦP1
(Bs1)θP2

(Bs2)ΘP3
(Bs3)ut = wt (1)

where {wt}’s are the TSAR model errors that are unobserved and assumed to be independent normal variates with
zero-mean and precision τ . The backshift operator B is defined as Bkut = ut−k, and s1, s2 and s3 are the three sea-
sonal periods. The non seasonal autoregressive polynomial is φ(B) =

(
1− φ1B − φ2B

2 − · · · − φpBp
)

with order
p. As expected, there are three seasonal autoregressive polynomials in TSAR model, which are:
ΦP1

(Bs1) =
(
1− Φ1B

s1 − Φ2B
2s1 − · · · − ΦP1

BP1s1
)

with order P1,
θP2(Bs2) =

(
1− θ1B

s2 − θ2B
2s2 − · · · − θP2B

P2s2
)

with order P2, and
ΘP3

(Bs3) =
(
1−Θ1B

s3 −Θ2B
2s3 − · · · −ΘP3

BP3s3
)

with order P3.
Finally, the non seasonal and seasonal autoregressive coefficients are φ = (φ1, φ2, · · · , φp)T , Φ = (Φ1,Φ2, · · · ,ΦP1

)
T ,

θ = (θ1, θ2, · · · , θP2
)
T and Θ = (Θ1,Θ2, · · · ,ΘP3

)
T , respectively.

As compared with the usual single SAR model, the TSAR model (1) has two extra terms, i.e. θP2
(Bs2) and ΘP3

(Bs3)
to accommodate the other two layers of seasonality. This means that the single SAR and double SAR models are
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special cases of TSAR model. In order to simplify the presentation of the TSAR model structure, we can use the
summation notation to expand the compact form of TSAR model (1) as:

ut =

p∑
i=1

φiut−i +

P1∑
j=1

Φjut−js1 +

P2∑
m=1

θmut−ms2 +

P3∑
k=1

Θkut−ks3 −
p∑
i=1

P1∑
j=1

φiΦjut−i−js1 −

p∑
i=1

P2∑
m=1

φiθmut−i−ms2 −
p∑
i=1

P3∑
k=1

φiΘkut−i−ks3 −
P1∑
j=1

P2∑
m=1

Φjθmut−js1−ms2 −

P1∑
j=1

P3∑
k=1

ΦjΘkut−js1−ks3 −
P2∑
m=1

P3∑
k=1

θmΘkut−ms2−ks3 +

p∑
i=1

P1∑
j=1

P2∑
m=1

φiΦjθmut−i−js1−ms2 +

p∑
i=1

P1∑
j=1

P3∑
k=1

φiΦjΘkut−i−js1−ks3 +

p∑
i=1

P2∑
m=1

P3∑
k=1

φiθmΘkut−i−ms2−ks3 +

P1∑
j=1

P2∑
m=1

P3∑
k=1

ΦjθmΘkut−js1−ms2−ks3 −
p∑
i=1

P1∑
j=1

P2∑
m=1

P3∑
k=1

φiΦjθmΘkut−i−js1−ms2−ks3 + wt

(2)

It is worth noting that form eqn. (2) the TSAR model can be seen as an AR model of large order (1 + p)(1 +
P1)(1 +P2)(1 +P3)−1 but some coefficients are products of non seasonal and seasonal coefficients. It can be shown
mathematically that the TSAR model (2) is stationary whenever the roots of φ(B) = 0, ΦP1

(Bs1) = 0, θP2
(Bs2) = 0

and ΘP3(Bs3) = 0 lie outside the unit circle. It has to be noted here that stationarity and properties of time-series
models are discussed in details main time-series textbooks such as Box et al. (2015).

As another way of simplification, we can write the TSAR model in the matrix form as:

u = Zβ + w, (3)

where u = (u1, u2, · · · , un)
T , w = (w1, w2, . . . , wn)

T , Z is an n × p? design matrix, where p? = (1 + p)(1 +
P1)(1 + P2)(1 + P3)− 1, with the tth row:

Zt = (ut−1, .., ut−p, ut−s1 , ut−s1−1, .., ut−s1−p, ...., ut−P1s1 , ut−P1s1−1, .., ut−P1s1−p, ut−s2 ,

ut−s2−1, .., ut−s2−p, ut−s2−s1 , ut−s2−s1−1, .., ut−s2−s1−p, ...., ut−s2−P1s1 , ut−s2−P1s1−1,

.., ut−s2−P1s1−p, . . . . . . , ut−P2s2 , ut−P2s2−1, .., ut−P2s2−p, ut−P2s2−s1 , ut−P2s2−s1−1, ..,

ut−P2s2−s1−p, ...., ut−P2s2−P1s1 , ut−P2s2−P1s1−1, .., ut−P2s2−P1s1−p, ut−s3 , ut−s3−1, ..,

ut−s3−p, ut−s3−s1 , ut−s3−s1−1, .., ut−s3−s1−p, ...., ut−s3−P1s1 , ut−s3−P1s1−1, .., ut−s3−P1s1−p,

ut−s3−s2 , ut−s3−s2−1, .., ut−s3−s2−p, ut−s3−s2−s1 , ut−s3−s2−s1−1, .., ut−s3−s2−s1−p, ....,

