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Abstract

This manuscript introduces a novel class of probability distributions termed the New Exponentiated Transformation
(NET), aimed at enhancing the flexibility of baseline distributions without adding complexity from extra parameters.
The transformation is specialized on the exponentiated exponential distribution, resulting in the New Exponentiated
Exponential (NEE) distribution. NEE offers increased flexibility in density function and features hazard rate functions
with various shapes. The manuscript also highlights several mathematical properties of proposed distribution. To
demonstrate the applicability of the proposed distribution, two engineering data-sets are analyzed, showing that NEE
distribution provides a better fit than all other considered models.
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1. Introduction

In recent years, there has been a surge in the proposal of novel families of probability distributions, each seeking to
augment the flexibility of existing distributions by introducing additional parameters. The overarching aim behind the
introduction of these new distribution families is to enhance the ability to model complex data structures encountered
across various domains. Among the researchers spearheading these endeavors, several notable contributions stand
out. Marshall and Olkin (1997) presented a novel family of distribution functions and subsequently directed their
focus towards enhancing the properties of the exponential distribution. Mahdavi and Kundu (2017) introduced the
alpha power transformation (APT) family of distributions, aimed at extending the utility of the alpha power trans-
formation methodology in statistical modeling. Building upon this work, Ijaz et al. (2021) proposed the novel alpha
power transformed (NAPT) family of distribution functions, further expanding the repertoire of distributional options
available to researchers. Cordeiro et al. (2013) ventured into a new class of distributions by incorporating two addi-
tional shape parameters, thereby offering greater flexibility in modeling a diverse range of data distributions. Hassan
et al. (2021) proposed another family of probability distribution based on a trigonometric function. Similarly, Ku-
maraswamy (Kumaraswamy) introduced a novel methodology involving the addition of two shape parameters, further
enriching the landscape of distributional possibilities. Additionally, Lone et al., Lone et al. (2022, 2024) introduced a
new method and applied it to the Weibull distribution. Recenlty, Ahmad et al. (2024) proposed another method based
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on trigonometric functions. However, amidst this proliferation of parameter-rich distribution families, there remains
a conspicuous lack of distributions in the statistical literature that provide flexibility without the burden of additional
parameters. Recognizing this gap, researchers have endeavored to develop distribution families characterized by par-
simony in parameters, thereby facilitating ease of interpretation and practical application. Mahmood and Chesneau
(2019) introduced the new sine-G family of distributions, offering a streamlined alternative for modeling complex
data structures. Maurya et al. (2017) proposed the DUS transformation, a novel transformation methodology aimed
at simplifying the modeling process while maintaining flexibility. Expanding on this concept, Maurya et al. (2016)
focused on the logarithmic transformation (LT), demonstrating its applicability in modeling exponential distributions.
Subsequently, Maurya et al. (2018) introduced the new logarithmic transformation (NLT), featuring a single parameter
with a decreasing failure rate, further enhancing its utility in practical applications.

In light of these developments, the need for distribution families that strike a balance between flexibility and complex-
ity remains ever-present. In this manuscript, the aim is to address this need by introducing a new class of generating
distributions characterized by enhanced flexibility without the inherent complexities associated with the addition of
extra parameters. Through the presentation and analysis of the proposed distributions, the goal is to contribute to the
ongoing evolution of distribution theory and its application in various fields of study.

In this manuscript, a contribution is made to the ongoing discourse by proposing a novel class of probability dis-
tributions, referred to as the New Exponentiated Transformation (NET). The aim is to offer a distribution framework
that provides enhanced flexibility in modeling while maintaining simplicity and ease of interpretation.

Motivated by the recognition of the limitations of existing distribution families, particularly in engineering field, this
manuscript focuses on the application of one particular distribution from this family, namely, the new exponentiated ex-
ponential distribution (NEE) distribution. Engineering disciplines frequently encounter data sets with complex patterns
arising from factors such as material properties, structural configurations, and environmental conditions. Standard dis-
tributions often struggle to capture these intricacies accurately, leading to inaccuracies in modeling and analysis. The
proposed NEE distribution provides a promising solution to this challenge by offering a flexible and robust framework
tailored to the needs of engineering field. By leveraging the inherent adaptability of the NEE distribution, engineers
and researchers can effectively model a wide range of engineering data sets, encompassing parameters such as gauge
lengths and failure stresses. Moreover, the simplicity of the NEE distribution facilitates its seamless integration into
existing modeling methodologies, ensuring accessibility and usability in practical engineering applications.

