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Abstract

In this paper, we have proposed a new family of distributions namely the Pareto-X family of distributions. A sub
model of the proposed family called Pareto-Weibull (PW) distribution is discussed. Some important properties of
the proposed PW distribution are studied. Parameter estimation of the distribution by using the maximum likelihood
method is discussed. The proposed distribution has been fitted on two real data sets about environmental and biological
variable. The practical applications shows that the proposed model provides better fit as compared with the other
models used in the study.
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1. Introduction

Probability distributions have widespread applications in almost all areas of life including engineering, medicine,
economics and more. In certain situations the standard probability distributions fail to capture underlying behavior of
the data and hence extension,and/or generalization of the same is needed. Various families of distributions have been
proposed from time to time to handle complex behavior of the data but the room is always there to propose some new
families of distributions.

The Pareto distribution, named after a Swiss economist Vilfredo Pareto (1848-1923), is a very familiar probability
model for modeling and prediction of various socioeconomic aspects. Many applications of the Pareto distribution
in actuarial sciences, economics, finance, life testing, climatology, biology and physics have been studied in the
literature. Although the distribution has many uses but one major and perhaps most important use of the distribution
is in the studies related of distribution of income. Pareto (1897) initiated this concept in his intimate economic texts.
Some applications of the distribution in modeling earthquakes, forest fire areas, oil and gas field sizes are studied by
Burroughs and Tebbens (2001).

Several extensions and generalizations of the Pareto distribution have been proposed from time to time, These include
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the beta-Pareto distribution by Akinsete et al. (2008); Exponentiated Pareto distribution by Shawky and Abu-Zinadah
(2009); beta generalized Pareto distribution by Mahmoudi (2011); Gamma-Pareto distribution and its application by
Alzaatreh et al. (2012); Kumaraswamy-Pareto distribution by Bourguignon et al. (2013); Weibull-Pareto distribution
and its applications by Alzaatreh et al. (2013a); Exponential-Pareto distribution by Al-Kadim and Boshi (2013); trans-
muted Pareto by Merovci and Puka (2014); A new Weibull-Pareto distribution by Tahir et al. (2016); Kumaraswamy
transmuted Pareto distribution by Chhetri et al. (2017b); beta transmuted Pareto distribution by Chhetri et al. (2017a);
Pareto-exponential distribution by Waseem and Bashir (2019) and cubic transmuted Pareto distribution by Rahman
et al. (2020).

An interesting method to obtain a new probability distributions has been proposed by Alzaatreh et al. (2013b). The
method is based upon a “transformer” and a “transformed” distribution and is known as the 7-X family of distributions.
This method is illustrated below.

Let X be a random variable with density function g(x) and distribution function G(z). Also, let T' be a continuous
random variable with density function (¢) with support on [a, b]. The cumulative distribution function (cdf) of the
T — X family of distributions is then given as

W(G(z))
Fr_x(z) = / r(t) dt, (1

where W (G(x)) satisfies following conditions

W (G(x)) € [a, b],
W (G(z)) is differentiable and monotonically non-decreasing,
W (G(z)) = aasx — —oco and W (G(z)) — bas x — .

The distribution function Fr_ x () in (1) is a composite function of (R - W - G)(z) and can be written as

Fr_x(z) = R{W (G(z))},
where R(t) is the distribution function of random variable T'. The corresponding density function is

Frox(@) = {;;W <G<x>>} (W (G@)} ®

The density function 7(¢) in (1) is “transformed” into a new distribution function Fr_x(x) through the function
W(G(x)), which acts as a “transformer”. The density function fr_ x (z) in (2) is transformed from random variable
T through the transformer random variable X and is called “Transformed-Transformer” or “T-X” distribution.

The main focus of this paper is to introduce a new family of distributions called the Pareto-X family of distributions
by assuming that the random variable 7" in (1) has the Pareto distribution.

The organization of the paper follows: The Pareto-X family of distributions is proposed in Section 2. In Section 3,
a special sub model of the family is presented and is named as the Pareto-Weibull (PW) distribution. In Section 4,
some distributional properties of the proposed PW distribution are derived. Distribution of various order statistics are
presented in Section 5. Maximum likelihood estimation of the model parameters is discussed in Section 6. Section 7
contains some real data applications of the proposed PW distribution. Finally, some concluding remarks are given.