ut−s3−P1s1−s2 , ut−s3−P1s1−s2−1, .., ut−s3−P1s1−s2−p, . . . . . . , ut−s3−P2s2 , ut−s3−P2s2−1, ..,

ut−s3−P2s2−p, ut−s3−s1−P2s2 , ut−s3−s1−P2s2−1, .., ut−s3−s1−P2s2−p, ...., ut−s3−P1s1−P2s2 ,

ut−s3−P1s1−P2s2−1, .., ut−s3−P1s1−P2s2−p, . . . . . . . . . , ut−P3s3 , ut−P3s3−1, .., ut−P3s3−p,

ut−P3s3−s1 , ut−P3s3−s1−1, .., ut−P3s3−s1−p, ...., ut−P3s3−P1s1 , ut−P3s3−P1s1−1, ..,

ut−P3s3−P1s1−p, ut−s2 , ut−P3s3−s2−1, .., ut−P3s3−s2−p, ut−P3s3−s1−s2 , ut−P3s3−s1−s2−1, ..,

ut−P3s3−s1−s2−p, ...., ut−P3s3−P1s1−s2 , ut−P3s3−P1s1−s2−1, .., ut−P3s3−P1s1−s2−p, . . . . . . ,

ut−P3s3−P2s2 , ut−P3s3−P2s2−1, .., ut−P3s3−P2s2−p, ut−P3s3−s1−P2s2 , ut−P3s3−s1−P2s2−1, ..,

ut−P3s3−s1−P2s2−p, ...., ut−P3s3−P1s1−P2s2 , ut−P3s3−P1s1−P2s2−1, .., ut−P3s3−P1s1−P2s2−p) , (4)

and β is the model coefficients vector written as:
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β = (φ1, .., φp,Φ1,−φ1Φ1, ..,−φpΦ1, ....,ΦP1 ,−φ1ΦP1 , ..,−φpΦP1 , θ1,−φ1θ1, ..,−φpθ1,

−Φ1θ1, φ1Φ1θ1, .., φpΦ1θ1, ....,−ΦP1θ1, φ1ΦP1θ1, .., φpΦP1θ1, . . . . . . , θP2 ,−φ1θP2 ,

..,−φpθP2 ,−Φ1θP2 , φ1Φ1θP2 , .., φpΦ1θP2 , ....,−ΦP1θP2 , φ1ΦP1θP2 , .., φpΦP1θP2 ,

Θ1,−φ1Θ1, ..,−φpΘ1,−Φ1Θ1, φ1Φ1Θ1, .., φpΦ1Θ1, ....,−ΦP1Θ1, φ1ΦP1Θ1, .., φpΦP1Θ1,

−θ1Θ1, φ1θ1Θ1, .., φpθ1Θ1,Φ1θ1Θ1,−φ1Φ1θ1Θ1, ..,−φpΦ1θ1Θ1, ....,ΦP1θ1Θ1,

−φ1ΦP1θ1Θ1, ..,−φpΦP1θ1Θ1, . . . . . . ,−θP2Θ1, φ1θP2Θ1, .., φpθP2Θ1,Φ1θP2Θ1,

−φ1Φ1θP2Θ1, ..,−φpΦ1θP2Θ1, ....,ΦP1θP2Θ1,−φ1ΦP1θP2Θ1, ..,−φpΦP1θP2Θ1,

ΘP3 ,−φ1ΘP3 , ..,−φpΘP3 ,−Φ1ΘP3 , φ1Φ1ΘP3 , .., φpΦ1ΘP3 , ....,−ΦP1ΘP3 , φ1ΦP1ΘP3 , ..,

φpΦP1ΘP3 ,−θ1ΘP3 , φ1θ1ΘP3 , .., φpθ1ΘP3 ,Φ1θ1ΘP3 ,−φ1Φ1θ1ΘP3 , ..,−φpΦ1θ1ΘP3 ,

....,ΦP1θ1ΘP3 ,−φ1ΦP1θ1ΘP3 , ..,−φpΦP1θ1ΘP3 , . . . . . . ,−θP2ΘP3 , φ1θP2ΘP3 , ..,

φpθP2ΘP3 ,Φ1θP2ΘP3 ,−φ1Φ1θP2ΘP3 , ..,−φpΦ1θP2ΘP3 , ....,ΦP1θP2ΘP3 ,

−φ1ΦP1θP2ΘP3 , ..,−φpΦP1θP2ΘP3)
T (5)

3. Posterior Analysis of TSAR Models

Following the standards in Bayesian statistical modeling, we derive the posterior distribution of TSAR model param-
eters β and τ by combining the prior information on these parameters, formulated by the prior distribution, with the
likelihood function of observed time-series data {ut} (Broemeling, 1985).
Since we assume the TSAR model errors are normally distributed, we apply a straightforward transformation from w
to u in the TSAR model (3) to write the conditional likelihood function as:

L(β, τ | u) ∝ τ
n−P?

2 exp
{
−τ

2
wTw

}
,

∝ τ
n−P?

