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Abstract

In this article, we introduce a new generalized family of Esscher transformed Laplace distribution, namely the Ku-
maraswamy Esscher transformed Laplace distribution. We study the various properties of the distribution including
the survival function, hazard rate function, cumulative hazard rate function and reverse hazard rate function. The
parameters of the distribution are estimated using the maximum likelihood method of estimation. We coduct a sim-
ulation study to establish the performance of the estimators by means of bias and MSE. A real application of this
distribution on breaking stress of carbon fibres is also considered. Further, we introduce and study the exponentiated
and transmuted exponentiated Kumaraswamy Esscher transformed Laplace distributions.
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1. Introduction

Now a days, we can see an increased interest in developing generalized families of distributions by introducing one
or more additional shape parameter(s) to the base line distribution. The basic motivation behind these works is to
make the distribution more flexible in modeling various data sets arise from real life situation. Moreover, in gen-
eralized families, the problems related to computing incomplete beta and gamma functions involved can be easily
tackled by the researchers through the analytical and computational facilities available in Statistical softwares like
MATLAB, MAPLE, MATHEMATICA and R packages. Tahir and Nadarajah (2015) provides a detailed account of
various techniques suitable to generate new families of continuous distributions (univariate) through the introduction
of additional parameters. Two among them are the Kumaraswamy Marshal-Olkin family [Alizadeh et al. (2015)] and
Marshal-Olkin Kumaraswamy-G family [Handique and Chakraborty (2015a,2015b).

In this paper, we introduce a new generalized family of distributions namely, Kumaraswamy Esscher transformed
Laplace distribution which is the Kumaraswamy generalization of one parameter Esscher transformed Laplace dis-
tribution introduced by Sebastian and Dais (2012) through a concept, namely Esscher transformation, introduced by
Esscher (1932). Esscher transformed Laplace distribution being asymmetric and heavy-tailed, is a possible alternative
to the distributions with Pareto tails and also to various types of asymmetric Laplace distributions given in Kozubowski
and Podgorski (2000).

The Esscher transformed Laplace distribution [ETL(6)], with parameter 6 is a tilted version of the symmetric Laplace
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Graphs of the pdf of ETL(6) for various values of 6 are given in Figure 1.
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Figure 1: Densities of Esscher transformed Laplace distribution for (a) 6 € (0, 1), (b) @ = 0 (classical Laplace) and (¢) 6 € (—1,0)

The distribution is unimodal, positively skewed and leptokurtic. Again ETL(6) distribution is infinitely divisible,
geometric infinite divisible and self-decomposable. It can be considered as the mixtures of normal distributions,
convolution of Exponential distributions and the log ratio of two independent random variables with Pareto type I
distributions with density f(x) = %, x > 1, (for details, see Sebastian and Dais (2012)). The application of this
distribution in Web server data, Marshall-Olkin extension with its application in financial data, application in time
series, pathway generalization, multivariate extension and discretization are also considered respectively by Dais and
Sebastian (2011, 2013), Dais et al. (2016) Rimsha and Dais (2019), Rimsha and Dais (2020) and Krishnakumari and
Dais (2020). Again Sebastian et al. (2016) introduced Log-Esscher transformed Laplace distribution and studied its
applications.

The rest of the research paper is organized in four Sections. In Section 2, we introduce the Kumaraswamy Esscher
transformed Laplace distribution and study some of its properties. The parameters of the distribution are estimated.A
simulation study as well as a real data application of the distribution are also considered in this section. Later, some
extensions viz. the exponentiated and transmuted exponentiated forms of the new family of distributions are introduced
in Section 3. This paper is concluded by Section 4.