2. The Pareto-X Family of Distributions

Let T be a Pareto random variable with density function (¢) defined on the support on [a,c0), a > 0 and without
loss of generality, we assume that a = x,,,. Also let W (G (z)) = x,, — log (1 — G (x)), where z,,, € RT, then the
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Table 1: Special cases of the Pareto-X family of distributions

Distribution Cumulative Distribution Function Support
Pareto — Uniform 1— 2% [y, —log(l—x)]“ z e (0,1)
Pareto — Exponential 1— a2 (zm+ %) " z € [0,00)
Pareto — Rayleigh 1—a2 (%:2 + xm) - x € [0, 00)
Pareto — Lomax 1— 22 [n(log(A + z) — log(N\)) + ] x € [0, 00)
Pareto — Gompertz 1— a2 (neb® —n+zm,) " x € [0, 00)
Pareto — Kumaraswamy 1— 22 [2y — blog (1 —2%)] z € 1[0,1]
Pareto — Log-logistic 1— a8 [-Blog(n) +log (n® + 27) + 2] " x € [0, 00)
Pareto — Dagum 11—z [asm —log (1 — (b~ + 1)_p)} - r € RY
Pareto — Burr XII 1—2% [klog (z¢+1) + 2] r € RT
Pareto — Normal 1— 2% [xm —log(l — ®(x))] zeR

distribution function of the proposed Pareto-X family of distributions is obtained from (1) as

Tm—log(1—G(z))
Fpx (z) = / r () dt = R{zm — log(1 — G(x)}. 3)

Tm

The density function corresponding to (3) is

fr—x (z) = 1_9(;)@)1" [@m —log (1 — G (x))] =h(z)r [z, —log(1 — G (x))], 4)

where h () is the hazard function of X.

The Pareto distribution with parameter (,,,, &) has the cumulative distribution function R(t) = 1 — [%= ] “t> g,

and density function r(¢t) = fff; , t > x,,. Using these in (3), the distribution function of the Pareto-X family of

distributions is

[e3
Tm

Frox(@) =1~ | == a0

;x eR, (&)

where z,, € RT and o € R are the scale and shape parameters respectively. The density function of the Pareto-X
family of distributions is easily obtained from (4) as

g(x) azy,

T TG fo —log (1 - G@)

fr—x(x) z €R.

Various members of the proposed Pareto-X family of distributions can be studied by using different base distributions
G(z) in (5). Some special cases of the proposed Pareto-X family of distributions are given in Table 1.

In the following we have obtained a specific member of the Pareto-X family of distributions by using the Weibull
baseline distribution.
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3. The Pareto-Weibull Distribution

The Pareto-Weibull (PW) distribution is obtained by using Weibull baseline distribution in (5). For this, suppose that
the random variable X follows the Weibull distribution with cdf

Glx)=1- e_(i)k; x € [0, 00), (6)

where A € R* and k € R are the scale and shape parameters respectively. Now, using (6) in (5) the distribution
function of the PW distribution is

—

F(z)=1—xp (zm + /\_kxk) ; x € [0,00), %)

where z,,,, A € R" are the scale parameters and a, k¥ € R™ are the shape parameters of the distribution. The density
function of the PW distribution is readily obtained from (7) and is given in the definition below.

Definition: A continuous random variable X is said to have a Pareto-Weibull distribution if its probability density

function is I
flx)= akxf;lA’k:nk’l (:cm + )\*kxk) “ ; x € ]0,00), (8)

where ,,, A € R™ are the scale parameters and o, k € R™T are the shape parameters of the distribution.
Special Cases:

(i) The distribution function of the PW distribution given in (7) reduces to the distribution function of the Pareto-
exponential distribution for k = 1.

(i1) A Pareto-exponential distribution developed by Waseem and Bashir (2019) is considered as a special case of (7)
fork=1and x,, = 1.
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Figure 1: The density function f(x; 2, A, @, k) and distribution function F'(z; z,, A, o, k) of the PW distribution.

Some of the possible shapes for the density and distribution functions of the proposed PW distribution are given in
Figure 1. It has been observed from the Figure that the proposed distribution has the capability to capture different
behaviours in datasets.

4. Distributional Properties

In the following we will discuss some important properties of the proposed PW distribution.
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4.1. Moments

The moments of random variable are useful in studying various properties of its distribution. In the following we will
give the moments of the proposed PW distribution.

Definition: Let X be a random variable having the PW distribution then its 7th raw moment is given as

/
= k .
y o) Lak>r ©)
Mean can be obtained by setting 7 = 1 in (9) and is
1
Mk T (14 2)D (a—+
Mean = T ( + k) (a k), ak > 1.
I'(e)
The variance of the distribution is obtained as
Variance = FE(X?)— E(X)?
2
Xk D@D (14 3)T (a = 2) =T (1+4)°T (a - )’]
= k> 2.
I‘(a)2 , Ok >

The higher moments of the distribution can be obtained by using r > 2 in (9).