2 exp
{
−τ

2
(u− Zβ)

T
(u− Zβ)

}
(6)

This likelihood function is conditional on the first P ? initial values, i.e. (u0, u−1, · · · , u1−P?), where P ? = P3s3 +
P2s2 + P1s1 + p.
In order to ease the derivation of posterior distribution of the TSAR model parameters β and τ , we first assume the
products of nonseasonal and seasonal coefficients as free coefficients. We employ the normal-gamma prior for these
model parameters β and τ . Let τ ∼ G(ν2 ,

λ
2 ) and β ∼ Np?(µβ , τ

−1Σβ), we can write the normal-gamma prior of β
and τ as:

ζn (β, τ) ∝ τ

(
ν+p?

2 −1
)

exp
{
−τ

2

[
λ+ (β − µβ)

T
Σ−1
β (β − µβ)

]}
, (7)

where µβ ,Σβ , ν and λ are hyper-parameters that have to be specified or estimated.
In addition, to simplify the elicitation of the covariance matrix of coefficients, we can employ the g-prior for β and τ
that can be presented in the following form:

ζg (β, τ) ∝ τ ( p
?

2 −1) exp
{
−gτ

2

(
β − β̄

)T
(ZTZ)

(
β − β̄

)}
, (8)

where β̄ is a prior expected value of β, and g can be specified as a decreasing function of the time-series size n
and number of TSAR model coefficients p?, for more details about setting these hyper-parameters see for example
Fernandez et al. (2001) and Amin (2017c).
In case of no information is available about β and τ , we employ Jeffreys’ prior on β and τ that can be introduced as:

ζj (β, τ) ∝ τ−1, τ > 0 (9)

The prior information on the TSAR model parameters β and τ can be updated by the likelihood function (6) and
formulated by the posterior distribution. Therefore, it is required to derive the marginal posteriors of the TSAR model
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parameters β and τ . We first derive the joint posterior of β and τ , and then we integrate out one of them to obtain
the marginal posterior of the other. Accordingly, we multiply the likelihood function in eqn. (6) by each one of the
three prior distributions in eqn. (7) - (9) to obtain the joint posterior of β and τ . First, in case of employing the
normal-gamma prior, we can obtain the joint posterior of β and τ as:

ζn (β, τ | u) ∝ τ

(
n−P?+ν+p?

2 −1
)

exp
{
−τ

2

[
λ+ (β − µβ)

T
Σ−1
β (β − µβ) +

(u− Zβ)
T

(u− Zβ)
]}

. (10)

Second, for employing the g-prior, we can present the joint posterior of β and τ as:

ζg (β, τ | u) ∝ τ

(
n−P?+p?

2 −1
)

exp
{
−τ

2

[(
β − β̄

)T
(gZTZ)

(
β − β̄

)
+

(u− Zβ)
T

(u− Zβ)
]}

. (11)

Third, for Jeffreys’ prior, we can write the joint posterior of β and τ as:

ζj (β, τ | u) ∝ τ

(
n−P?

2 −1
)

exp
{
−τ

2
(u− Zβ)

T
(u− Zβ)

}
. (12)

Now, from these joint posteriors (10) - (12), we can derive the marginal posterior of each one of the TSAR model
parameters β and τ by integrating out the unwanted parameter. In particular, in the following theorem we show
that for employing the normal-gamma prior the resulting marginal posterior of the model coefficients vector β is a
multivariate t distribution and also the marginal posterior of the model precision τ is a gamma distribution.

Theorem 3.1. Using the conditional likelihood function of TSAR model given in eqn. (6) and by employing the
normal-gamma prior of TSAR model parameters β and τ given in eqn. (7), the marginal posterior of the TSAR model
coefficients vector β is a multivariate t distribution with parameters: degrees of freedom vn = (n + ν − P ?), mean
vector µn = A−1

n Bn, and covariance matrix Vn = Cn
vn−2A

−1
n , and also the marginal posterior of the TSAR model

precision τ is a gamma distribution with parameters: vn
2 and Cn

2 , where:

A−1
n = (ZTZ + Σ−1

β )−1

Bn = (ZTu + Σ−1
β µβ)

Cn = [uTu + λ+ µTβΣ−1
β µβ −BTnA−1

n Bn]

Proof. We first multiply the conditional likelihood function of TSAR model given in eqn. (6) by the normal-gamma
prior of TSAR model parameters β and τ given in eqn. (7) to obtain their joint posterior that can be written as:

ζn (β, τ | u) ∝ τ

(
n−P?+ν+p?

2 −1
)

exp
{
−τ

2

[
λ+ (β − µβ)

T
Σ−1
β (β − µβ) +

(u− Zβ)
T

(u− Zβ)
]}

. (13)

We integrate this joint posterior (13) over the TSAR model precision τ and then complete the square with respect to
β results in the marginal posterior of the TSAR model coefficients vector β to be a multivariate t distribution with
stated parameters. On the other hand, we complete the square in the exponent of the joint posterior (13) with respect
to the TSAR model coefficients vector β and then integrate it out results in the marginal posterior of the TSAR model
precision τ to be a gamma distribution with stated parameters.
In addition, in the following two corollaries we show that for employing the g and Jeffreys’ priors the resulting
marginal posteriors are the same as in Theorem (3.1) but with different parameters: for the TSAR model coefficients
vector β is a multivariate t distribution and for the TSAR model precision τ is a gamma distribution.