In the subsequent sections of this manuscript, a detailed exposition of the NEE distribution is presented, including its
theoretical underpinnings, key properties, and practical implications. Additionally, a comprehensive analysis of two
engineering data sets using the proposed distribution is conducted, demonstrating its efficacy in capturing the com-
plexities of real-world engineering phenomena. Through this endeavor, the aim is to advance the state-of-the-art in
statistical modeling and contribute to the ongoing evolution of distribution theory.

2. New Exponentiated Transformation (NET)

Let G(y) be the commulative distribution function (cdf) of any random variable Y. Then the cdf, F(y) of the new
exponentiated transformation is given by:

F(y) =290 —1 ;yeR,
The corresponding probability density function (pdf) is given by:
fly) = log(2)9(y)2°") ;y R,
The survival function S(y) for NET is given by:
Sy) = 1- (260 —1) = (2 - 260))
The hazard rate function \(y) is given by:

log(2)/(y)
o) = oo 1
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3. New Exponentiated Exponential Distribution

Let Y be arandom variable following an exponentiated exponential distribution with a cumulative distribution function
G(y) = (1 —e %) y,a,0 > 0 then, the cdf of the New Exponentiated Exponential distribution is defined as

follows:
Fly)=207"" -1, a,y>0

The corresponding pdf is given as follows:

J(y) = log(2%)8e (1 — =)= D20="" a y >0 (1)
The survival and hazard rate functions are, respectively, given by:
S(y) =1 — (2“—6’9‘”)“ ~1) 5 ay>0
S(y) =2 — 20— )"
and
_ ey (a—1)
_y(1—e™%)
My) =log(2™)0e™ - Zmay s @y >0
(i) Density Plot for NEE distribution (ii) hazard rate Plot for NEE distribution
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Figure 1: Plots of the NEE density and hazard rate function for different values of « and 6.
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3.1. Behavior Of The Hazard Rate Function

To know the behaviour of the hazard rate function we go through Glaser (1980). He defined the term 7(t) = — Lo

where f(t) is density function and f’ (t) is first derivative of f(t) with respect to ¢ and theorm is stated as.

Theorem 1:/. If 77/ (t) > 0 forallt > 0, then distribution has an increasing failure rate (IFR).

2. Ifn/ (t) < Oforallt > 0, then distribution has a decreasing failure rate (DFR)..

3. Suppose there exits t* > 0 such that n (t) < 0, forall t € (0,t*), 5 (t*) = 0 and 0 (t) > 0 for all t > t* and
€= }gl(l) f(t) exists.Then if

(i) € = oo, distribution has bathtub failure rate.

(ii) € = O, distribution has increasing failure rate (for more details see (5)).

Proof: Since , we have

67015 a— o a 67015 o 67015 «
R e

and
, 926—91‘,

n(t)=2 5 ((a=1) +1og(2*)(1 — e *)*(1 — ae™ ")) 2)

(1 —e9)
The following three cases arises.

(1) For a« > 1, then from equation (2), we have 77/ (t) > 0 for all ¢ > 0, hence distribution has an increasing failure
rate (IFR).

(2) For o < 0.5, then from equation (2), we have n/ (t) < 0 for all ¢ > 0, hence distribution has a decreasing failure
rate (DFR).