4.2. Moment Generating Function

The moment generating function is useful in obtaining moments of a random variable. The MGF for PW distribution
is given in the following theorem.

Theorem 4.1. Let random variable X follows the PW distribution then the moment generating function, M x (t) is
¢ Nz T (14 2)T (o= 2)

Mx(t)=>" 5 o) , ok >, (10)

r=0

>3

where t € R.

Proof. The moment generating function is defined as

My(t) = E (%)= /OOO e* f(x) dx,

where f(x) is given in (8). Using the series representation of e given in Jeffrey and Zwillinger (2007), we have
M.(t) = /miﬂmrf(m)dx:itrE(a:T). (11)
0 r=0 i r=0 rl

Using E(X") from (9) in (11), we have (10). O

4.3. Characteristic Function

The characteristic function (CF) plays a vital role both in probability theory and applied statistics. The characteristic
function completely describe a probability distribution and this always exist. The CF for PW distribution is given in
the following theorem.
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Theorem 4.2. Let X follows the PW distribution then the characteristic function, ¢x (t) is

bx(t) = i (it')r Nz T(1+5)T (a— %)

, ak >,
— I'a)

where i = \/—1 is the imaginary unit and t € R.
Proof. The proof is simple.

4.4. Reliability Analysis

The reliability function, used by Ebeling (2004), or survival function, used by Carpenter (1997), is simply the com-

plement of the cumulative distribution function. The reliability function is useful in survival analysis and engineering.
The reliability function for the PW distribution is

R(t) =1— F(t) = 2, (zm + A7) " £ € [0, 00).

The hazard function is the ratio of the density function to the reliability function and for the PW distribution, it is given
as

ko N1 (g 4 A—kgk —a—1

- i a ; t€[0,00),
8 (T + A7FEF)
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Figure 2: The reliability function R(t; 2, A, @, k) and hazard function h(t; 2., A, a, k) of the PW distribution.

The reliability and hazard rate functions of the PW distribution are given in Figure 2 above. We can see that the hazard
rate function shows both increasing and decreasing behavior.

4.5. Quantile Function and Median

The quantile function, denoted by x4, is useful in obtaining quantiles of a distribution. This function is also useful in
generating the random sample from any distribution. The quantile function is obtained by solving F'(x) = ¢ for x, see
for example Rahman et al. (2020). The quantile function for the PW distribution is readily obtained by solving (7) for

z and is )
Tq = {xm/\k {(1 — q)_é — IH i

Pareto-Weibull Distribution with Properties and Applications: A Member of Pareto-X Family.

12)

126



Pak j.stat.oper.res. Vol.18 No.1 2022 pp 121-132 DOI: http://dx.doi.org/10.18187/pjsor.v18i1.3821

The meadian is obtained by using ¢ = 0.5 in above equation and is
. 3
Median = zy.5 = {xm)\k {25 — IH .

The lower and upper quartiles can also be obtained by using ¢ = 0.25, 0.75 in (12) respectively.

4.6. Generating Random Sample

Random sample is often required in simulation studies. The random sample from PW distribution can be generated by
using the following expression, see Rahman et al. (2020),

L
k

X = [xmA’“{(l—u)*iq}] - (13)

where u ~ U(0,1). One can generate random sample from PW distribution by using (13) for various values of the
model parameters.

5. Order Statistics

Order statistics are widely used in many fields like economics, geology etc. The distribution of order statistics is given
below.

Let X1., < Xao.p, < --- < X,,.,, denote the order statistic of a random sample X1, Xo,---, X, from a continuous
distribution F'y (z). The density function of X,..,, is given as

n! =111 _ BT (g
W[F(fﬁ)] (1= F(@)]" " f(z), (14)

where fx () is density function corresponding to F'x (z).

fx,n (@) =

The density function of the rth order statistic for the PW distribution is obtained by using its density and distribution
function in (14) and is

n! —a]r1
= 1 —a2® (x, + AR }
fX'r‘:n(x) (r—l)!(n—r)! |: Tm ((E + z )

X [;v% (xm + )\_kxk)_a} - akxf‘n)\_kmk_l (CEm + )\_kxk)_a_l , (15)
wherer = 1,2,--- ,n. Using r = 1in (15), the density function of the smallest order statistic X7.,, for PW distribution
is

-1 —a—1

fx,. (@) = naka® Xkah1 [xﬁl (zm + )Fkxk)fa} ! (zm + )Fkxk)

Again, using r = n in (15), the density function of the largest order statistic X,,.,,, is

fx,. (x) = nakz® X\kzh1 [1 — 28 (zm + )\_kxk)_a]n_l (zm + A_kxk)_a_l .