Lemma 3.1. Using the conditional likelihood function of TSAR model given in eqn. (6) and by employing the g prior
of TSAR model parameters β and τ given in eqn. (8), the marginal posterior of the TSAR model coefficients vector
β is a multivariate t distribution with parameters: degrees of freedom vg = (n − P ?), mean vector µg = A−1

g Bg ,
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and covariance matrix Vg =
Cg
vg−2A

−1
g , and also the marginal posterior of the TSAR model precision τ is a gamma

distribution with parameters: vg
2 and Cg

2 , where:

A−1
g = ((g + 1)ZTZ)−1

Bg = (ZTu + g(ZTZ)β̄)

Cg = [uTu + gβ̄T (ZTZ)β̄ −BTg A−1
g Bg]

.

Proof. We first set λ = ν = 0, µβ = β̄, and Σ−1
β = gZTZ and then we simply get this corollary result directly from

Theorem (3.1).

Lemma 3.2. Using the conditional likelihood function of TSAR model given in eqn. (6) and by employing the Jeffreys’
prior of TSAR model parameters β and τ given in eqn. (9), the marginal posterior of the TSAR model coefficients vector
β is a multivariate t distribution with parameters: degrees of freedom vj = (n − 2p?), mean vector µj = A−1

j Bj ,

and covariance matrix Vj =
Cj
vj−2A

−1
j , and also the marginal posterior of the TSAR model precision τ is a gamma

distribution with parameters: vj
2 and Cj

2 , where:

A−1
j = (ZTZ)−1

Bj = ZTu

Cj = [uTu−BTj A−1
j Bj ]

.

Proof. We first set λ = 0, Σ−1
β = 0, and ν = −p? and then we simply get this corollary result directly from Theorem

(3.1).
Using Theorem (3.1) and Corollaries (3.1) and (3.2), we can easily conduct inferential analysis about the TSAR model
coefficients and precision. Here, it is worth mentioning an important property of the multivariate t distribution. Let
β is a vector that follows a multivariate t distribution with parameters: degrees of freedom vn, mean vector µn, and
covariance matrix Vn, then the ith element of β follows a univariate t distribution with parameters: degrees of freedom
vn, mean µni , and variance Vni , where µni is the ith element in the mean vector µn and Vni is the ith diagonal
element in the covariance matrix Vn. The same result is valid for any sub-vector of β. We exploit this property of the
multivariate t distribution in our work, and in order to test the significance of any element in the coefficients vector β,
say βi, we can compute an (1− α)% credible interval as:

µni − tα2 ,vn
√
Vni ≤ βi ≤ µni + tα

2 ,vn

√
Vni (14)

Note that in this credible interval tα
2 ,vn

is just the t distribution (1 − α
2 ) percentile with degrees of freedom is vn. In

the same way, we can use the gamma distribution to conduct inferential analysis about the TSAR model precision.

4. Simulations and Applications

We conduct in this section an extensive simulation study aiming to assess the efficiency of our introduced Bayesian
inference for the TSAR models, and then we demonstrate the applicability of our work to real time-series with three
layers of seasonality using electricity load in some European countries, which is hourly time-series.

4.1. Simulation Study

In order to evaluate the efficiency of the introduced Bayesian inference for TSAR models, in this simulation study we
try to simulate different seasonality patterns with different time-series sample sizes. Particularly, we generate 1,000
time-series of size n (from 1,000 to 3,000 with an increment of 1,000 observations) from four TSAR models. The
design of this simulation study for these TSAR models is presented in Table 1, including true parameters values of the
four TSAR models.
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Table 1: Design of simulation study.
TSAR Model φ1 φ2 Φ1 Φ2 θ1 θ2 Θ1 Θ2 τ
I. (1)(1)3(1)21(1)210 0.6 -0.5 -0.3 0.4 1.0
II. (1)(1)4(1)20(1)240 -0.2 0.6 -0.4 0.3 1.0
III. (2)(2)4(1)20(1)240 -0.2 0.3 0.6 -0.4 -0.4 0.3 1.0
IV. (2)(2)3(2)21(2)210 0.3 -0.4 -0.6 0.3 0.2 -0.4 -0.4 0.3 1.0