2. Kumaraswamy Esscher Transformed Laplace Distribution

Beta distribution is one of the most basic distributions supported on finite range (0, 1) and has been used widely in both
practical and theoretical generalization aspects of statistics (see, Nadarajah and Kotz (2004), Akinsete et al. (2008),
Nassar and Elmasry (2012) and Nassar and Nada (2011, 2012 & 2013)). An alternative distribution like the beta
distribution, which is easier to work with, is the Kumaraswamy distribution proposed by Kumaraswamy (1980). The
Kumaraswamy distribution is like the beta distribution in many ways. Kumaraswamy’s densities are also unimodal,
uniantimodal, increasing, decreasing or constant depending in the same way as the beta distribution on the values of its
parameters. In addition, one can easily show that the Kumaraswamy distribution has the same basic shape properties
of the beta distribution. In the literature we can see Kumaraswamy generalizations of a lot many distributions. Among
them to know about the recently developed ones, see Cordeiro (2010), Shuaib et al. (2016), Chhetri et al. (2017),
Ahmad et al. (2018), Elgarhy et al. (2018), Zohdy et al. (2019) and Tahir et al. (2020). Still only few Kumaraswamy
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generalized asymmetric and heavy tailed distributions are developed and hence this study has much importance.
Here we consider the Kumaraswamy generalization of one parameter Esscher transformed Laplace Distribution. If
X ~ ETL(6) distribution with probability density function (1) and distribution function (2), the probability density
function and distribution function of the Kumaraswamy Esscher transformed Laplace (KETL) distribution are,
FRuweeTL(2) = 1-[1— F(z)%°
1—[1— (3F2e”0+M) 0 2 <0
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If a =b =1, the pdf reduces to the pdf of Esscher transformed Laplace distribution. The survival function, hazard
rate function (hrf), reverse hazard rate function (rhrf) and cumulative hazard rate function of the distribution are
respectively.
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The probability density plots of KETL distribution are given in figure 2.

Figure 2: Densities of Kumaraswamy Esscher Transformed Laplace Distribution for (a) § = 0.56,b = 10 and a = 2,5, 10,13 (b)
0 =0.56,a =5and b= 2,5,10,13(c)a = 5,b = 5 and 8 = 0.26,0.63, —0.26, —0.66

As the parameter a changes the location changes whereas as b changes, the tail heaviness of the distribution increases
to the left side if # is negative and to the right side if 6 is positive.

2.1 Estimation

The parameters of the KETL distribution are estimated by the maximum likelihood method. Let X3, X5, ..., X,, be a
random sample from KETL distribution given by equation (4) and 3 = (a,b,6)” be the unknown parameter vector.
The log-likelihood function is given by

18) = > dilog (ab(l O - 9)a> +) diazi(1+0)
i=1

2(l

=1

+ (b—1)log {1 - ((129> er“*"))a} + é(l — 6;)log [ab (1 292”
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where
1, if ;<0
& = (6)
0, if z; > 0.

This log-likelihood function can not be solved analytically because of its complex form but it can be maximized
numerically by employing global optimization methods available with software’s like R, SAS, Mathematica or by
solving the nonlinear likelihood equations obtained by differentiating (5). By taking the partial derivatives of the log-
likelihood function with respect to a, b and 6, we obtain the components of the score vector as U(3) = (Uy, Uy, Ug)™.
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Setting U ( B ) = 0 and solving them simultaneously, we obtain the maximum likelihood estimate of 3 = (a, b, 8)7
B = (a,b,0)T. The (3x3) Fisher information matrix is

Usa Uab Uag
2(B) = Uba Upb Ube
Uga Usp Upgo
where the diagonal elements
U = —5 9)
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2.2 Simulation Study

In this section, we conduct a simulation study to illustrate the performance of the parameters. Using this simulated
data from kETL distribution for different sample sizes (n= 15, 20, 30, 50, 100), we use the acceptance rejection
method suggested by Arnold et al. (1999). The acceptance rejection method is a way to simulate random samples
from one unknown (for difficult to sample from) distribution by using random samples from a similar, more convenient
probability distributions with the property f(z) < Cg(x). Here g(x) is the pdf KETL distribution, f(x) the pdf of ETL
distribution and