6. Estimation and Inference

The parameter estimation is an essential step in fitting distribution to some real data. The maximum likelihood method
of estimation is, perhaps, the most popular method to estimate the parameters of a distribution. In this section, we have
discussed the maximum likelihood estimation for parameters of the PW distribution. For this, suppose x1, 2, -,z
is a random sample of size n from the PW distribution. The likelihood function is

L(x) = ™k N, (H SE?J) ’ h_[ (zm + )F’%pf)fail
i=1

i=1
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The log-likelihood function is

n k
((x) = n-In(a) +n-In(k) +na-In(e,,) - nk-In(A) + (k= 1) Y I (z;) — (a +1) Zln {xm (7) } (16)
i=1
The maximum likelihood estimator of ., is the first-order statistic x(y). The derivatives of (16) with respect to A, «
and k are
n k—1
56 ; L k
@Y~ ke (3) ok
z A
i=1 [ )+ xm}
Y4 1
5o =[] - 2o [5) }
and
:Zln(mi)Jﬂ—nln(A)—m oz—i—lz In (% ).
; k (%) "t
i=1 i=1 /\ m
Now setting, g;\ =0, dl =0 and az = 0 and solving the resulting nonlinear system of equations the maximum

likelihood estimate © = ()\, &, k) of O =(\q, k:)/ can be obtained. Also, as n — oo, the asymptotic distribution

of the MLEs (5\, Q, l;:) are given by, see for example Aryal and Tsokos (2011),

A A ‘:/11 ‘:/12 ‘:/13
i )| )| T Ve W |
k k Var Vi Vi3

where Vij = Vijlo—e- The asymptotic variance-covariance matrix V, of the estimates A, & and k is obtained by
inverting Hessian matrix; see Appendix. An approximate 100(1 — «)% two sided confidence intervals for A, « and k

are given by:
At Zopo\[Vir, @ Zoyo\[ Vo and k£ Zo o0/ Vs

where Z,, is the ath percentile of the standard normal distribution.

7. Real-life Applications

In this section we have given two real data applications of the PW distribution.

7.1. Floyd River Data

We considered this dataset for the Floyd River, located in James, Iowa, USA, which provides the consecutive annual
flood discharge rates for the year 1935 — 1973. The dataset has been previously used by Akinsete et al. (2008). For
the source and details of the data, see Mudholkar and Hutson (1996). The dataset is: 1460, 4050, 3570, 2060, 1300,
1390, 1720, 6280, 1360, 7440, 5320, 1400, 3240, 2710, 4520, 4840, 8320, 13900, 71500, 6250, 2260, 318, 1330, 970,
1920, 15100, 2870, 20600, 3810, 726, 7500, 7170, 2000, 829, 17300, 4740, 13400, 2940, and 5660.

Table 2: Summary statistics for the selected datasets.

Dataset Min. Q1 Median Mean Q3 Max.
Floyd River 318 1590 3570 6771 6725 71500
Bladder Cancer 0.080 3.348 6.395 9.366 11.838 79.050
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Figure 3: Estimated distribution function plotted over empirical distribution function for the selected datasets.
Table 2 represents the summary statistics for the dataset. We have considered Pareto-exponential distribution proposed

by Waseem and Bashir (2019) and Pareto distribution developed by Pareto (1897) to examine the performance of the
proposed PW distribution.

Table 3: MLE of parameters and respective SE for the selected models.

Distribution Parameter Estimate SE
T 318 -
. A 1.500 0.375
Pareto-Weibull o 1.083 0563
k 0.778 0.117
Tm 318 -
Pareto-Exponential A 1.500 0.217
« 0.454 0.077
Pareto Lm 318 N
« 0.412 0.066
Table 4: Selection criteria estimated for the selected models.
Distribution logLike AIC AlCc BIC
Pareto-Weibull -377.763 761.526 762.212 766.517
Pareto-Exponential -380.745 765.491 765.824 768.818
Pareto -392.810 787.620 787.728 789.284

Table 3 contains the estimated values of the model parameters alongside the standard errors. The estimated distribution
function of the PW distribution is plotted alongside the empirical distribution, for the Floyd river data, in the left panel
of Figure 3 below. This figure also contains the fitted distribution function of the competing models. Various model
selection criteria like Log-likelihood, Akaike’s information criterion (AIC), corrected Akaike’s information criterion
(AICc), Bayesian information criterion (BIC) are shown in Table 4. The results of this table shows that the PW
distribution is the best fit for this data.
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7.2. Bladder Cancer Data