Once we generate these time-series datasets from these specified four TSAR models, we conduct our introduced
Bayesian inference - by employing the three priors Jeffreys’, g and normal-gamma priors for the TSAR model param-
eters - for each time-series dataset and then we compute the Bayesian estimates for the TSAR model coefficients and
precision, including mean, standard deviation and 95% credible interval.
Before we discuss our simulation results there are some important remarks we should to highlight. First, Bayesian
estimates resulting from employing Jeffreys’ prior are theoretically identical to those estimates can be obtained from
the classical approach, such as ordinary least square (OLS) or maximum likelihood (ML) estimates. This way can
be used to compare our Bayesian estimates with employing different priors for the TSAR model parameters to those
estimates results from the classical approach. Second, in our previous work Amin (2019c) we evaluated the sensitivity
of the posterior distribution to the prior selection, and based on this work results we set g = 1/n, where n is the time-
series size. Third, we follow the empirical Bayesian approach to estimate the hyper-parameters for the normal-gamma
prior of the TSAR model parameters, and for more details about this empirical Bayesian approach see for example
Berger (1985).
We present the simulation results for TSAR Model-I in Table 2, including the mean, standard deviation and 95%
credible interval of the posterior means assuming three priors Jeffreys’, g and normal-gamma priors. These simulation
results for TSAR Model-I show that the Bayesian estimates of the TSAR model parameters obtained from the three
posteriors are close to each other and also close to their true values. Also, each 95% credible interval contains the
parameter’s true value, which confirms the accuracy of the proposed Bayesian estimation. Whenever the sample size
grows, these estimates become much closer to the true values, which highlights the consistency of these Bayesian
estimates. However, the Bayesian estimates of the parameters’ standard deviation result from employing the normal-
gamma prior are highly different from (i.e. much smaller than) those result from employing Jeffreys’ and g priors,
which are very close to each other. For instance, from Table 2, for n = 2,000, different posteriors provide a φ1’s
estimate is about 0.6, and the Bayesian estimates of its standard deviation obtained from the three posteriors ζj(β | y),
ζg(β | y) and ζn(β | y) are about 0.020, 0.020 and 0.014, respectively. This confirms that the Bayesian estimates result
from employing the normal-gamma prior have higher precision compared to those result from employing Jeffreys’
and g priors. We present the simulation results for TSAR Model-II to Model-IV in Tables 3 to 5 and we get similar
conclusions to those of TSAR Model-I.

Table 2: Bayesian results for TSAR Model-I.
True ζj(β | u)∗ ζg(β | u) ζn(β | u)

n βi Value µ̂ σ̂ L U µ̂ σ̂ L U µ̂ σ̂ L U

1,000

φ1 0.6 0.595 0.032 0.532 0.659 0.595 0.032 0.532 0.659 0.595 0.023 0.550 0.640
Φ1 -0.5 -0.494 0.033 -0.559 -0.428 -0.494 0.033 -0.559 -0.429 -0.494 0.023 -0.540 -0.448
θ1 -0.3 -0.295 0.035 -0.366 -0.224 -0.295 0.035 -0.366 -0.224 -0.295 0.025 -0.345 -0.245
Θ1 0.4 0.396 0.033 0.330 0.462 0.396 0.033 0.330 0.461 0.396 0.023 0.349 0.442
τ 1.0 1.000 0.051 0.897 1.103 1.000 0.051 0.898 1.103 1.000 0.036 0.927 1.073

2,000

φ1 0.6 0.598 0.020 0.557 0.638 0.598 0.020 0.557 0.638 0.598 0.014 0.569 0.626
Φ1 -0.5 -0.497 0.022 -0.541 -0.453 -0.497 0.022 -0.541 -0.453 -0.497 0.016 -0.528 -0.466
θ1 -0.3 -0.297 0.023 -0.342 -0.251 -0.297 0.023 -0.342 -0.251 -0.297 0.016 -0.329 -0.265
Θ1 0.4 0.398 0.022 0.354 0.443 0.398 0.022 0.354 0.443 0.398 0.016 0.367 0.430
τ 1.0 1.001 0.034 0.932 1.070 1.001 0.034 0.933 1.070 1.001 0.024 0.953 1.050

3,000

φ1 0.6 0.598 0.016 0.566 0.630 0.598 0.016 0.566 0.630 0.598 0.011 0.576 0.621
Φ1 -0.5 -0.498 0.017 -0.533 -0.464 -0.498 0.017 -0.533 -0.464 -0.498 0.012 -0.523 -0.474
θ1 -0.3 -0.298 0.018 -0.335 -0.261 -0.298 0.018 -0.335 -0.261 -0.298 0.013 -0.324 -0.272
Θ1 0.4 0.399 0.018 0.363 0.435 0.399 0.018 0.363 0.435 0.399 0.013 0.374 0.424
τ 1.0 1.001 0.027 0.947 1.055 1.001 0.027 0.947 1.055 1.001 0.019 0.963 1.039

∗ζj(β | u), ζg(β | u) and ζn(β | u) are posteriors result from employing Jeffreys’, g, and normal-gamma priors respectively;
and L and U are the lower and the upper limits of an 95% credible interval respectively.

From all these results, we can highlight some general conclusions. First, the simulation results confirm the efficiency
of the proposed Bayesian inference of TSAR models; since all the TSAR model parameters’ Bayesian estimates are
on average very close to their true values that are included in the constructed credible intervals. Second, the key
hyper-parameter in the g prior, i.e. g, as we stated above, is usually an decreasing function of the time-series size,
and accordingly for a large time-series size, as in our case of triple seasonal time-series, the g parameter value is
very small and closes to zero, which makes the Bayesian estimates obtained in case of employing g prior are very
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Table 3: Bayesian results for TSAR Model-II.
True ζj(β | u) ζg(β | u) ζn(β | u)

n βi Value µ̂ σ̂ L U µ̂ σ̂ L U µ̂ σ̂ L U

1,000

φ1 -0.2 -0.198 0.037 -0.273 -0.124 -0.198 0.037 -0.273 -0.124 -0.198 0.026 -0.251 -0.145
Φ1 0.6 0.594 0.030 0.534 0.654 0.594 0.030 0.534 0.654 0.594 0.021 0.551 0.637
θ1 -0.4 -0.396 0.036 -0.468 -0.323 -0.396 0.036 -0.467 -0.324 -0.396 0.025 -0.446 -0.345
Θ1 0.3 0.301 0.034 0.232 0.369 0.301 0.034 0.232 0.369 0.301 0.024 0.252 0.349
τ 1.0 0.998 0.051 0.895 1.101 0.998 0.051 0.896 1.101 0.998 0.036 0.926 1.071