(52 eyt 1 (e T e o
— 0 ,—x(1-0))2"1
C = aby (1ot

{1 _ (1 _ 142-06—:5(1—0))“} , x>0

(12)

where C' < oo and a constant. Obivisiouly it is preferable to have C close to one which in turn means that g(x) should
look as much as possible alike f(x). Using this simulated data (1000 random samples and hence 1000 estimates for
each parameter) with help of the nlm() package in R, we obtain the estimates for #, a and b. We study the performance
of the estimators, using average Bias and average mean squared error (MSE). Table 1 shows the estimated values of
the parameters for different sample sizes along with its average Bias and average MSE.
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Table 1: Average Bias and Average MSE of the Simulated Estimates for 6, a and b.

n 6 = 0.0466 a = 0.5213 b =0.5962

n 7 Bias MS.E a Bias MS.E b Bias MS.E
15 | 0.0424 | 0.00644 | 0.0069 | 0.4881 | 0.0075 | 0.0063 | 0.5783 0.0028 0.0041
20 | 0.0433 | 0.00413 | 0.0057 | 0.4904 | 0.0068 | 0.0049 | 0.5798 0.0027 0.0030
30 | 0.0439 | 0.00368 | 0.0038 | 0.4962 | 0.0054 | 0.0036 | 0.5816 0.0017 0.0024
50 | 0.0446 | -0.0008 | 0.0014 | 0.5066 | -0.0038 | 0.0027 | 0.5898 0.0013 0.0021
100 | 0.0453 | -0.0010 | 0.0009 | 0.5160 | -0.0043 | 0.0036 | 0.5902 | -0.00029 | 0.0016

From the table we can see that as the sample size increases the estimates become more and more close to the actual

value of the parameters 6, a, b. Also the average Bias and average MSE of the estimators are reasonably small for
various choices of the sample sizes.

2.3 Real Data Analysis

For data analysis, we consider the data set consisting of 380 observations which represents the breaking stress of car-
bon fibres starting from 07/11/2015 to 06/11/2017. We collect the secondary data from the Steel Plant, Visakhapatnam,
Andhra Pradesh and its descriptive statistics are given in Table 2.

Table 2 Descriptive Statistics of 380 Breaking Stress of Carbon Fibres.

Min. | Q1 | Median | Mean | Q3 | Max. Var.
0.39 | 1.73 2.5 2.53 | 3.12 | 5.56 | 1.089.

Figure 3 represents the histogram of this data.

A5 El 05 ] 05 1 15 2

Figure 3: Histogram of the Observed Data

This resembles the shape of the graph given in Figure 1. We fit the data to the new model and compare the result with
the Kumaraswamy Laplace model by estimating the parameters of both the distributions using nlm method and the
estimated parameters are displayed in Table 3.

Table 3 MLE of the Model Parameters

Distribution Estimates
a b 0 K
KETL 0.533167 0.456913 0.0489
KL 0.653167 0.578913 0.8962

The frequency curves of the distribution are superimposed in the histogram and are presented in Figure 4.
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Figure 4: Embedded Frequency Polygon of the Observed Data
From the figure it is clear that the kumaraswamy Esscher transformed Laplace distribution is a better model than the
Kumaraswamy Laplace distribution for the considered data.

The K-S statistic and numerical values of the —loglz AIC and BIC are displayed in Table 4.

Table 4 Log-likelihood Functions [—log¢(8)], AIC, BIC and K-S Statistics

Distribution | —logl() | AIC | BIC K-S
KETL 268.129 | 544.25 | 553 | 0.04968.
KL 548.129 | 634.25 | 663 | 0.07898.

Since the values of K-S statistic, —logf, AIC, BIC are smaller for the KETL distribution compared with those values
of KL distribution, the new distribution seems to be a competitive model for the breaking stress data.

3. Some Extensions of Kumaraswamy Esscher transformed Laplace Distribution

In this section, we introduce some new extensions of Kumaraswamy Esscher transformed Laplace Distribution namely,
exponentiated Kumaraswamy Esscher transformed Lapalce distribution and transmuted exponentiated Kumaraswamy
Esscher transformed Lapalce distribution.