(3) For 0.5 < a < 1, then there exists a ¢t* such that  (t) < 0, for t € (0,¢*), 7 (t*) = 0and ' (t) > 0 for all ¢ > ¢*,
where t* depends on the value of « and 6 but it is not possible to find the exact functional form of ¢* in terms of « and
A

Now from equation (1), we have

: — 1 ag—0t(1 _ —0t\(a—1)g(1—e ") _
%1_{%]”(15) th_I)%log@ )0e (1 —e™ ") 2 00

Hence the distribution has bathtub hazard rate.
The behavior of hazard rate function at extremes for different parameter values.

o0 for0 < a<0.5,

k for0h<a<l1
lim A(y) = lim A(y) = {0 >0,
ity (¥) log(22%)  for a =1, v () for «

0 fora>1,

where k is finite.
3.2. Quantile Function

The quantile function of NEE is given by:

1 log(1+U)\ =
Y = log|1— (AT )
0 Ogl ( log2 )

where U ~ (0, 1) distribution. The ¢! quantile of NEE distribution is given by:
1
1 log(1+q)\*
— _—Zlog |1 - (D
Ya 6% l ( log2
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The median is obtained as:

1 log(1.5) g
= — — 1 —
Y05 GZOg [ ( log2 ) ]

3.3. Moments

The " moment of the NEE distribution is given by:

E(Y") :/y”f(y)dy
0
by using
= (loga)k .
_ o lesa 3)
k=0
and

(1o Z() o <t o)

and solving, we get the final expression for 7! moment as:

o a(j+1)—1

EY") = —logZaZ Z

log2) <a(j +1)— 1) L(r+1)
k (k + ]_)7‘+1

3.4. Moment Generating Function

The moment generating function of NEE distribution is defined as:

(o}

My (t) = /etyf(y)dy

0

again using (3) and (4), the final expression of moment generating function is given as follows:
oo oo a(j+l)—

= log(2%) ZZ Z k+llogrQ+)1 (;>T<a(j +l<;1)_1) it <0

r=0 j=0 =

3.5. Mean Residual Life And Mean Waiting Time
Suppose that Y is a continuous random variable with survivial function S(y) then, the mean residual life is the

expected additional lifetime given that a component has survived until time t. The mean residual life function, say
wu(t) , is defined as:
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The mean residual life of NEE distribution is given as:

o alFD-1, \p i i 1)
pu(t) = m%logﬂa) > > % < U +/~:1) 1) [1—~y(6t(k +1),2)] — t
j=0 k=0 '

b—1

where y(a,b) = [ y°~te ¥dy is the lower incomplete gamma function.

O—n=0

The mean waiting time represents the waiting time elapsed since the failure of an object on condition that this failure
had occurred in the interval [0, t]. The mean waiting time of Y, say fi(¢), is defined by:

t

_ 1

a(t) =t — I20) O/yf(y)dy

. 1 1 &I (LR (log2) fa(j +1) — 1

fi(t) =t — mélog@ )Z 7j!(k+1g)2 ( ’ 3 )7(‘%(1“?‘*‘1)’2)

j=0 k=0

3.6. Rényi Entropy
The entropy of a random variable measures the variation of the uncertainty. A large value of entropy indicates the

greater uncertainty in the data. The Rényi entropy, say REy () is defined as:

1
1-p5

REy(8) = ——log / F@Pdy | B>0, p#£L

The Rényi entropy of NEE distribution is given by:

1

REy(8) = 1-3

aj+B(at1) M (aj + Bla+ 1)>

log | (log(2%))" 3 ICESY k

7=0 k=0

3.7. Order Statistics

Let Y7, Y5, ..., Y, be a random sample of size n, and let Y;.,, denote the i*" order statistic, then, the pdf of Yj.,,, say
fin(y) is given by:

n! . )
in = F it 1-G n-r
Fon) = i PO )1 = G)
The pdf fi.,(y) of i*" order statistic of NEE distribution is given as:
f'- (y) — 109(20‘) 96—03;(1 _ e—6y)a—12(1—e’ey)°‘(2(1—e’9y)°‘ _ 1)1’—1(2 _ 2(1—e’gy)°‘)n—1
i Bli,n—i+1)

Where B(a,b) is the beta function.
3.8. Stress Strength Parameter

Let Y7 and Y5 be independent strength and stress random variables respectively, where Y1 ~ NEE(«1,60) and Y5 ~
NEE(a3,0), then the stress strength parameter P(Y; > Y3), say R, is defined as:

R= / J1(y) Faly)dy
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The stress strength parameter R, is defined as

R= /ee*f)yu — e O)leaDg(i=e )T (gl gy,
0

after solving the above expression, the stress strength parameter R is given by:
(4(artaz)+a1—1) (—1)k (e1(i+1)—1)

(k+1)

(j(m +oa2) ta1 — 1> B

) (=1 ((al(j +1) - 1)

R =log(2°1) S (log2)! [ T D l

|
j=0 J: k=0 =0

4. Statistical Inference
4.1. Maximum Likelihood Estimation

Let y1, Y2, ..., Yy, be a random sample from NEE distribution, then the logarithm of the likelihood function is given as
follows:

I =nlog(log2®) + nlogh — HZ Yi + Z log(1 — e~ fvi)(a=1) 4 Z(l — e ) g2 3)

i=1 =1 i=1

For getting maximum likelihood estimates of « and 6, we partially differentiate (5) with respect to the corresponding
parameters and equating the derivatives to zero. This yeilds the following equations:

ol n = —0y; - —Oy;\a
%:E+Zlog(1—e y)<1+;(1—e y)log?)—()

i=1

—0y;

ol n - y;e” Y - v —Oui (a—
O S D3 () e e
; —

i=1

Since the partial derivatives of the log-likelihood equation are not in explicit form, the maximum likelihood estimates
cannot be obtained analytically. Instead, numerical methods such as optimization algorithms need to be employed
to maximize the log-likelihood function and obtain the estimates. In this study, the maximum likelihood estimates
were obtained using the optimization functions available in the R software package, which provides efficient tools for
statistical analysis and estimation.

Theorem 2:1f the parameter 0 is known ,then the MLE of « exists and is unique.

Proof: Since,

ﬁ _n - _ o v - _ oy
% o +;log(1 € )<1+Z(1 e "Y)%og2

i=1

i ol — - —0yiy
i:moa—a—oo—&—izzllog(l—e ) =00
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Also

ol -
lim —— =0+ log(l—e ™) <0

a—oo O
=1

Therefore, there exists atleast one root say &(0, o), such that (% =0
For uniqueness of root, we have

872l - + logQi: (log(l — ¢e_93”"))2 (1- e %) <0
Oa? a?

i=1

whenever,
n n 9
o5 > 1092y (log(1— ™))" (1= e~
i=1

Theorem 3:1f the parameter « is known, then the MLE of 0 exists and is unique.
Proof: Since,

ol _n ¢ — (yie OV oy, —6yiy(a—1)
%25—2%4—(&—1)2 PR +alog22yie (1-—e )
i=1

i=1 1=1

) al n
S SRt

i=1

Also

Therefore, there exists atleast one root say é(O7 00), such that % =0
For uniqueness of root, we have

n

0?1 n 2 —0y (1-a) Oui
-_ = . @ - @7 2 1 — yr
902 02 + ; - Yyi-e ((1 . Oyi)2 alog ( ae )) <0

whenever,
n - 2_—0y; (1-a) —0yi
2 > i:E 1 yice Y <(1 i) alog2(1 — ae™"Y")

4.2. Simulation Study

To assess the stability and consistency of the estimates obtained from the NEE distribution, a simulation exercise
was conducted using R software. The simulation involved generating two sets of samples with sizes of 50 and 100,
which were then replicated 1000 times for various combinations of the parameters @ = (0.5,1,1.5,2,3) and 6 =

A New Exponentiated Exponential Distribution With Application to Engineering Data 224



Pak j.stat.oper.res. Vol.20 No.2 2024 pp 217-231 DOI: http://dx.doi.org/10.18187/pjsor.v20i2.3845

(0.5,1,1.5,2,3,5)

For each parameter combination and sample size, the average values of the maximum likelihood estimates (MLEs)
were computed, along with the empirical mean squared errors (MSEs) and bias. The results of the simulation exercise
are presented in Table 1 for the sample size of 50 and Table 2 for the sample size of 100. The simulation results showed
that as the sample size increased, the MSE and bias decreased in all cases. This indicates that the MLEs obtained from
the NEE distribution are stable and consistent, and the estimation accuracy improves with larger sample sizes.