2,000

φ1 -0.2 -0.198 0.023 -0.244 -0.152 -0.198 0.023 -0.244 -0.152 -0.198 0.016 -0.231 -0.166
Φ1 0.6 0.597 0.020 0.558 0.637 0.597 0.020 0.558 0.636 0.597 0.014 0.569 0.625
θ1 -0.4 -0.398 0.022 -0.443 -0.353 -0.398 0.022 -0.442 -0.353 -0.398 0.016 -0.430 -0.366
Θ1 0.3 0.299 0.023 0.254 0.345 0.299 0.023 0.254 0.344 0.299 0.016 0.267 0.331
τ 1.0 0.999 0.034 0.931 1.068 0.999 0.034 0.931 1.067 0.999 0.024 0.951 1.048

3,000

φ1 -0.2 -0.199 0.018 -0.236 -0.162 -0.199 0.018 -0.236 -0.162 -0.199 0.013 -0.225 -0.173
Φ1 0.6 0.598 0.015 0.567 0.628 0.598 0.015 0.567 0.628 0.598 0.011 0.576 0.619
θ1 -0.4 -0.399 0.017 -0.434 -0.364 -0.399 0.017 -0.433 -0.364 -0.399 0.012 -0.423 -0.374
Θ1 0.3 0.299 0.018 0.263 0.335 0.299 0.018 0.263 0.335 0.299 0.013 0.273 0.324
τ 1.0 1.000 0.027 0.945 1.054 1.000 0.027 0.945 1.054 1.000 0.019 0.961 1.038

Table 4: Bayesian results for TSAR Model-III.
True ζj(β | u) ζg(β | u) ζn(β | u)

n βi Value µ̂ σ̂ L U µ̂ σ̂ L U µ̂ σ̂ L U

1,000

φ1 -0.2 -0.196 0.036 -0.268 -0.123 -0.196 0.036 -0.268 -0.123 -0.196 0.026 -0.247 -0.144
φ2 0.3 0.291 0.037 0.217 0.365 0.291 0.037 0.218 0.365 0.291 0.026 0.239 0.344
Φ1 0.6 0.591 0.034 0.523 0.660 0.591 0.034 0.523 0.660 0.591 0.024 0.543 0.640
Φ2 -0.4 -0.393 0.037 -0.467 -0.319 -0.393 0.037 -0.467 -0.319 -0.393 0.026 -0.445 -0.340
θ1 -0.4 -0.390 0.036 -0.462 -0.319 -0.390 0.036 -0.461 -0.319 -0.390 0.025 -0.441 -0.339
Θ1 0.3 0.296 0.035 0.225 0.367 0.296 0.035 0.226 0.366 0.296 0.025 0.246 0.346
τ 1.0 1.003 0.051 0.900 1.106 1.003 0.051 0.901 1.105 1.003 0.036 0.930 1.076

2,000

φ1 -0.2 -0.198 0.023 -0.244 -0.152 -0.198 0.023 -0.244 -0.153 -0.198 0.016 -0.231 -0.166
φ2 0.3 0.294 0.024 0.246 0.342 0.294 0.024 0.247 0.342 0.294 0.017 0.261 0.328
Φ1 0.6 0.596 0.023 0.550 0.643 0.596 0.023 0.550 0.643 0.596 0.016 0.563 0.629
Φ2 -0.4 -0.397 0.024 -0.445 -0.349 -0.397 0.024 -0.445 -0.350 -0.397 0.017 -0.431 -0.363
θ1 -0.4 -0.396 0.023 -0.441 -0.351 -0.396 0.022 -0.441 -0.351 -0.396 0.016 -0.428 -0.364
Θ1 0.3 0.297 0.022 0.252 0.342 0.297 0.022 0.253 0.341 0.297 0.016 0.265 0.329
τ 1.0 1.001 0.034 0.933 1.070 1.001 0.034 0.934 1.069 1.001 0.024 0.953 1.050

3,000

φ1 -0.2 -0.198 0.018 -0.235 -0.162 -0.198 0.018 -0.234 -0.163 -0.198 0.013 -0.224 -0.173
φ2 0.3 0.297 0.019 0.259 0.334 0.297 0.018 0.260 0.334 0.297 0.013 0.270 0.323
Φ1 0.6 0.598 0.019 0.560 0.635 0.598 0.019 0.561 0.635 0.598 0.013 0.571 0.624
Φ2 -0.4 -0.398 0.019 -0.436 -0.359 -0.398 0.019 -0.436 -0.359 -0.398 0.014 -0.425 -0.370
θ1 -0.4 -0.397 0.018 -0.433 -0.362 -0.397 0.018 -0.432 -0.362 -0.397 0.013 -0.422 -0.372
Θ1 0.3 0.297 0.019 0.260 0.335 0.297 0.019 0.260 0.335 0.297 0.013 0.271 0.324
τ 1.0 1.002 0.027 0.948 1.055 1.002 0.027 0.949 1.055 1.002 0.019 0.964 1.040