3.1 Exponentiated Kumaraswamy Esscher Transformed Laplace Distribution

Exponentiated family of distribution was introduced by Gompertz (1825) and Verhulst (1838, 1845, 1847) by the first
half of the nineteenth centuary and Gompertz and Verhulst cumulative distribution function was the first member of
the exponentiated family of distributions. Later several exponentiated distributions are developed and for the recently
introduced ones available in the literature, see Hassan and Elgarhy (2016), Amer Ibrahim et al. (2019), Ahmad et al.
(2019), Suleman Nasirua et al. (2019), Dawlah Al-Sulami (2020), Francisco Louzada et al. (2020), Abdulkabir and
Ipinyomi (2020), Badr and [jaz (2021) and Ali et al. (2021). Four different methods are seen in the literature to obtain
the exponentiated family of distributions. Among them we use the method of Lehmann alternative 1 (LA1) due to
Lehmann (1953).

According to Lehmann alternative method, if G(z) is the cdf of the baseline distribution, then an exponentiated family
of distributions is defined by
F(z) = G(2)%, (13)

where a > 0 is a positive real parameter.

If Kumaraswamy Esscher transformed Laplace distribution with distribution function F(x) given in (3) as the baseline
distribution, the cumulative distribution function and probability density function of the exponentiated Kumaraswamy
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Esscher transformed Laplace distribution denoted by EKETL distribution are

and
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respectively.

3.2 Transmuted Exponentiated Kumaraswamy Esscher Transformed Laplace Distribution

Shaw and Buckley (2007) introduced transmuted family of distributions. Let P(¢) be the probability density function
of arandom variable T € [a,b] for —o0o < a < b < oo and let W[G(x)] be a function of the cumulative distribution
function of a random variable X such that W[G(z)] satisfies the following conditions:

1. W[G(z)] € [a,b]
2. W[G(z)] is differentiable and monotonically nondecreasing and
3. W[G(z)] — aasax — —oocand W[G(x)] — basz — o0

Later, Alzaghal. et al. (2013) defined the T-X family of distributions by

WI[G(z)]
Flz) = / P(t)dt, (14)

where W[G(x)] satisfies the above conditions. The corresponding probability density function is

d
@) = { WG] o (ViG] (15)
Based on the T-X family, we construct a new generator by taking W[G(x)] = #&fé(x) and P(t) = 14+A—2Xt,0 <

t < 1 and there by indroduce a new family of distributions, namely transmuted exponentiated Kumaraswamy Ess-
cher transformed Laplace distribution (TEKETL). The transmuted exponentiated Kumaraswamy Esscher transformed
Laplace distribution is the transmuted version of the exponentiated Kumaraswamy Esscher transformed Laplace dis-
tribution with cumulative distribution function (14). The cumulative distribution function and probability density
function of the transmuted exponentiated Kumaraswamy Esscher transformed Laplace distribution (TEKETL) are
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obtained respectively as
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Here the parameters a > 0 and b> 0 introduce asymmetry and heavier tails in the baseline distribution. Ifa=b =1
and A = 0, the probability density function reduces to the Esscher transformed Laplace distribution and A = 0, the
probability density function reduces to the kumaraswamy Esscher transformed Laplace distribution.

4. Conclusion

In this paper, we introduced the Kumaraswamy generalization of the Esscher transformed Laplace distribution namely,
Kumaraswamy Esscher transformed Laplace distribution and studied their survival function, hazard rate function, cu-
mulative hazard rate function and reverse hazard rate function. The parameters of the distribution were estimated using
the maximum likelihood method of estimation. The simulation study established the performance of the estimators. A
real application of this distribution on breaking stress of carbon fibres was also considered here. Later we introduced
the exponentiated and transmuted forms of this new family of distributions namely, Exponentiated Kumaraswamy
Esscher transformed Laplace distribution and Transmuted exponentiated Kumaraswamy Esscher transformed Laplace
distribution. Being asymmetric and heavy-tailed and since tail heaviness (left tail heaviness and right tail heavyness)
increases according as the change in the values of the parameters, these newly proposed flexible models will be very
helpful for modeling such data sets generated from different fields.
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