Table 1: Average values of MLEs their corresponding MSEs and Bias (n=50).

Parameter MLEs MSE Bias
a 0 & 6 @ 6 é 6

0.5 0.5 057134 0.52205 0.08633 0.00652 0.07134 0.02205
1 0.55059 1.03528 0.08402 0.02709 0.05059 0.03528
1.5 0.54335 1.55186 0.07599 0.06009 0.04335 0.05186
2 0.57550 2.08942 0.09867 0.09950 0.07550 0.08942
3 0.55956 3.10780 0.08314 0.23320 0.05956 0.10780
5 0.50185 5.23818 0.06469 1.34852 0.00185 0.34878

1 05 1.06282 0.51665 0.06197 0.00816 0.06282 0.01665
1 1.05083 1.03376 0.05703 0.03266 0.05083 0.03376

1.5 1.06133 1.57631 0.05132 0.08446 0.06133 0.07631

2 1.06030 2.06750 0.05578 0.13775 0.06030 0.06750

3 0.55738 3.14291 0.09749 0.48546 0.05738 0.14291

5 1.05850 5.22939 0.05975 0.83857 0.05850 0.22939

1.5 05 1.62057 0.52156 0.17097 0.00814 0.12057 0.02156
1 1.60750 1.04112 0.16592 0.03129 0.10750 0.04112

1.5 1.61132 1.56079 0.16248 0.06684 0.11132 0.06079

2 1.61974 2.10354 0.16130 0.12921 0.11974 0.10354

3 1.61806 3.10803 0.15985 0.23010 0.11806 0.10803

5 1.63724 5.24881 0.19127 0.70677 0.13724 0.24881

2 05 217301 0.51720 0.35351 0.00650 0.17301 0.01720
1 2.17243 1.04111 0.34631 0.02540 0.17243 0.04111

1.5 218124 1.56159 0.33782 0.05801 0.18124 0.06159

2 2.19453 2.08430 0.35438 0.11187 0.19453 0.08430

3 220274 3.14401 0.42489 0.27736 0.20274 0.14401

5 216861 5.18609 0.36986 0.68634 0.16861 0.18609

3 05 323995 0.51141 091498 0.00580 0.23995 0.01141
1 330667 1.03846 0.91361 0.02381 0.30667 0.03846

1.5 3.32444 1.57016 0.99342 0.05924 0.32444 0.07016

2 330723 2.05501 1.01406 0.09144 0.30723 0.05501

3 3.24981 3.09117 0.90045 0.20010 0.24981 0.09117

5 323030 5.11994 0.80221 0.53437 0.23030 0.11994
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Table 2: Average values of MLEs their corresponding MSEs and Bias (n=100).

Parameter MLEs MSE Bias
a 0 é 0 é 0 & 0

0.5 05 051387 0.50797 0.03745 0.00312 0.01387 0.00797
1 0.53577 1.02252 0.03693 0.01068 0.03577 0.02252
1.5 0.51881 1.53341 0.03299 0.02613 0.01881 0.03341
2 0.51376  2.03174 0.03739 0.05001 0.01376 0.03174
3 0.52029 3.06187 0.03304 0.10124 0.02029 0.06187
5 0.51707 5.14111 0.03603 0.60966 0.01707 0.14111

1 05 1.03448 0.51070 0.02512 0.00366 0.03448 0.01070
1 1.02819 1.01506 0.02224  0.01562  0.02819 0.01506
1.5 1.02463 1.52034 0.02356 0.03403 0.02463 0.02034
2 1.05308 2.02560 0.12496 0.16825 0.05307 0.02560
3 1.08331 3.02208 0.16356 0.42361 0.08331 0.02208
5 1.02143 5.26282 0.13960 1.19519 0.02143 0.13960

1.5 05 156550 0.50785 0.07016 0.00304 0.06550 0.00785
1 1.55509 1.02565 0.06599 0.01410 0.05509 0.02565