Table 5: Bayesian results for TSAR Model-IV.
True ζj(β | u) ζg(β | u) ζn(β | u)

n βi Value µ̂ σ̂ L U µ̂ σ̂ L U µ̂ σ̂ L U

1,000

φ1 0.3 0.296 0.046 0.204 0.388 0.296 0.045 0.206 0.387 0.296 0.032 0.231 0.361
φ2 -0.4 -0.389 0.049 -0.487 -0.290 -0.389 0.048 -0.486 -0.292 -0.389 0.035 -0.458 -0.319
Φ1 -0.6 -0.571 0.047 -0.665 -0.476 -0.571 0.046 -0.663 -0.478 -0.571 0.033 -0.637 -0.504
Φ2 0.3 0.280 0.049 0.181 0.379 0.280 0.049 0.183 0.377 0.280 0.035 0.210 0.350
θ1 0.2 0.184 0.044 0.096 0.272 0.184 0.043 0.097 0.271 0.184 0.031 0.122 0.247
θ2 -0.4 -0.365 0.046 -0.456 -0.273 -0.365 0.045 -0.455 -0.275 -0.365 0.032 -0.430 -0.300
Θ1 -0.4 -0.389 0.046 -0.481 -0.298 -0.389 0.045 -0.479 -0.300 -0.389 0.032 -0.454 -0.325
Θ2 0.3 0.302 0.045 0.213 0.391 0.302 0.044 0.214 0.390 0.302 0.032 0.239 0.365
τ 1.0 1.000 0.066 0.867 1.133 1.000 0.065 0.870 1.131 1.000 0.047 0.906 1.094

2,000

φ1 0.3 0.299 0.026 0.247 0.351 0.299 0.026 0.247 0.350 0.299 0.018 0.262 0.336
φ2 -0.4 -0.397 0.027 -0.452 -0.343 -0.397 0.027 -0.451 -0.344 -0.397 0.019 -0.436 -0.359
Φ1 -0.6 -0.591 0.027 -0.646 -0.537 -0.591 0.027 -0.645 -0.538 -0.591 0.019 -0.630 -0.553
Φ2 0.3 0.295 0.028 0.239 0.350 0.295 0.027 0.240 0.349 0.295 0.020 0.255 0.334
θ1 0.2 0.196 0.025 0.146 0.246 0.196 0.025 0.147 0.245 0.196 0.018 0.161 0.231
θ2 -0.4 -0.388 0.025 -0.439 -0.337 -0.388 0.025 -0.438 -0.338 -0.388 0.018 -0.424 -0.352
Θ1 -0.4 -0.396 0.025 -0.446 -0.347 -0.396 0.024 -0.445 -0.348 -0.396 0.017 -0.431 -0.361
Θ2 0.3 0.294 0.024 0.246 0.342 0.294 0.024 0.247 0.341 0.294 0.017 0.260 0.328
τ 1.0 1.001 0.035 0.931 1.072 1.001 0.035 0.932 1.071 1.001 0.025 0.951 1.051

3,000

φ1 0.3 0.300 0.020 0.260 0.340 0.300 0.020 0.261 0.339 0.300 0.014 0.272 0.328
φ2 -0.4 -0.399 0.020 -0.439 -0.359 -0.399 0.020 -0.438 -0.359 -0.399 0.014 -0.427 -0.370
Φ1 -0.6 -0.595 0.021 -0.636 -0.553 -0.595 0.020 -0.635 -0.554 -0.595 0.015 -0.624 -0.566
Φ2 0.3 0.297 0.022 0.254 0.341 0.297 0.021 0.255 0.340 0.297 0.015 0.267 0.328
θ1 0.2 0.198 0.020 0.159 0.237 0.198 0.019 0.159 0.237 0.198 0.014 0.170 0.226
θ2 -0.4 -0.393 0.019 -0.431 -0.354 -0.393 0.019 -0.431 -0.355 -0.393 0.014 -0.420 -0.365
Θ1 -0.4 -0.397 0.019 -0.436 -0.359 -0.397 0.019 -0.435 -0.359 -0.397 0.014 -0.425 -0.370
Θ2 0.3 0.295 0.019 0.257 0.334 0.295 0.019 0.257 0.333 0.295 0.014 0.268 0.322
τ 1.0 1.000 0.028 0.944 1.056 1.000 0.027 0.945 1.055 1.000 0.020 0.961 1.040

close to those obtained by employing Jeffreys’ prior. Third, employing the normal-gamma prior reduces the posterior
estimates of parameters’ standard deviations compared to employing the g and Jeffreys’ priors, as it can be clearly
seen in simulation results. Therefore, by assuming the normal-gamma prior we get (1− α)% credible intervals of the
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TSAR model parameters that are more precise (shorter) than those resulted from assuming the g and Jeffreys’ prior.