The dataset consist of a set of remission times collected from cancer patients in a bladder cancer study, see Lee and
Wang (2003). The dataset is: 4.50, 19.13, 14.24, 7.87, 5.49, 2.02, 9.22, 3.82, 26.31, 2.62, 0.90, 21.73, 0.51, 3.36,
43.01,0.81, 3.36, 1.46, 17.14, 15.96, 7.28, 4.33, 22.69, 2.46, 3.48, 4.23, 6.54, 8.65, 5.41, 2.23, 4.34, 32.15, 4.87, 5.71,
7.59,3.02,4.51, 1.05, 9.47, 79.05, 2.02, 4.26, 11.25, 10.34, 10.66, 12.03, 2.64, 14.76, 1.19, 8.66, 14.83, 5.62, 18.10,
25.74, 17.36, 1.35, 9.02, 6.94, 7.26, 3.70, 3.64, 3.57, 11.64, 6.25, 25.82, 3.88, 20.28, 46.12, 5.17, 0.20, 36.66, 10.06,
4.98, 5.06, 16.62, 12.07, 6.97, 0.08, 1.40, 2.75, 7.32, 1.26, 6.76, 7.62, 3.52, 9.74, 0.40, 5.41, 2.54, 2.69, 8.26, 0.50,
5.32, 5.09, 2.09, 7.93, 12.02, 13.80, 5.85, 7.09, 5.32, 2.83, 8.37, 14.77, 8.53, 11.98, 1.76, 4.40, 34.26, 2.07, 17.12,
12.63, 7.66, 4.18, 13.29, 23.63, 3.25, 7.63, 2.87, 3.31, 2.26, 2.69, 11.79, 5.34, 6.93, 10.75, 13.11, and 7.39.

Table 5: MLE of parameters and respective SE for the selected models.

Distribution Parameter Estimate SE
Tm 0.080 -
. A 1.500 0.017
Pareto-Weibull o 0.189 0.079
k 2.000 0.173
T 0.080 -
Pareto-Exponential A 1.500 0.122
«@ 0.255 0.023
Pareto T 0.080 -
« 0.234 0.021
Table 6: Selection criteria estimated for the selected models.
Distribution logLike AIC AlCc BIC
Pareto-Weibull -382.951 771.903 772.096 780.459
Pareto-Exponential -480.947 965.894 965.990 971.599
Pareto -538.523 1079.046 1079.078 1081.898

The summary statistics of the data are presented in Table 2. The estimated values of the model parameters alongside
the standard errors are given in Table 5. The estimated distribution function of the PW distribution alongside the
empirical distribution function are given in the right panel of Figure 3. Table 6 presents the computed values for
different selection criterion. The results of the selection criterion indicate that the PW distribution is most suitable fit
for this data.

8. Concluding Remarks

In this paper, a new Pareto-X family of distributions has been introduced. A four-parameters sub-model of the pro-
posed family called the Pareto-Weibull distribution is studied in detail. The distributional properties of the proposed
PW distribution including moments, moment generating function, characteristics function, quantile function, random
number generation, reliability functions and the distribution of order statistics are discussed. The maximum likelihood
estimation of the parameters is done. Finally, two applications of the proposed PW distribution are given by using real
data sets. We have found that the proposed PW distribution is a suitable model for modeling of the data sets.
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Appendix

The Hessian matrix for the Pareto-Weibull distribution is given as

Hyy, Hip His
H=| Hy Hy Hy |,
H3, Hizy Hss

where the variance-covariance matrix V' is obtained by

Vit Via Vi Hyy Hyp His
V=1 Voo Voo Va3 | = Hai Hy Hys ,
Vai Vi Vi3 H3, Hizp Hsg

with the elements of Hessian matrix are obtained as

PP STS o BR{  N et 14 3 ML 21 M
= = . ,
25 i=1 | M ((%)k +xm) At ((%)k "'JJ"L) A3 <(Tx)k +$m> N
52 k(%)
Hyp = = ;
12 O dax Z; 22 ((%)’“ +$m)
n k—1 T; k—1 T z; 2k—1 T4
= L4 y (5 ki (5) I (%) | kxi (%) In(%) L
T k T k T 2 ’
5\ Ok ~| a2 ((T) +xm) A2 ((7) +xm) (=) + A
520 n
Haz = 602 a2’
0209~ (3) (%)
H23__5a6k_;<%)k+xmv
and
2 ) @) @ e E) ]
H3s3 = (a+ 1)2 A A A A )
Ok =)+, ((%)“Fffm)z v
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