1.5 1.57412 1.53681 0.07259 0.03316 0.07412 0.03681

2 157002 2.03858 0.07667 0.05358 0.07002 0.03858

3 1.57157 3.08789 0.06444 0.12156 0.07157 0.08789

5 155026 5.10185 0.07385 0.36036 0.05025 0.10185

2 05 206975 050704 0.12767 0.00291 0.06975 0.00704
1 205223 1.01001 0.11809 0.01091 0.05223 0.01001

1.5 207430 1.52753 0.13023 0.02794 0.07430 0.02753

2 208165 2.03086 0.13014 0.04544 0.08165 0.03086

3 209106 3.04667 0.14016 0.10894 0.09106 0.04667

5 206878 5.08603 0.11650 0.30130 0.06878 0.08603

3 05 3.12878 0.50681 0.39204 0.00269 0.12878 0.00681
1 3.11934 1.01162 0.34365 0.01003 0.11934 0.01162

1.5 3.11678 1.52036 0.34228 0.02314 0.11678 0.02036

2 312212 2.02530 0.35640 0.039001 0.12212  0.02530

3 317807 3.07972 0.38750 0.10216  0.17807 0.07972

5 310338 5.06260 0.30608 0.21289 0.10338  0.06260

5. Application

To justify the validity and applicability of the NEE distribution two real data sets have been used. The data set I
consists of 63 observations of the gauge lengths of 10mm. The data was taken from Kundu and Raqab (2009) The data
set Il reported by Bader and Priest (1982) on failure stresses (in GPa) of 65 single carbon fibers of lengths 50 mm.
For data set I, we compared the proposed NEE distribution with several other models namely, Marshall Olkin expo-
nential (MOE) Marshall and Olkin (1997) alpha power exponential (APE) Mahdavi and Kundu (2017) exponentiated
exponential (EE) Gupta and Kundu (2001) novel alpha power transformed exponential (NAPTE) [jaz et al. (2021)
Weibull (W), gamma (G), Rayleigh (R), Exponential (E), Weibull exponential (WE) Oguntunde et al. (2015) and expo-
nentiated transmuted exponential (ETE) Al-Kadim and Mahdi (2018) distributions. For data set I, the proposed model
is compared with alpha power exponential (APE) Mahdavi and Kundu (2017) exponentiated exponential (EE) Sarhan
and Zaindin (2009) novel alpha power transformed exponential (NAPTE) Ijaz et al. (2021) Rayleigh (R), Exponential
(E), Weibull exponential (WE) Oguntunde et al. (2015) and exponentiated transmuted exponential (ETE) Al-Kadim
and Mahdi (2018) distributions.
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Table 3: MLEs (standard errors in parentheses), K-S Statistic, and p-values for the data set L.

DOI: http://dx.doi.org/10.18187/pjsor.v20i2.3845

Estimates Statistics
Model & 6 K-S p-value
255.22906 2.07686 0.084193 0.76320
NEE (137.17114)  (0.20096)
5276.27857  2.83399 0.09427  0.63000
MOE (4826.29410) (0.29582)
6.68161 1.04561 0.18082 0.03250
APE (1.67772)  (4.81109)
218.23178 1.94584 0.08880 0.70310
EE (111.017903) (0.19274)
5.56317 1.04092 0.16544 0.06358
NAPTE  (1.18632) (4.70195)
4.85846 0.00337 0.11335 0.39320
w (0.24854)  (0.00105)
25.59175 8.36522 0.08980 0.70120
G (0.26389)  (0.03032)
2.20666 - 0.36072  1.517¢-07
R (0.13900)
0.32687 - 0.48600 2.378e-13
E (0.04118)
0.00881 0.94623  1.48174 0.13208 0.22180
WE (0.00405)  (0.97387) (1.57994)
218.44687 0.00100  1.94583  0.08880 0.70310

ETE (2009.70045)

(9.33959) (0.19836)

Table 4: —2((9), AIC, AICC, BIC for the data set L.