4.2. Real Application on Hourly Time-Series of Electricity Load

With the objective of demonstrating the applicability of our proposed Bayesian inference to real time-series with three
seasonality layers, we conduct our Bayesian inference of TSAR models to hourly time-series on of electricity load in
some European countries. These electricity load time-series exhibit three seasonal patterns: intraday, intraweek and
intrayear. In particular, these electricity load time-series are collected during four years, starting from 1st January 2006
till 31st December 2009, in the European countries: Germany, France, Austria, Belgium, Spain and Czech Republic.
Aiming to visualize the three seasonality layers that are exhibited by these electricity load time-series, we first display
in Figure (1) the time line of hourly electricity load during three periods in Austria : (a) hourly electricity load of only
one week to show the first seasonality layer with s1 = 24, (b) hourly electricity load of only four weeks to show the
second seasonality layer with s2 = 168, and (c) hourly electricity load during four years to show the third seasonality
layer with s3 = 8,736. We visualize hourly electricity load time-series of different European countries in Figure (2). It
is clear from this figure that all hourly electricity load time-series exhibit three seasonality layers.

As it is well-known in time-series analysis, the first step in analyzing real time-series data before estimating the time-
series model it is required to identify (specify) the best order for this model. Following the same standard, we need first
to specify the best suitable TSAR model order for each one of these datasets. Accordingly, we apply the mostly-used
Akaike’s information criterion (AIC) to estimate the suitable order of the TSAR model with setting the maximum
order value of nonseasonal and seasonal polynomials to be three in the TSAR model (2), i.e. p = P1 = P2 = P3 = 3.
Thus, we estimate all TSAR models with different orders up to three, compute their corresponding AICc values, and
finally select the best TSAR model that has the smallest AICc value. We present the identified TSAR model for each
electricity load time-series in Table (6).

After we identified the suitable order of the TSAR model for the underlying hourly electricity time-series, we employ
the the normal-gamma prior for the TSAR model parameters and also we use the same setting of our simulation study
in the previous subsection estimate the hyper-parameters. We present our Bayesian estimates of the identified TSAR
models in Table (7). We use Theorem (3.1) to test the significance of each estimated TSAR model coefficient by
simply dividing the coefficient’s posterior estimate by its posterior standard deviation estimate and then comparing
the result to tα

2 ,vn
≈ 2. Based on our testing results from Table (7), we conclude that estimates of all TSAR models

coefficients are significant.

Table 6: Identified models for hourly time-series on electricity load.
TSAR model order

Time-series Country p P1 P2 P3

1 Austria 3 3 3 1
2 Belgium 3 3 2 1
3 Czech Republic 2 3 3 1
4 France 2 3 3 1
5 Germany 3 3 3 1
6 Spain 3 3 3 1

Table 7: Bayesian estimates of identified models for hourly time-series on electricity load.
Dataset Austria Belgium Czech France Germany Spain

Parameter µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂

φ1 1.33 0.006 1.20 0.006 0.90 0.006 1.44 0.006 1.53 0.006 0.67 0.006
φ2 -0.40 0.010 -0.20 0.010 0.06 0.006 -0.46 0.006 -0.65 0.011 0.14 0.008
φ3 0.03 0.006 -0.05 0.006 - - - - 0.09 0.006 0.06 0.006
Φ1 0.24 0.006 0.27 0.006 0.22 0.006 0.34 0.006 0.27 0.006 0.19 0.006
Φ2 0.09 0.006 0.10 0.006 0.10 0.006 0.08 0.007 0.10 0.007 0.07 0.006
Φ3 0.09 0.006 0.08 0.006 0.09 0.006 0.09 0.006 0.11 0.006 0.09 0.006
θ1 0.20 0.006 0.24 0.006 0.25 0.006 0.21 0.006 0.19 0.006 0.17 0.006
θ2 0.08 0.006 0.15 0.006 0.13 0.006 0.07 0.007 0.09 0.006 0.10 0.007
θ3 0.13 0.006 - - 0.14 0.006 0.08 0.006 0.15 0.006 0.10 0.006
Θ1 0.23 0.006 0.28 0.006 0.25 0.006 0.36 0.006 0.25 0.006 0.13 0.007
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Figure 1: Hourly time-series on electricity load in Austria during different periods
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Figure 2: Hourly time-series on electricity load
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5. Conclusions

In this work, we introduced Bayesian inference for TSAR models to fit and model time-series with three seasonality
layers. In order to ease the derivation of the parameters posterior distribution of TSAR model, we mainly assumed
the normal distribution for the TSAR model errors, and to consider different situations about the prior information,
we employed three prior distributions on the TSAR model coefficients and precision, mainly Jeffreys’ prior as a
non-informative prior and g and normal-gamma priors. Accordingly, we derived the joint posterior resulting from
each employed prior, and we approximated the marginal posterior of the TSAR model coefficients vector to be a
multivariate t distribution, and the marginal posterior of the TSAR model precision to be a gamma distribution. Since
these derived marginal posteriors of the TSAR model coefficients and precision are standard probability distributions,
we straightforwardly conducted the Bayesian inference for TSAR models. We executed a large simulation study and
its results confirmed the efficiency of our proposed Bayesian inference, and also we applied our work to real hourly
time-series on electricity load in some European countries. As a future work, we plan to conduct a comparison study
of our current work and our previous work in Amin (2022a), and the comparison has to evaluate both accuracy and
computational cost. Our plan for future work also includes a Bayesian identification of TSAR models and an extension
to multivariate time-series models.
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