Model —21(9) AIC AICC BIC

NEE 112.7573 116.7573 116.9573 121.0436
MOE 118.6353 122.6353 122.8353 126.9216
APE 147.2311 151.2311 151.4311 155.5173
EE 113.0324 117.0324 117.2324 121.3187
NAPTE 144.4528 148.4528 148.6528 152.7391
\\ 124.9071 128.9071 129.1071 133.1934
G 113.7575 117.7575 118.1643 118.1643
R 187.0399 187.0399 189.1055 191.1830
E 266.8915 268.8915 268.9571 271.0347
WE 138.4807 144.4807 144.8875 150.9102
ETE 113.0324 119.0324 119.4392 125.4619
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Table 5: MLEs (standard errors in parentheses), K-S Statistic, and p-values for the data set II.

Estimates Statistics
Model a 0 K-S p-value
211.69341  2.73363 0.09439  0.6087
NEE (102.44910) (0.24746)
7.37702 1.42395 0.19828 0.0120
APE (2.37265)  (6.43925)
176.34593  2.54031 0.098335 0.5559
EE (80.65879) (0.23657)
2.72827 1.39546 0.20394  0.0089
NAPTE (1.18633) (6.29347)
1.61335 - 0.35092 2.231e-07
R (0.10005)
0.445624 - 0.46779 8.837e-13
E (0.00116)
0.00399 1.19794 190580 0.09358 0.6196
WE (0.00116)  (0.24405) (1.73691)
176.51866  0.00100  2.54031  0.09833 0.5559

ETE  (400.00971)

(2.25642) (0.23695)

Table 6: —2l(é), AIC, AICC, BIC for the data set II.

Model —21(0) AIC AICC BIC

NEE 75.27530  79.27530  79.46885 83.62407
APE 110.2652 114.2652 114.4587 118.6140
EE 76.72420 80.72420  80.91775 85.07298
NAPTE 108.9861 112.9861 113.1797 117.3349
R 151.5756 153.5756 153.6391 155.7500
E 235.0765 237.0765 237.1400  239.2509
WE 78.12431 84.12431 84.51775 90.64747
ETE 76.72430 82.72430  83.11775 89.24746

From table (3),(4), (5) and (6) it is evident that the NEE distribution consistently yields the smallest values of the cri-
teria -21, AIC, AICC, and BIC, along with the maximum p-value when compared to all other distributions. Therefore,
we can conclude that the proposed model provides the best fit for both data sets I and 11
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Figure 2: (i) The relative histogram and the fitted NEE distribution. (ii) The empirical survival function and fitted NEE
survival function for data set I.
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Figure 3: (i) The relative histogram and the fitted NEE distribution. (ii) The empirical survival function and fitted NEE
survival function for data set II.
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Figure 4: P-P plot for the NEE distribution for data set I and data set II
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Figure 5: Q-Q plot for the NEE distribution for data set I and data set II

Figure 2(i) and 3(i) display relative histograms for data set I and II respectively. Also, the Figure 2(ii) and 3(ii) shows
the plots of the fitted NEE survival function and empirical survival function of the data set I and II, respectively. The
Q-Q and P-P plots are presented by 4(i) and (ii) and 5(i) and (ii) for data set I and II, respectively, which permits us
to compare the empirical distribution of the data with the NEE distribution, these graphical measures also support the
results provided in tables (3), (4), (5) and (6)

6. Concluding Remarks

In conclusion, the introduction of the New Exponentiated Transformation marks a significant advancement in sta-
tistical modeling. This new family of distribution functions offers enhanced flexibility without the addition of extra
parameters, providing a versatile framework for capturing the complexities inherent in diverse data structures.The in-
vestigation conducted in this study demonstrates that the NEE distribution surpasses several reputed models mentioned
in the manuscript in terms of flexibility and applicability. By eschewing the burden of an extra parameter, the NET
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family of distribution strikes a balance between simplicity and versatility, making it an attractive choice for a wide
range of statistical applications. Through a thorough analysis using two real data sets, it is observed that the proposed
NEE distribution outperforms all other competitive models considered in this study. Exhibiting superior fit and pre-
dictive accuracy across various metrics, the NEE distribution emerges as a promising tool for modeling complex data
patterns with precision and efficiency.
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